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Agricultural Monitoring, an Automatic Procedure for
Crop Mapping and Yield Estimation: The Great Rift

Valley of Kenya Case
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Abstract—Agricultural activities conducted in the Great Rift
Valley of Kenya show a significant decline of productivity levels.
This phenomenon is mainly related to limited availability of water
resources, lack of supporting irrigation, and harvesting techniques
ineffectiveness. Production risks reduction is closely related with a
better use of water resources and a better understanding of the ef-
fects resulting from the multiple interactions between climate, agri-
cultural vegetation, soil type, and crops management techniques. In
this paper, a remote and automatic agricultural monitoring system
is presented as an effective alternative to the most traditional in situ
measurements and observations. We investigated the use of pheno-
logical information extracted from satellite imagery combined with
crop calendar and supported by agro-ecological zoning (AEZ) in
accurate crop classification and monitoring. Vegetation indices ex-
tracted from Landsat 8 imagery are capable to track the vegetation
development through the year, then phenological profiles can be
extracted and implemented into a multitemporal automatic clas-
sification process to detect agricultural areas and to discriminate
among different crop species. The phenological profiles extracted
by satellite imagery are compared with crop calendar data com-
piled by FAO for the area of interest. The classification procedure
is supported by AEZs based on crop modeling and environmen-
tal matching procedures in order to identify crop-specific environ-
mental limitations under assumed levels of inputs and management
conditions. The FAO crop water productivity model AquaCrop is
calibrated for wheat and maize yield mapping in the central high-
land of Kenya, handling both environmental and phenological data.
The combined use of phenological data and AEZs results in a ro-
bust methodology with a classification overall accuracy of 91.35%.
A good model performance is obtained relative to yield predictions,
with R of 0.69 and 0.72.

Index Terms—Agricultural monitoring, Aquacrop, crop clas-
sification, Kenya, Landsat 8, phenology, remote sensing, yield
mapping.

I. INTRODUCTION

AGRICULTURE is the most important economic activity
in Kenya, although less than 8% of its territory is used for
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crops and sheep farming. Less than 20% of the land is suitable for
agriculture, of which only 12% is classified as high agricultural
potential (adequate precipitation) and about 8% of the soil as
medium potential. The rest of the territory is arid or semi-arid.
About the 80% of the workforce is engaged in agriculture or food
production [1], [2]. A detailed land use-land cover (LULC) map
of Kenya was released in 2000 by the FAO in the framework of
the Africover project. This map was mainly based on Landsat
imagery acquired since 1995 [3] and was specifically dedicated
to agricultural areas identification and description. Since then,
socioeconomic and political changes have brought about major
changes that dealt with the intensification and the systematic
expansion of agro-pastoral areas. The periodic production of
LULC maps is necessary to understand the changes that have
occurred in the last two decades and for the long-term prediction
of the agricultural potential. Agricultural monitoring systems
must be able to recognize agricultural areas, discriminate among
different crop types, and finally evaluate crop health status. The
identification of crop stress factors stands as a critical point in
order to correct crop growth simulation models and properly
estimate the expected crop yield.

Site-specific crop identification based on satellite imagery
is important for agro-ecological analysis, climate modeling at
regional scale, and agricultural policy development [4]. Timely
and accurate data on crop yields both at regional and field
scales are important for many applications: At a regional scale,
it is an input into the decision-making process on food security
issues, and at a field scale, it represent a site-specific input
to improve field-management practices. The critical factor is
the time needed to collect all the necessary data to properly
carry out the monitoring and forecasting activities. Currently,
data-collection systems are based on ground controls and air
surveillance. These systems provide timely and accurate data,
but show several disadvantages: Data are collected by various
entities over extended territories, which results in the applica-
tion of different methodologies and tools; furthermore, these
strategies are time consuming and they require a significant
amount of economic investments. A remote crop monitoring
system is a significant step toward the introduction of standard
measurements and uniform validation checks of cultivation
supporting techniques effectiveness.

Remote sensing technology has been proved as a useful
application for natural resources evaluation and management.
Automated and low-cost remote sensing tools are suited for
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monitoring crop growth and health status and providing farm-
ers with timely information concerning the necessary actions to
take to assure food security. Vegetation indices (VIs) derived
from satellite images are well correlated with the parameters
that define crops status and for nearly four decades the nor-
malized difference VI (NDVI) has remained one of the most
consistently and widely measured VIs across a wide variety
of space-borne sensors, providing us with plurality of infor-
mation and historical archives. NDVI data at high temporal
frequency have been widely used to track seasonal phenology
of green-up and senescence over a large variety of ecosystems
from space using NOAA’s Advanced Very-High Resolution Ra-
diometer (AVHRR) ([5]–[8]) and NASA’s Moderate Resolution
Imaging Spectrometer (MODIS) [9]–[11]. Earth Observation
data are recognized for strategic relevance in monitoring crops
health status and productivity, providing the necessary informa-
tion to food security and early warning systems. However, as re-
searchers discovered, VIs and/or spectral data by themselves are
often not up to the challenge of crop species discrimination. Fur-
ther, both AVHRR and MODIS provide high-frequency observa-
tions, but their spatial resolution, in several cases, could be quite
coarse. MODIS data are available at 250-, 500-, and 1000-m spa-
tial resolution depending on the specific product [12]. AVHRR
data, on the other hand, are available at spatial resolutions of
1.1 km for local area coverage and 4 km globally. Higher spa-
tial resolution data from sensors such as the Landsat Thematic
Mapper (30 m) have also been used in agricultural applications
[13], [14]. The repeating period for Landsat is relatively in-
frequent (16 days), which presents challenges for agricultural
applications that rely on high-frequency sampling during criti-
cal phases of the crop growth cycle. Recent studies have fused
higher spatial resolution map products derived from Landsat
with higher frequency MODIS or AVHRR data (e.g., [15], [16]).
However, high-resolution map products derived from Landsat
data such as the cropland data layer (CDL) [17], which is pro-
duced by the United States Department of Agriculture (USDA)
National Agricultural Statistics Service (NASS), are generally
only produced at regional scales and are therefore not available
for much of the world. Further, medium-/low-resolution maps
are not worldwide applicable due to the different extent of the
cropland characterizing each country and finally the accuracy of
such maps is not the same across the world [18], [19].

Methods that rely on widely available datasets such as MODIS
could be more or less useful depending on the characteristics of
the area of interest (AOI). Decades of scientific research have
shown considerable progress toward assessing land use cover
change (LUCC) [20]. Using air- or space-borne remote sens-
ing data is a fast-advancing approach in this field [21]–[24],
particularly due to its ability to provide regular spatially and
temporally explicit data across large areas when compared to
field-based assessments [25]. Considerable challenges in map-
ping LUCC using remote sensing data persist; the data are not
always uniquely linked to land cover and are ambiguously re-
lated to land use, hence commonly requiring the use of heuristic,
empirical (e.g., [26], [27]), or physically based models [28] to
infer land properties. Further, land-use information must often
be inferred based on integration with ground knowledge or user

interpretation [26], [29]. Reliable, regular, and extensive ground
assessments are expensive and challenging, often constraining
remote sensing for mapping unambiguous land-cover proper-
ties only. Studies often extracted phenological indices such as
leaf area index (LAI), fraction of vegetation cover, enhanced VI,
NDVI, and land surface water index (e.g., [30]–[33]), and vari-
ous band ratios and differences [34], from optical data. Mapping
vegetation at a species level is quite challenging using Landsat
products, especially in heterogeneous environment character-
ized by high variability of soil type and crop quality.

Simulation models properly calibrated can play a key role in
the analysis of crop adaptability to climatic and soil conditions,
as well as the effectiveness of cultivation-supporting technique
in managing critical stress factors that may occur at different
stages of vegetation development [35]. Simulations analysis in-
troduces the possibility to choose through different possible and
adaptable planning strategies for the management of the agricul-
tural potential of a specific area [36]. However, it is necessary to
remark that a universal calibration for such simulation models
does not exist [37]. The first objective to achieve is to calibrate
the simulation model according to the climatic local variability,
using the least possible number of parameters to this purpose
and taking into account the most relevant vegetation stress fac-
tors within the study area [38]. The current crop development
through the growing season is described and introduced into the
simulation model through phenological metrics and variables
retrieved during the classification task.

In Section II, a brief description of the study area, the refer-
ence data, and the location of the sample sites on the ground
are provided, as well as a brief description of the satellite data
that have been used in this paper. In Section III, our method-
ologies related with crop mapping and with crop yield forecast
are presented. Section IV is dedicated to discuss the results and
validation of the previously described methodologies. Section V
of this paper discusses the final conclusions.

II. STUDY AREA AND MATERIALS

A. Study Area and Reference Data

The study was performed for the Nakuru County in 2016.
Nakuru County (Fig. 1) covers the largest part of the Rift Val-
ley and includes the bordering escarpments and plateaus: The
western plateau rises to nearly 3000 m within the district terri-
tory. Nakuru County is particularly suited for the development of
agro-pastoral activities. The climate is cool and wet with a mean
temperature of 10–15 °C and annual average rainfall of about
1200–1400 mm [39]. Nakuru County, according to FAO agro-
ecological zoning (AEZ), is divided into tropical alpine (TA),
upper highland (UH, from 0 to 3), lower highland (LH, from 2
to 5), upper midland (UM, from 3 to 6), and lower midland (LM
5) zones.

ERA-Interim is a global analysis system of climatic data since
1979. The system is characterized by a four-dimensional varia-
tional analysis in a 12-h time window, with a spatial resolution of
about 80 km distributed over 60 altitude levels (from the surface
up to 0.1 hPa). Climatic data are available from the ECMWF
Public Datasets web interface [40]. The archives made available
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Fig. 1. Nakuru County (in red), in the Great Rift Valley of Kenya, has been
selected as study area for this investigation.

for the years 2015–16 were used for modeling the atmosphere
over the study area. The following archives were implemented:

1) geopotential (from 1000 to 100 mbar);
2) relative humidity (from 1000 to 100 mbar);
3) temperature (from 1000 to 100 mbar);
4) horizontal wind speed (from 1000 to 100 mbar).
Top-soil (soil composition up to a depth of 20 cm) data were

imported from the KENSOTER and SOTWIS databases [41].
Data on AEZ were provided by the Farm Management Hand-
book of Kenya (FMHK), Vol. II, Part A-B-C [39].

The zoning used reflects the methodology and subdivision cri-
teria already adopted by FAO [42]. Phenological calendars were
extracted from the FMHK and integrated with crop calendars al-
ready in use and distributed by FAO. The digital elevation model
at 90-m spatial resolution from the Shuttle Radar Topography
Mission (SRTM), distributed by United States Geological Sur-
vey (USGS), was implemented [43]. Testing sites’ exact location
within the study area and the associated crop species are reported
in Table I. Crop yield observation provided by Food and Agricul-
ture Organization Statistical service (FAOSTAT) [44] and USDA
Foreign Agricultural Service (FAS) [45] was used to validate the
simulation process results.

B. Landsat 8/OLI Dataset

A total of 23 geometric and terrain-corrected (L1T) scenes of
Landsat 8 Operational Land Imager (OLI; Path 169/Row 60) be-
tween January 2016 (day of the year – DOY 28) and December

TABLE I
SAMPLE SITES

2016 (DOY 364) were obtained from the USGS archive. These
scenes were then converted into top of atmosphere (TOA) re-
flectance values. Due to the relatively low-resolution image (low
compared with crop field sizes of the AOI), a pan-sharpening
technique was implemented to increase Landsat 8 OLI image
resolution from 30 to 15 m. Pan-sharpened images have proved
their effectiveness in classification or land-cover change detec-
tion problems [46], [47]. The fast intensity hue saturation (FIHS)
method was applied on Landsat 8 OLI bands 2–5 as proposed
by Johnson in 2014 [48], [49]. It has been demonstrated that
is preferable to apply the image pan-sharpening before the VI
calculation [47].

III. METHODOLOGY

This paper investigates a new phenology-based, site-specific
classification approach able to discriminate different crop
species using Landsat 8 OLI imagery. In particular, the phenol-
ogy of the characteristic crops of the AOI and AEZ were taken
from FAO sources (FAO crop calendar and FAO Farm Manage-
ment Handbook). These datasets were used for implementing
a multivariate decision tree (MDT). Decision tree (DT) classi-
fiers have not been widely used by remote sensing community
for the LULC classification. DT classifiers are of nonparametric
nature and characterized by simplicity, flexibility, and computa-
tional efficiency [50]. An important advantage of classification
trees is that they are structurally explicit, allowing for clear in-
terpretation of the links between the dependent variable of class
membership and the independent variables of remote sensing
and/or ancillary data [51]. To construct a classification tree by
investigative approach, it is assumed that a dataset of feature
vectors and corresponding classes are available. The features
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are identified and selected based on a priori problem-specific
knowledge [52].

The DT is designed by separating the original dataset into ho-
mogenous subset on the basis of a test series applied to prelim-
inary selected attribute values [52]. An operational example of
the application of DT algorithm is the annual national-level cov-
erage product of the United States CDL [17]. As stated by Brown
de Colstoun et al. [53], DT classifiers can also accept a wide vari-
ety of input data, including nonremotely sensed ancillary data, in
the form of both continuous and/or categorical variables. Further
advantages of DTs include an ability to handle data measured on
different scales, lack of any assumptions concerning the data-
frequency distributions in each class, flexibility, and ability to
handle nonlinear relationships between features and classes [54].
Peña-Barragán et al. [55] successfully combined object-based
image analysis (OBIA) and DT methodology for the identifica-
tion of 13 major crops cultivated in the agricultural area of Yolo
County (California, USA). Their multiseasonal assessment of a
large number of crop types and field status reported an overall
accuracy of 79%. Brown de Colstoun et al. [53] used multitem-
poral ETM+/ Landsat-7 data and a DT classifier to map 11 types
of land-cover classes, acquiring a final land-cover map with an
overall accuracy of 82%. Grouping the 11 land-cover classes in
forest versus nonforest classes, this same accuracy was 99.5%.
Vieira et al. [14] combined OBIA and DT to map harvest-ready
sugarcane in Brazil. The limitation of testing a single feature at
a single node potentially leads to a much larger DT and could
significantly reduce the ability to express and describe concepts
resulting in less-representative classes. To avoid testing features
more than once or to avoid replicating tests among subtrees, an
MDT has been implemented. In this paper, we attempted for
LULC and crop mapping of six crop species in Nakuru County,
Kenya.

The AquaCrop model was then used to estimate the levels of
foliar coverage, biomass, and harvest of two agricultural species
(wheat and maize) in response to irrigation deficit in the subhu-
mid and semi-arid climatic conditions of the Kenyan highlands.
The FAO crop water productivity AquaCrop model simulates
the obtainable biomass and the associated productivity in re-
sponse to water resources availability with the specific purpose
of limiting the number of required explicit parameters [56]. It is
particularly suitable for application in dry, semi-arid, or drought-
prone areas [57]. A crop forecasting model takes into account the
plant interactions with soil (through which water and nutrients
are extracted), and atmosphere (which determines the evapo-
transpiration, the demand for carbon dioxide, and the required
energy for plant growth). Many models require a large number of
input parameters and variables, not easily available for all types
of crops and for all possible areas of application, especially in
developing countries. Furthermore, these parameters are usually
more familiar to scientists than to end users. Compared to other
crop forecasting models, AquaCrop is parameterized through
a reduced number of parameters, trying to balance simplicity,
accuracy, and robustness.

The AquaCrop simulation model is based on the relationship
between reference evapotranspiration (Et0) and harvest [58]:
Evapotranspiration is divided into leaf transpiration and soil

Fig. 2. Flowchart of the overall monitoring systems along with the required
input dataset.

cover transpiration. The water content at roots level is modeled
taking into account the water flow from and to the ground. The
ground canopy cover replaces the LAI. Leaf cover expansion and
senescence, stomata conductance, and production index (harvest
index, HI) are all key parameters describing the response to water
stress, which is finally summarized through the water produc-
tivity index that is susceptible of remote estimation through the
equivalent water thickness (EWT) evaluation. It is also consid-
ered as a thermal stress factor for both high and low temperatures
(pollination- and biomass-level stress) as well as the water re-
sources management. Crop yield mapping and assessment at a
local scale consists of two major steps: 1) crop mapping and
2) yield assessment at 15-m spatial resolution. Fig. 2 illustrates
the main processing steps along with required input dataset.
These steps are described in detail in the following subsections.

A. Crop Mapping

The developed approach for crop classification allows auto-
matic mapping of crops at species level using a priori knowledge
on crop calendar and without using ground truth data as training
sites. The method is based on per-pixel estimation of phenolog-
ical metrics from NDVI time series and per-pixel comparison
with reference data. Tracking crops biomass development re-
sults in phenological signature identification; we applied rules
on phenological variables, such as the dates of certain grow-
ing stages, to discriminate and classify crops at species level.
Phenological profiles provide historical NDVI projection over a
specific site and can be used to discriminate for different crop
species and to identify crop rotation cycles and biomass sea-
sonal trends [59]. Phenological stages were retrieved from crop
growth time series as the main input to the classification algo-
rithm. A pixel-based algorithm was designed to automatically
retrieve vegetation phenological signature starting from NDVI
time series. The NDVI values from cloud-contaminated pixels
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were recovered by interpolating the available NDVI values over
the closest and shortest period.

The NDVI time series were determined by interpolating the
raw NDVI datasets. Spline smoothing has been achieved based
on the description in [60]. This method was employed to find a
spline function Sh(t) that minimizes a criterion function Ch(t)
for a specific smoothing coefficient h (≥0)

Ch =
m∑

i=1

{
wi[NDV Ii − Sh (ti)]

2 + vip ∫ |S ′′
h (t)|2dt

}
(1)

where ti (i = 1, . . . , m) is the regularly spaced time grid corre-
sponding to the NDVI time series. Each point of the time series is
associated with a weightw(ti), while v is the adaptative stiffness
weight vector at i. The parameter h controls the spline function
shape from an exact interpolation (h= 0) to straight line (h→�).
In order to switch from a manually selecting approach of h to-
ward an automatic approach, generalized cross-validation was
used by [60]. This procedure was improved and implemented
in GCVSPL, a Fortran software package for spline smoothing
and differentiation, designed by [61]; in this paper we used the
MATLAB MEX interface for the GCVSPL package developed
by [62].

The phenological function was then analyzed to retrieve the
phenological metrics. Vegetation development is well described
by the following phenological stages [63]:

1) start of season (SOS), or the onset of photosynthetic
activity;

2) end of season (EOS), or the very end of the senescence
period;

3) the maturity peak located at the NDVI maximum value
(Max);

4) the dormancy period characterized by no photosynthetic
activity and related to soil preparation or soil restoration
practices.

The distance between EOS and SOS defines the length of
growing period (LGP). From the NDVI-fitted function we re-
trieved five transition dates corresponding to the aforemen-
tioned phenological stages as illustrated in Fig. 3. Three dates
(DOYSOS, DOYEOS, and DOYMax), corresponding to local
minimum or maximum of the phenological function (first deriva-
tive equals to zero), describe SOS, EOS, and Max stages; two
dates (DOYG, and DOYS) are determined when the increasing
or decreasing rates (first derivative) are maximum and repre-
sents, respectively, the middle of the growing season (G) and of
the senescence period (S). The difference between DOYEOS and
DOYSOS stands for the LGP. The minimum NDVI value within
the LGP represents the NDVI background value (NDVIb): The
difference between NDVIMax and NDVIb represents the ampli-
tude of the NDVI variation within the LGP.

The automated mapping task was conducted based on hierar-
chical rules within an MDT algorithm. Phenological variables,
that represent the seasonal dynamic of NDVI and stages of phe-
nological transition during the growing period, are useful in crop
classification and discrimination tasks at species level based on
crop calendar [64]. Due to the interannual and interregional vari-
ability of crop calendar, phenological variables alone may not

Fig. 3. NDVI time series was interpolated (above) and then analyzed (below)
searching for phenological signature and transition dates representative of crop
development during the season; phenological function first derivative was used
to exactly locate the current transition dates of the growing stages.

be sufficient to fully separate crop cycles. Additional data were
introduced into the classification problem based on AEZ to im-
prove crop separability. The purpose of zoning for rural land-
use planning is to separate areas with similar sets of potentials
and constraints for development. AEZ, as applied in FAO stud-
ies, defines zones on the basis of combinations of soil, land-
form, and climatic characteristics. The Kenya AEZ study [65]
distinguishes agro-ecological cells, which are the basic units
for land evaluation and data processing, from agro-ecological
zones, which are spatial units related to a soil map. The concept
of the LGP is essential to AEZ, and provides a way of including
seasonality in land resource appraisal. The determination of the
beginning of the growing period is based on the start of the rainy
season. By compiling an inventory of LGPs over a historical se-
quence of years, the frequency distribution of different annual
numbers of LGP can be assessed. Kenya AEZ study identifies
22 occurring LGP patterns. In this paper, crop calendars have
been imported for the AEZs of the study area, and decisional
rules were designed according to local crop development char-
acteristics.

The crop mapping system preclassification analysis architec-
ture is shown in Fig. 4. The first step is searching for vegetated
areas within the AOI. A threshold was settled on the time se-
ries NDVImax value to isolate vegetated areas and then proceed
with phenological metrics extraction. The second test was de-
signed to search the phenological function for points eligible
to be SOS or EOS stages. The third test was designed to catch
the exact location of the LGP of the pixel under examination:
This made possible the distinction between winter and summer
crops. From this point on, the MDTs proceed separately for crop
identification.

Crop classification MDT algorithm is illustrated in Fig. 5:
Pixel geographic location selects the crop calendar to be used
as reference phenology into the classification process. A series
of decisional rules was designed to be exploited at each binary
node of the DT. Fitted NDVI values at reference transition dates
are evaluated. The purpose is to verify the matching between the
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Fig. 4. Flowchart: The preclassification analysis leads to isolate winter and
summer crops out of the original dataset. Winter and summer crops are going to
be processed by the MDTs to carry out the classification at crop species level.

Fig. 5. Flowchart: MDT overall architecture. Transition dates pointed by
the NDVI time series are compared with reference transition dates from crop
calendars.

Fig. 6. NDVI values at the transition dates describing the key points of the
phenological development of a crop species; the phenological curve has been
retrieved from the NDVI raw values and the compared with reference phenology
from FAO crop calendar.

reference transition dates and the ones retrieved from the current
phenology: If the matching is verified, the pixel under analysis
is consequently classified, otherwise the analysis moves on try-
ing to verify the next possible match within the season temporal
window. An example of a possible match between the refer-
ence phenology and the one retrieved from NDVI time series is
shown in Fig. 6. Transition dates for the reference phenology
are defined from the selected crop calendar; at the same time the
analysis of pixel phenology allows us to retrieve current transi-
tion dates: the possible matching between the two sets of dates
leads to crop species identification. Residual unclassified pixels
can be the results of: 1) LGP mismatching or 2) unidentified crop
species. In the first case, the reference LGP (based on historical
analysis) is not representative of the LGP for the current sea-
son: This misalignment is mainly related with climate change.
In the second case, the crop species reference phenology is not
available.

B. Yield Estimation

The FAO AquaCrop model is a field-scale crop growth model
that aims to simulate plant functions under specific stress con-
ditions, within a modeled climatic/environmental scenario. The
system architecture is shown in Fig. 7. Climatic and environ-
mental data are previously processed and stored as well as crop
species phenological and physiological information. The start-
ing point is the study area selection made by the user using the
interactive LULC geographic information system (GIS) product.

The climatic data (12-km spatial resolution, 19 pressure levels
between 1000 and 350 mbar) and the digital terrain elevation
model (SRTM) were resampled to the resolution of 250 m. Then,
the climatic variables were interpolated along the atmospheric
column to retrieve the variables values at the reference height of
2 m above the local ground [66].
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Fig. 7. Yield mapping system architecture. Crop fields and their related phenol
are imported from the LULC map. Environmental data are loaded at the same
time. The simulation scenario is developed and ready to run the crop productivity
model.

The net solar radiation was computed using the FAO guide-
lines [67] and corrected for the effects of local solar illumination
using topographic modeling [68].

The reference evapotranspiration (FAO-56 method) was cal-
culated for the study areas from the available weather data using
the Penman–Monteith equation [69].

From the GIS product, it is possible to select a specific crop
field (or a wider area containing several fields): For each crop
field, both geographic and crop specific data are processed.

Geographic data allow the system to retrieve local environ-
mental information, while the crop species identification allow
the system to load phenological information into the simula-
tion model; critical stress factors and water requirements for the
specific crop in analysis are also taken into account.

A MATLAB routine is in charge of automatically setting up all
the required parameters throughout the simulation period, and
to recall the AquaCrop routine as many time as necessary. The
simulation was conducted using daily data over the simulation
period. Simulations result were then validated using collected
ground truth data.

The climatic data (daily average reference values at 2 m above
the ground surface) used over the simulation period as result of
climate modeling are shown in Table II.

The top soil characteristics over the testing sites (average val-
ues among the samples) are reported in Table III.

TABLE II
CLIMATIC DATA MONTHLY AVERAGE OVER THE SIMULATION PERIOD

TABLE III
TOP SOIL PROFILE

Sat: saturation, FC: field capacity, WP: wilting point, Ksat: saturated hydraulic conduc-
tivity, CRa, CRb: ‘a’ and ‘b’ parameters for estimating capillary rise.

Fig. 8. LULC map resulting from the classification process, Nakuru County,
Kenya, 2016.

IV. RESULTS AND DISCUSSION

A. Crop Mapping

The multitemporal phenology-based approach to the classi-
fication problem has been applied to Nakuru County. Classifi-
cation results are shown in Fig. 8. Ground truth data have been
collected during field campaign in 2016 and used to validate
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TABLE IV
CONFUSION MATRIX

a: sugarcane, b: maize, c: forest, d: buildings, e: water, f: bush land & cotton, g: sorghum, h: bare soil type1, i: bare soil type2, l: maize and intercropping, m: biseasonal wheat
and maize, n: biseasonal wheat and barley, o: wheat. PA: producer accuracy, UA: user accuracy.

TABLE V
CONFUSION MATRIX

PA: producer accuracy, UA: user accuracy.

the developed LULC map. The first confusion matrix, concern-
ing the assessment of the overall accuracy of the classification
procedure of all the land-cover classes, is shown in Table IV.
The significantly high score of the overall accuracy (98.82%) is
mainly related to the effectiveness of the phenology-based ap-
proach, in classifying tropical forests, bare soils, buildings, and
water basins (classes c, h, i, d, e).

The confusion matrix presented in Table V is representative of
the validation process carried out exclusively with agricultural
classes. Classes m, n, and f are intended to be representative of a
biseasonal (first and second season) field exploitation: The crop
rotation cycle for those classes is consistent with crop calendar.
Class l is an experimental class intended to be representative of
the widely used technique of intercropping maize with beans;
we take advantage of the residual phenology after the harvest of
maize to discriminate this class from classes b and m.

The overall accuracy score of 91.35%, with a significant drop
down in accuracy related with sorghum classification that is
often mistaken with maize. The classification failure concern-
ing sorghum can be partially explained as a consequence of
an insufficient validation due to the lack of ground truth data
for this species. The classification error reduction leads to a

significant improvement of the classification performances. The
limited number of validation sites could result in overesti-
mating the efficiency of our method. Nonetheless the algo-
rithm has proved to be effective in discriminating different crop
types. Moreover, phenological information has proved to be lit-
tle affected by cloud contamination over period and the clas-
sification algorithm was able to properly classify also pixels
affected by a significant cloud contamination during the year of
interest.

B. Yield Estimation

The simulation model evaluates the expected crop yield start-
ing from the biomass total amount estimation; in doing this, it
takes into account several possible environmental stress factors
as well as water availability, cultivation-management strategies,
and possible supporting activities. Each simulation must be cal-
ibrated according to crop species, climatic data, and soil type.
Test sites for maize and wheat crops have been previously se-
lected on the ground. Their exact location is reported in Table I.
Fig. 9 shows the sample sites localization using Google Earth
imagery and the LULC map previously developed.
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Fig. 9. Sample sites from Table I localization from Google Earth imagery (on
the left) and from the LULC map previously developed (on the right).

The simulations results are shown in Table VI: Stress factors
such as soil salinization and soil fertility deficit have not been
taken into account; on the other hand, thermal stress factors
as well as high suffering conditions of the vegetation (mostly
localized at foliar and stomata level) are decisive in determining
the HI drastic reduction, from an expected value close to 48%,
down to an actual value of 18%–23%.

Observed data over the study area have provided the nec-
essary reference to make a proper validation of the simulation
process. The difference between estimation and observation of
corn and wheat crops for the study areas (Fig. 10) is satisfac-
tory, with R values of 0.69 and 0.72 and MAE equal to 119 kg/ha
and 491 kg/ha, respectively, for the two species. Aquacrop tends
to overestimate the biomass production in response to elevated

CO2 values (>360 ppm) [70], this explains the wheat productiv-
ity overestimation. Although the general tendency of AquaCrop
model to overestimate maize production under water stress con-
dition has been reported by [71], under more severe conditions
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Fig. 10. Comparison between simulated and observed data for maize (above)
and wheat (below).

(below the 33% of the expected full irrigation) the model under-
estimates the biomass through the whole season [72].

Model limitations are linked to the accuracy of the input data.
A model requires information about soil composition, weather,
and management practices, but often those data are not available
or accessible. When this state is not met, this causes uncertainties
in the results. Uncertainties are also related with model calibra-
tion. Users of this model should also refer to the condition in
which the model was developed and tested. The use of remote

sensing data can, at this point, make up for the lack of spatial
information and select the correct temporal window in which to
perform the simulations according to crop species.

V. CONCLUSION

This paper attempted to explore the combined use of phe-
nological information, DT algorithm, and simulation model to
crop mapping and yield assessment at regional level. A 15-m
spatial resolution NDVI time series was developed in order to
retrieve vegetation phenological signatures and metrics. Pheno-
logical data were used both by the classification process and by
the simulation model.

Phenological data proved to be quite effective in discrim-
inating crops at species level and in supporting crop simula-
tion model by adding reliable information to correct and assess
the reference LGP. The difference in phenology between crop
species sometimes has less magnitude than interannual or re-
gional variability: Strict rules related with growing stage dates,
applied on phenological variables, result in high accuracy clas-
sification for a specific year or region but could be ineffective
for another year or region. Toward the development of an au-
tomatic classifier, universal rules need to be established by the
processing of a large amount of data instead of training different
classifiers for individual years [64], [73]. Furthermore, the image
acquisition time is more important than the overall number of
available images. Even with a large number of available images,
phenological stages of relevance can be poorly described due to
missing data: This is eventually due to a discrepancy between
the image acquisition scheduling and the temporal window in
which the phenological stage could be catch and properly de-
scribed. This is most likely for phenological stages (and the
associated decision rules) that last only for a short time. The
mapping system offers room for improvement, although higher
complexity may lead to lower the transferability. Furthermore,
characteristic crop sequences of previous years can give infor-
mation about the probability of following crop types, although
the actual crop rotation could differ from the expected one based
on expert knowledge.

The yield mapping system relies upon a dedicated crop map-
ping service devoted to agricultural areas discrimination, identi-
fication, and representation. A specific study area can be selected
and environmental as well as climatic data are loaded into the
simulation process. Due to the simulation model calibration re-
quirements, the monitoring system is really site specific and a
previous and accurate knowledge related to crop characteristics,
typical phenological development, and stress factors is required.
The AquaCrop simulation model can be a valuable tool in the
planning and management of agricultural activities; the model
requires a limited number of parameters, largely intuitive and
explicit, easily collectible, even according to automatic proce-
dures, in many cases already available [74], [75]. During the
validation procedure, it was observed that model performances
depends, as expected, on the water stress levels experienced by
the crops during the growing cycle. Model performances could
become unsatisfactory in severely stressed environment. Obser-
vations made about a general season under/overestimation are
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quite similar to the ones reported by [76]–[79]. The model per-
formance requires a broader validation according to the differ-
ent possible calibrations over a wider availability of sample sites
and agricultural species. When properly calibrated, AquaCrop
reliability implies that it can be used in developing new and
site-specific strategies for field and water resources management
techniques improvement.

The main advantages from incorporating remote sensing data
into crop model are the better representation of crop fields spatial
information (very important for several applications including
site-specific agriculture and food security) and the more accu-
rate description of crop actual development along the various
stages of the growing season. A future development of the pa-
per foresees the use of satellite-based estimation of Et0, LAI,
EWT (related to water productivity), and cloud cover (to cor-
rect for the real isolation period). Considering the advantages
and the wide applicability of the combination of crop models
with remote sensing data and products, the collaboration of the
two will increase especially by the means of using of automatic
procedure.
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