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Evaluating the Operational Application of SMAP for
Global Agricultural Drought Monitoring
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Abstract—Over the past two decades, remote sensing has made
possible the routine global monitoring of surface soil moisture. Re-
gional agricultural drought monitoring is one of the most logical
application areas for such monitoring. However, remote sensing
alone provides soil moisture information for only the top few cen-
timeters of the soil profile, while agricultural drought monitoring
requires knowledge of the amount of water present in the entire
root zone. The assimilation of remotely sensed soil moisture prod-
ucts into continuous soil water balance models provides a way of
addressing this shortcoming. Here, we describe the assimilation
of NASA’s soil moisture active passive (SMAP) surface soil mois-
ture data into the United States Department of Agriculture Foreign
Agricultural Service (USDA FAS) Palmer model and assess the im-
pact of SMAP on USDA FAS drought monitoring capabilities. The
assimilation of SMAP is specifically designed to enhance the model
skill and the USDA FAS drought capabilities by correcting for ran-
dom errors inherent in its rainfall forcing data. The performance
of this SMAP-based assimilation system is evaluated using two ap-
proaches. At global scale, the accuracy of the system is assessed by
examining the lagged correlation agreement between soil moisture
and the normalized difference vegetation index (NDVI). Additional
regional-scale evaluation using in situ-based soil moisture estimates
is carried out at seven of the SMAP core Cal/Val sites located in the
USA. Both types of analysis demonstrate the value of assimilating
SMAP into the USDA FAS Palmer model and its potential to en-
hance operational USDA FAS root-zone soil moisture information.

Index Terms—Agricultural drought, data assimilation, hydro-
logic modeling, soil moisture, soil moisture active passive (SMAP),
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I. INTRODUCTION

THE US Department of Agriculture (USDA) Foreign Agri-
cultural Service (FAS) is tasked with enhancing the inter-

national market competitiveness of United States agricultural
exports. A major part of this effort is based on extensive global
data analysis that provides USDA FAS with prompt informa-
tion on the current state of agricultural commodity markets and
allows USDA FAS to predict changes in international market
conditions. Thus, the timely detection of environmental issues
and variations in global weather or climate patterns that can
affect crop production is essential. Agricultural drought is asso-
ciated with a reduction in water supply and typically monitored
by tracking changes in root-zone soil moisture (SM) (RZSM)
conditions. As a result, SM, along with other essential agrome-
teorological parameters (e.g., precipitation, actual and potential
evapotranspiration, daily temperature, and crop characteristics),
is used by USDA FAS to properly quantify the impact of weather
on crop growth and development.

Historically, USDA FAS has generated RZSM estimates using
a 2-layer Palmer model (PM) soil water balance approach. The
accuracy of SM estimates derived from water balance model-
ing is strongly dependent on the quality of precipitation forcing
data applied to the model, which, in turn, is typically derived
using multiple sources, including remotely sensed observations
corrected by rain gauge observations [1], [2]. Densely instru-
mented regions are, therefore, associated with the highest accu-
racy precipitation forcing, while poorly instrumented areas are
challenging due to the lack of ground-based observations for
proper calibration of the large-scale precipitation products used
to drive the hydrologic models. Additionally, global soil water
balance models suffer deficiencies related to model parameter
uncertainties, oversimplified model physics, and initialization
errors.

Along with the application of soil water balance modeling,
remote sensing advances made in the past two decades have
enabled the timely monitoring of surface SM using satellite-
based microwave sensors. These efforts culminated with the
2015 launch of the NASA SM active passive (SMAP) mission.
However, remote sensing alone provides information about the
SM conditions for only the top few centimeters of the soil pro-
file, whereas agricultural applications require knowledge of the
amount of water present in the entire root zone. In addition, these
retrievals are prone to error in conditions of high biomass and
lack continuity in both time and space.
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Given the individual shortcomings of modeled and remotely
sensed SM products, data assimilation strategies have been de-
veloped for the optimal integration of satellite SM retrievals into
continuous water balance models. If properly constructed, these
strategies yield optimal RZSM estimates with continuous cov-
erage in both time and space.

The use of data assimilation for improved hydrologic mod-
eling is not new. Numerous papers have already demonstrated
the benefit of assimilating satellite-retrieved observations into
physically-based land surface models [3]–[10]. Much of this
past research utilized an ensemble Kalman filter (EnKF) ap-
proach. As discussed in [11], the EnKF is often preferred as a
land data assimilation approach due to its flexibility in terms of
parameterizing land surface modeling errors. Given the proven
added value of data assimilation for land surface modeling, there
has been significant recent interest in the development of opera-
tional applications that promote the use of the available satellite
data for near-real-time decision making. This paper describes
a fully developed and implemented satellite-model application
approach that assimilates SMAP SM products into operational
activities conducted within the USDA FAS Crop Forecasting
System.

The application developed to enhance the USDA FAS drought
monitoring and forecasting capabilities utilizes SM observations
derived from SMAP and their assimilation into the USDA FAS
PM using a one-dimensional (1-D) EnKF (hereinafter referred
to as the “PM+SMAP” data assimilation system). This system
represents one of the first truly operational uses of SMAP SM
products. USDA FAS analysts are currently using PM-EnKF
SM estimates to quantify the severity of agricultural drought
and better anticipate the impact of such drought on global
agricultural production. Therefore, our study objectives are to:
1) assess the value of SMAP for improved operational agricul-
tural monitoring; 2) evaluate the performance of the operational
SMAP enhanced PM system (PM+SMAP); and 3) demonstrate
the benefit of assimilating satellite-based observations into
the PM.

This paper is structured as follows. Section II provides back-
ground on the: 1) EnKF data assimilation approach; 2) PM; and
3) evaluation methodology we apply. PM-EnKF SMAP-based
results are then presented and discussed in Section III and
summarized in Section IV.

II. DATA AND METHODOLOGY

A. Data

1) SMAP Level 2 SM: NASA launched the SMAP mis-
sion in January 2015 and operational data collection started
in late March 2015. The satellite observes the earth’s SM and
freeze/thaw states from a near-polar, sun-synchronous orbit
twice a day at approximately 6 A.M. and 6 P.M. local solar time.
The mission is designed to carry aboard two L-band microwave
instruments. A radar (active centered at 1.26 GHz) and a ra-
diometer (passive centered at 1.41 GHz) are both nested in a
large 6-m spinning mesh antenna that measures the radio fre-
quency energy “spot” over an area with a diameter of 40 km.

This area is further reduced to 1 km using radar aperture syn-
thesis. Unfortunately, the SMAP radar ceased operation in July
2015.

The current SMAP passive microwave (PMW) data archive
spans from March 31, 2015 to the present. Based on these passive
microwave observations, SMAP provides multiple SM products
developed using different algorithms. Here, we utilized the base-
line Level 2 (L2) SMAP SM product generated using the single
channel algorithm (SCA) and SMAP V-pol brightness tempera-
ture observations [12]. This product is distributed at a 36-km ×
36-km EASE-grid projection. For our purposes here, it was pro-
jected and resampled to match the model grid of the PM (regular
0.25° latitude/longitude grid) using conversion tools provided by
the National Snow and Ice Data Center (NSIDC).

SMAP implemented a carefully designed calibration
and validation (Cal/Val) plan (https://smap.jpl.nasa.gov/
science/validation/) [12], [13]. The plan, developed in ac-
cordance with mission objectives and product requirements,
included two stages—pre-launch and post-launch. The pre-
launch stage focused on ensuring that there were reliable data
resources available to validate, calibrate, and test the proposed
SMAP algorithms and build the post-launch Cal/Val infrastruc-
ture and protocols. The Cal/Val post-launch objectives were
focused on ground-based validation activities and efforts to
ensure that the SMAP products meet the predefined mission
requirements. Most importantly, in preparation for SMAP, a
large number of in situ SM network partners were engaged
to produce an extensively quality checked and comprehensive
database for SMAP’s Cal/Val activities. This database was
further extended by leveraging additional ground data col-
lected during a number of carefully planned field campaigns
(https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/).
These data have been extensively assessed for their reliability
and have been used (post-launch) to assess the accuracy of the
SMAP SM products [12], [14]–[16]. Since the SMAP Cal/Val
data are fully independent from the PM, this dataset is an
objective resource for evaluating the quality of the EnKF SM
predictions. Here, we utilized available SMAP Cal/Val data
at seven core validation sites in the USA (described below in
greater detail).

2) MODIS NDVI: NASA moderate resolution imaging spec-
troradiometer (MODIS)-based vegetation indices, such as the
normalized difference vegetation index (NDVI), leaf area index
(LAI), etc., have long demonstrated their potential for mon-
itoring vegetation variability, phenology, and dynamics [17].
The NDVI dataset used in this paper has been developed by
the Global Inventory Modeling and Mapping Studies Group at
NASA Goddard (http://glam1.gsfc.nasa.gov/), funded through
the Global Agricultural Monitoring Project by USDA’s FAS and
NASA Applied Sciences Program. The product provides global
coverage at 250-m resolution and is derived using daily MODIS
data, which is processed to 8-day composites. These data were
aggregated up to 0.25° to match the model grid and binned to
monthly composites. Following the approach outlined in [8],
NDVI are used to evaluate global RZSM products. It should be
noted that MODIS NDVI data were not used in the generation
of any SM product considered here.

https://smap.jpl.nasa.gov/science/validation/
https://smap.jpl.nasa.gov/science/validation/fieldcampaigns/
http://glam1.gsfc.nasa.gov/
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TABLE I
LIST OF THE SMAP SOIL MOISTURE CORE VALIDATION SITES USED

FOR VALIDATION OF THE SMAP ASSIMILATION RESULTS

All sites located in USA.

3) ARS Watershed Data: Currently, the SMAP SM valida-
tion network consists of partner sites spread worldwide that
cover various land cover conditions and climate regimes [14].
Our ground-based validation was conducted over seven dense
SM networks located within the USDA Agricultural Research
Service (ARS) watershed sites and capturing predominantly
cropland and grassland land covers (see Table I). These USA-
based networks have been well calibrated and provide tempo-
rally continuous (and spatially dense) SM data at a 5-cm depth.
All SM comparisons were made against watershed averages ob-
tained and thus, reflect the mean SM within an area between ap-
proximately 150 and 820 km2. These averages were generated
by aggregating individual sites within each network via scaling
functions designed to improve the spatial representativeness of
the in situ stations with regard to a remote sensing footprint[14].

B. Methodology

1) PM and Data Assimilation: The modified PM used by
USDA FAS is a simple 2-layer model driven by daily obser-
vations of precipitation and minimum and maximum air tem-
perature [18]. The model is run at 0.25° grid spacing, with
forcing data provided by the U.S. Air Force 557th Weather
Wing (USAF557, formerly known as Air Force Weather Agency,
AFWA). The model computes daily surface and subsurface SM
estimates using a simple bucket-type water balance approach.
Values are provided as depth of water (mm), where the maxi-
mum water holding capacity of the first layer is assumed to be
25.4 mm. The amount of water that can be stored in the second
model layer is variable and is modeled as a function of specific
soil properties found within each grid cell. The amount of soil
water in the second model layer is increased only after the first
layer reaches the maximum holding capacity. Once both layers
are filled, the excess water is modeled as runoff.

Under dry-down conditions when the soil water in the top
layer drops below two-thirds of the maximum available water,
the model allows upward movement of water from the subsur-
face layer at a fraction of the potential evapotranspiration. This
simple bucket-type model enables daily estimates of surface-
and RZSM with water loss being driven primarily by evapotran-
spiration and runoff fluxes. No baseflow is assumed in the model.

Modifications introduced by the USDA FAS include the imple-
mentation of the Penman–Monteith equation (which replaced
the Thornthwaite equation) and the adjustment of the simple
diffusion function that models the transfer of water between the
two model layers. The shallow first layer of the model is ideal
for the 1-D EnKF approach discussed below since it can be used
as an appropriate proxy for the sensing depth of SMAP L2 SM
retrievals.

The daily USAF557 precipitation estimates are generated by
incorporating data from satellite, model, and World Meteoro-
logical Organization (WMO) ground stations. As discussed in
Section I, PM SM estimates are heavily dependent on the quality
of precipitation forcing applied to the model. This quality tends
to degrade over areas of the world where WMO rain gauges are
not available to correct for biases in satellite-based precipitation
products. This shortcoming can be addressed through data as-
similation, whereby satellite-derived SM is used to correct for
random errors in the model SM estimates associated with low-
quality precipitation forcing.

Here, we explore the value of SMAP for agricultural monitor-
ing by assimilating SMAP L2 SM retrievals into the PM using
a 1-D EnKF (Figure 1). The EnKF is a Monte Carlo-based,
sequential data assimilation technique suitable for moderately
nonlinear dynamic systems [19]. Its application to land data as-
similation has been well documented [3]–[10]. Therefore, a de-
tailed description of the EnKF technique is not included here.

The PM is set to run at a regular 0.25° latitude/longitude grid
defined by the resolution of the model’s forcing datasets. Thus,
the SMAP L2 product was preprocessed prior to assimilation to
match the model grid by taking the following steps. First, the
36-km EASE-Grid was disaggregated to the 1-km EASE-Grid.
Next, the resulting 1-km fields were up-scaled up to 25 km by
averaging all 1-km points that fall within each 25-km grid box.

2) Filter Parameterization: As discussed in [11], an effec-
tive way to evaluate EnKF performance is examining the time
series of the filtering innovations, defined as the difference be-
tween the assimilated observations and the background realized
during the analysis cycle. A properly constructed filter should
yield an innovation time series that is serially uncorrelated, sta-
tionary with a normalized variance of one and mean zero. In an
EnKF framework, the model forecasts are updated in response
to satellite observations using the so-called Kalman gain (K).
K is a function of the error covariance of the satellite observa-
tions, their error estimate (R), and the cross correlation between
the observations and each forecasted state variable. The forecast
realization is defined by the model uncertainty matrix (Q). Gen-
erally, Q reflects the model’s accuracy, including physics and
parameterization, and our trust in the forcing data, while R rep-
resents the accuracy of the satellite-derived SM observations,
our confidence in the performance of the retrieval algorithm and
its parameterization, and the sensor’s sensitivity and calibration
accuracy. Thus, tuning of the filter to satisfy the above-specified
constraints depends on the proper parameterization of Q and R,
which is a nontrivial task given the nonlinear dynamics of the
system.

As discussed above, soil water balance models are highly
sensitive to the quality of the precipitation data applied to force
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Fig. 1. Schematic representation of the data flow within the EnKF data assimilation scheme.

them. Given that USAF557 is a merged product that includes
rain gauge data, considered closest to reality, Q was modeled
as a function of gauge density and distance to the nearest rain
gauge station, where higher confidence is given to the model
estimates over areas with denser gauge networks such as the
USA and Europe. Specifically, Q is set to gradually increase as
the distance between the model grid point and the nearest station
increases.

There are a few different approaches that can be adopted to
model the observation error R. In any of the available approaches,
the underlying logic is based on the well known dependence of
the quality of the satellite retrievals on the density of the vegeta-
tion canopy layer. Over densely vegetated areas, the microwave
signal cannot fully penetrate through the vegetation layer. The
canopy masks or dampens the signal coming from the water
present in the soil layer leading to less-reliable SM retrievals.
Passive-based microwave retrieval approaches take this canopy
dependence into consideration and correct through the optical
depth (τ ) parameter. τ can be either modeled using an NDVI-
based climatology (as is the case in the SMAP baseline sin-
gle channel algorithm [21]) or estimated simultaneously with
SM through consideration of observations acquired at differ-
ent microwave frequencies or polarizations. For most vegeta-
tion types, canopy density and the amount of water present in
the leaves and stems are not static in time; therefore, it is ex-
pected that the accuracy of the satellite retrievals will change
not only as a function of land cover type but also temporally
throughout the year. Thus, R can be parameterized as a func-
tion of land cover type and/or as a function of vegetation char-
acteristics as described by the NDVI climatology or remotely
observed τ .

When modeled as a function of land cover, R varies spatially
but it is fixed in time, while modeling R as a function of NDVI or
τ introduces seasonal variability in the observation error, which
can be either climatology-based or provided in near real time.
Alternatively, R can be defined using actual error estimates ob-
tained through statistical error analysis. The main difference

between these approaches is the presence and detail of temporal
information in R.

Detailed comparison of these approaches and evaluation
of their impact on the data assimilation results are beyond
the scope of our paper. Nevertheless, preliminary analyses
indicate that adding a seasonal component to R does not substan-
tially impact the accuracy of EnKF SM estimates [22]. There-
fore, the observation error was modeled by considering only
spatial variations in land cover and neglecting inter- and intra-
annual temporal variability (for the specific values see SMAP
Cal/Val report: https://nsidc.org/sites/nsidc.org/files/technical-
references/L2SMPE_Asmt_Rpt_EOPM_v5c_Jun2018.pdf).
Specific error variance values assigned to each land cover
class represent the square of unbiased root-mean-square-error
(ubRMSE) values computed against actual in situ data. These
values were further rescaled to transform observation errors into
the climatology of the model as discussed in [23].

3) Lagged Comparisons With NDVI: Water stress causes
decreased leaf water potential and reduction in the stomatal
openings, which, in turn disrupts the plant’s photosynthetic
capability [26]. However, plants have a number of physiological
and biochemical coping and adaptation mechanisms to adjust
and adapt to a variety of environmental stresses such as light
deficiency, extreme heat, abnormally low temperatures, dimin-
ished or insufficient water supplies, etc. [27], [28]. Thus, there
is typically some delay in the plant’s reaction and response
to water stress. This delay suggests that, in water-limiting
situations, knowledge of a change in SM conditions can be used
to predict future changes in local vegetation status and predict
the extent areas experiencing agricultural drought.

Here, the reliability of the global RZSM products is assessed
by examining the relationship between water availability and
plant status using a time-lagged cross-correlation analysis
between NDVI and the modeled RZSM estimate [9], [29]. Neg-
ative anomalies in RZSM should foretell near-future negative
anomalies in NDVI. Therefore, following [8], our assumption
is that lagged cross correlation between RZSM and NDVI will

https://nsidc.org/sites/nsidc.org/files/technical-references/L2SMPE_Asmt_Rpt_EOPM_v5c_Jun2018.pdf
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Fig. 2. Time series of standardized ranked NDVI and soil moisture observations over the Little Washita watershed area (Lat. 34.93°, Long. 98.17°). Grey line
shows the temporal change in vegetation conditions as captured by NDVI, while the soil moisture response from the model (PM) alone and SMAP are depicted by
the black and blue lines, respectively.

increase as the precision of the SM estimates is improved. Based
on this premise, we used the SM and NDVI cross correlation
as a metric for the accuracy of PM and PM+SMAP RZSM
estimates.

This evaluation analysis was conducted using monthly SM
and NDVI composites at 0.25°. Correlation coefficient values
were computed using ranks, where ranking was performed
separately for each month of the year. That is, all monthly
composites from all years (April 2015–October 2018) were
grouped according to their particular month of the year and
ranked relative to each other. The corresponding ranks were then
normalized so that the final range for all months was the same.
Each rank for a specific month represents how dry (rank = 0) /
wet (rank = 1) a particular month (e.g., June 2016) is relative
to the same month of the year in all the other years (e.g., June
2015, June 2017, and June 2018). In this case, the NDVI-SM
agreement is not impacted by seasonality effects. In addition, as
clarified above, the NDVI-validation data and the climatolog-
ical NDVI data used to compute the τ values are independent.
Therefore, the month-based ranking approach adopted here
ensures no influence of any residual effects related to the use
of climatological NDVI information within the SMAP SCA to
parameterize τ .

This procedure was applied to both the modeled SM and the
NDVI time series. Correlation values between the ranked NDVI
and SM time series were then computed as

R (L) = R (RankNDVIm ,RankSMm + L) (1)

where R(L) is lagged (L) rank correlation, RankNDVI and
RankSM are the ranked NDVI or SM time series for month m.
Therefore,L = −1 [month] indicates that the SM rank precedes
the NDVI rank by one month. As explained in [10], a lag of one
month generally agrees well with the time scales important for
operational agricultural activities. Global R(L) values for each
model grid point were computed including only months that fall
within the growing season (i.e., April–October over the Northern
Hemisphere and October–April over the Southern Hemisphere).

An example of ranked SM and NDVI time series illustrating the
validation approach is shown in Fig. 2.

4) In Situ-Based Analysis: The global SM-NDVI lag cor-
relation evaluation described above was supplemented with
additional in situ-based accuracy assessments. In particular, the
surface estimates from the PM before and after assimilating
SMAP was compared against the in situ SM data collected at the
seven Cal/Val ARS sites described in Section II. The analysis
was based on sampling the temporal correlation (R) between in
situ and SMAP-based surface SM estimates and computing the
unbiased root-mean-square error (ubRMSE) between observed
and modeled SM

R = R
(
ASM [InSitu], ASM[PM∗]

)
(2)

ubRMSE =
√
σ2
PM∗ + σ2

In Situ − 2RσPM∗σInSitu (3)

where A represents SM time series of standardized anomalies,
PM∗ is the output from the PM alone or the assimilation run,
PM− EnKFSMAP, σ2 is the time variance of the in situ and
modeled SM [30]. Since the PM is constrained using a different
soil property dataset from the one used for the calibration of
the individual stations within the watersheds (i.e., global, coarse
resolution soil data versus in situ collected and analyzed soil
texture samples), extreme outliers (i.e., values lower/higher than
the 2.5/97.5 percentile) were excluded.

III. RESULTS AND DISCUSSION

A. Filter Whitening and Evaluation

Our EnKF implementation was static in the sense that it uti-
lizes fixed, predefined Q and R values and does not interactively
adjust Q and R within the analysis cycle to optimize innovation
statistics. Nevertheless, as described below, reasonable filtering
performance was achieved using a priori knowledge to define
both parameters.

The final model (Q) and observation error (R) maps are shown
in Fig. 3. By design, the spatial variability captured in the model
error map (see Fig. 3, top plot) closely resembles the WMO
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Fig. 3. Spatial variability of assumed variances [m6/m6] in model forecasts (top plot) and the observations (bottom plot) error, Q and R, respectively. Water and
energy limited areas, such as the Amazon and the Sahara regions were masked out in addition to applying the recommended SMAP flags for unreliable retrievals
and retrievals over unfavorable ground conditions (i.e., frozen soils, dense vegetation, and mountainous terrain). These areas are masked out in all plots included
in the manuscript.

gauge density map, where higher confidence is given to the
model over areas with denser gauge coverage. The green end
of the bar indicates higher confidence in the precipitation data,
and hence, the SM estimates derived from the PM model esti-
mates (due to the higher density of available rain gauge stations
to correction satellite-based precipitation estimates), while the
orange/brown colors are associated with lower gauge density
and higher modeling uncertainty. The specific values of R (see
Fig. 3, bottom plot) were determined using error values derived
from published SMAP Cal/Val results (see the SMAP L2 SM
Cal/Val report: https://nsidc.org/sites/nsidc.org/files/technical-
references/L2SMPE_Asmt_Rpt_EOPM_v5c_Jun2018.pdf).
The green end of the bar indicates higher confidence in the ob-
servations. The observation error map indicates expected spatial

variability displaying higher confidence in the observations over
barren/sparsely vegetated and shrubland areas. Observation er-
rors increase over croplands (i.e., China, parts of Europe), which
is expected given the high biomass, and therefore, sharp atten-
tion of soil signals, within summertime crop cover.

The corresponding innovation statistics are shown in Fig. 4.
The overall global performance of the standardized innova-
tions is within its expected limits. As described above, an auto-
correlation of zero and a normalized innovation variance of one
are expected for an idealized filter. However, such results are
based on an assumption of purely white observation errors. In
the presence of auto-correlated observing errors, optimal filter
performance is instead associated with auto-correlation values
that are slightly positive and normalized innovation variances

https://nsidc.org/sites/nsidc.org/files/technical-references/L2SMPE_Asmt_Rpt_EOPM_v5c_Jun2018.pdf
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Fig. 4. Evaluation of the average, m3/m3 (a), normalized variance (b), and unit-less autocorrelation (c) of the standardized innovations for the USDA FAS EnKF
system.

Fig. 5. Scatter plots of the standardized watershed soil moisture anomaly values against the modeled output plotted on the x- and y-axis, respectively. Each plot
shows a separate watershed area (see Table I for the abbreviations of the watershed names) and includes two clusters; the cyan colored squares show the agreement
between the watershed data and the model alone, and the blue colored squares show the same agreement but after assimilating SMAP.



3394 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 12, NO. 9, SEPTEMBER 2019

Fig. 6. Summary plot of the in situ model soil moisture anomaly correlation results. Light grey and dark grey bars show the correlation values before assimilation
and after assimilating SMAP, respectively. Error bars represent 95% error associated with the time sampling uncertainty at all seven ARS watershed sites (see
Table I for the abbreviations of the watershed names). Note that SMAP assimilation consistently improved the modeled (PM) soil moisture information.

that are slightly less than one [11]. Therefore, the innovation re-
sults in Fig. 4 suggest a generally well parameterized filter, given
the known tendency for SMAP SCA retrievals to have tempo-
rally auto-correlated errors [29]. Nevertheless, certain areas may
require further filter tuning. Furthermore, one should consider
the rather short SMAP data record and, as a result, the presence
of nonsignificant levels of sampling error present in innovation
statistics presented in Fig. 4. Given these considerations, Fig. 4
suggests that our EnKF system is functioning reasonably well
[11], [29].

B. PM-EnKF Accuracy Evaluation

1) Point Analysis: If properly calibrated and screened,
ground-based SM data can be considered a “true” reference
when evaluating global satellite-based products due to their rel-
ative reliability versus large-scale SM estimates. Therefore, de-
spite the sporadic spatial coverage of the available networks,
ground-based validation is invaluable when assessing any global
product.

Summary results from the ground-based analysis computed
using SM observations from the USDA ARS watersheds are
presented in Figs. 5 and 6. The scatter plots displayed in Fig. 5
show the agreement between the standardized anomaly SM time
series of the watershed data (x-axis) and model (y-axis) output
(obtained both before and after the assimilation of SMAP data).
Note that watershed data points are based on the spatial aver-
aging of multiple, ground-based sites into a single watershed-
averaged value. Evaluation results obtained before (PM) and
after (PM+SMAP) assimilating SMAP are plotted in cyan and
blue color, respectively. All observations are well aligned along
the one-to-one line indicating good agreement between the two
datasets. The scatter plots of some of the watersheds such as
Little Washita, for example, show tightening of the blue clus-
ter (corresponding to PM+SMAP results) along the one-to-
one line indicating that SMAP enhances the SM provided by
the PM.

This tendency is even clearer in Fig. 6, where the initial PM
correlation values (no assimilation) are shown in grey, while
the PM+SMAP values achieved after assimilating SMAP are
shown in black. The initial R values at all watershed sites are
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Fig. 7. Top row shows global analysis of (unitless) lag correlations between the ranked monthly NDVI and soil moisture (subsurface layer). The left plot
(a) displays the results obtained from the open loop (PM, no assimilation) at L = −1 [month], while the right plot (b) shows the correlations after assimilating
SMAP into the PM (PM+SMAP) at L = −1 [month]. The image on the bottom row (c) displays the difference between the assimilation run (PM+SMAP) and
the model alone (PM) at L = −1 [month]. Red shading indicates positive impact of the SMAP assimilation into the subsurface layer of the PM layer.

greater than 0.6, except for Walnut Gulch—indicating the rela-
tively good baseline performance of the PM. Nevertheless, these
baseline values are improved consistently at all locations after
assimilating SMAP. Error bars plotted in Fig. 6 (representing
the uncertainty encountered with the time sampling) demon-
strate that the achieved results have rather low uncertainty at
all sites. Agreement is the lowest at the Walnut Gulch site,
located in Arizona—the only site covered by shrubland
vegetation. Over grass- and crop-land, the magnitude of the cor-
relation values appear to be similar and independent of vegeta-
tion type (R̄PM

grass/crop = 0.70/0.73; R̄PM+SMAP
grass/crop = 0.77/0.75,

where values represent the average metric sampled across all wa-
tershed sites characterized by either grass or crop land cover—
see Table I).

It should be noted that improvements at the USA-based USDA
ARS watershed sites are likely to be less than global averages
since the background PM is relatively accurate at these sites due
to the excellent availability of real-time rain gauge data at sites
within the USA. Larger relative improvements are, therefore,
expected in data-poor areas where the background PM model
contains much higher levels of random error. Nevertheless, this
ground-based verification demonstrates the benefit of SMAP
and its potential to improve the accuracy of the USDA FAS SM
information.

2) Global Analysis: In order to geographically expand the
scope of our evaluations, we also applied the SM/NDVI correla-
tion analysis described earlier in Section II. Global maps of the
resulting lag correlation coefficients between SM and EnKF are
shown in Fig. 7. The cross-correlation maps show the NDVI-
SM (subsurface) agreement for the PM alone in the top plot
and the corresponding agreement after assimilating SMAP in
the bottom plot. The PM+SMAP product shows higher agree-
ment with NDVI as compared to the PM (no assimilation) prod-
uct, which is the default USDA FAS SM product. Therefore,
the assimilation of SMAP into the PM appears to improve the
ability of the resulting SM product to anticipate NDVI anoma-
lies (see Fig. 8). As discussed earlier in the paper, it is expected
that the optimal NDVI-SM agreement would be achieved around
L = −1 (month) [8]–[10]. Overall, globally our analysis demon-
strates similar performance for PM+SMAP data at L = −1 and
L = 0 (month). This tendency was also reported by [8]. Bolten
and Crow [8] linked the performance of the assimilated results
to the quality of the precipitation data. Unfortunately, the data
record offered currently by SMAP currently only covers three
full growing seasons, which is a highly marginal length of data
from an agricultural forecasting perspective.

Nevertheless, the PM+SMAP case (see Fig. 7, top row right
image) shows improvement over most of the globe relative to the
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Fig. 8. Global average and overall variability in SM-NDVI lag correlation at
L = −1 [month]. Box plots were generated by excluding correlations that fall
below and above the 5th and the 95th percentile. The assimilation of SMAP into
the USDA FAS PM (right box plot) increased the global agreement between the
modeled SM of the subsurface layer and NDVI relative to the base run (left box
plot).

results obtained from the case of the PM alone (see Fig. 7, top row
left image). The bottom image in Fig. 7 offers a more detailed
picture of the areas impacted by the integration of SMAP. The
assimilation of SMAP improves the RZSM of the PM over large
portions of Africa, shrub- and grass-land covered areas in North
America and Asia and parts of Australia.

IV. SUMMARY

The work presented here describes the first implementation
of SMAP SM products into an operational crop forecasting sys-
tem. Accurate and on-time global RZSM anomaly information is
essential for USDA FAS as it aids their decision-making capabil-
ities related to short- and long-term agricultural drought impacts
on expected yield production and global food security. SMAP
data have been assimilated into the USDA FAS PM, where the
integration of the satellite data was specifically designed to im-
prove the accuracy of the USDA FAS RZSM information. The
system was assessed using two different and complementary ap-
proaches: 1) a ground-based validation analysis carried out using
in situ data acquired at seven of the core SMAP Cal/Val sites
located in the USA and 2) a global evaluation performed by as-
sessing the lagged agreement between the modeled SM data (ac-
quired both before and after assimilating) SMAP against NDVI,
where NDVI is used as a proxy of vegetation health. Both anal-
yses confirm the underlying utility of assimilating SMAP SM
products into the PM and the benefit of our data assimilation
approach to USDA FAS.

SMAP also provides a Level 4 RZSM product. However,
the approach and product described here have been specifi-
cally designed to meet USDA FAS needs (e.g., specific spa-
tial resolution and anomaly products) and requirements (short
latency and matched climatology to preexisting USDA FAS
PM climatology). It should be emphasized that the USDA
FAS data assimilation system is run operationally and provides
near-real-time SM data to USDA FAS. The data products gen-
erated from this system have been fully adopted by USDA
FAS and are an integral part of the agency’s CADRE BDMS
(https://ipad.fas.usda.gov/cropexplorer/).

Having demonstrated the added benefit that SMAP-based ob-
servations provide to the operational USDA FAS crop forecast-
ing system, it is envisaged that a next logical step is to leverage,
in a more strategic manner, the near-real-time satellite-based
monitoring of both SM and vegetation for improved global as-
sessment and forecasting of crop conditions and improved esti-
mation of crop yield. A topic that is yet to be explored in detail
is the synergistic merging of SM and NDVI within a crop sys-
tems model at strategic times of the growing cycle to isolate
signals most useful for indicating future crop yield. The added
benefit of multivariable monitoring of end-of-season crop yield
based on satellite-based evapotranspiration, SM, vegetation es-
timation, etc. was recently demonstrated in [30]. To this end,
the results presented here provide a robust start to help pinpoint
locations and times where SMAP-based SM estimates can help
provide critical information on global agricultural drought and
help with this more targeted holistic approach to global agricul-
tural monitoring and forecasting.
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