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Abstract—The precision of sea surface altimetry using bistat-
ically reflected signals of the Global Navigation Satellite System
(GNSS) is typically one to two orders of magnitude worse than
dedicated radar altimeters. However, when the scattering is coher-
ent, the electromagnetic phase of the carrier signal can be tracked,
providing precise ranging measurements. Under grazing angle
(GA) geometries, the conditions for coherent scattering are maxi-
mized, enabling carrier phase-delay altimetric techniques over sea
waters. This work presents the first implementation of GA carrier
phase sea surface altimetry using data acquired from a spaceborne
platform (NASA Cyclone GNSS mission) and transmitted from
both GPS and Galileo constellations. The altimetric results show
that the measurement system precision is 3/4.1 cm (median/mean)
at 20 Hz sampling, cm level at 1 Hz, comparable to dedicated radar
altimeters. The combined precision, including systematic errors,
is 16/20 cm (median/mean) precision at 50 ms integration (a few
cm level at 1 Hz). The wind and wave requirements to enable
coherent scattering at GA geometries appear to be below 6 m/s
wind and 1.5 m significant wave height, although only 33 % of tracks
under these conditions present sufficient coherence. Given that this
technique could be implemented by firmware updates of existing
GNSS radio occultation missions, and given the large number
of such missions, the study indicates that the resulting precision
and spatio—temporal resolution would contribute to resolving some
submesoscale ocean signals.

Index Terms—Carrier phase-delay altimetry, Global Navigation
Satellite System (GNSS) reflectometry, grazing angle (GA)
reflectometry, sea surface altimetry, submesocale ocean altimetry.

I. INTRODUCTION

PACEBORNE altimetry using signals of the Global Nav-
S igation Satellite System (GNSS) reflected off the oceans
(GNSS-Reflectometry or GNSS-R) has poor precision com-
pared to dedicated radar altimeters, when GNSS-R altimetry
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is conducted from small receivers using the publicly available
GNSS codes, e.g., [1], [2]. This technique will be called here-
after conventional GNSS-R (cGNSS-R) and it is the one avail-
able at the NASA Cyclone Global Navigation Satellite System
(CyGNSS) and U.K. TechDemoSat-1 (TDS-1) missions [3], [4].
The low precision is due to the narrow bandwidth of these GNSS
codes, which limits the resolution in the domain of the signal
delay or range. A way to enhance the altimetric precision is
by using the wider bandwidth and encrypted codes that are
transmitted for military applications. Not having access to these
codes, Martin-Neira [5], [6] suggested a solution based on the
use of the direct line-of-sight links as reference for the demod-
ulation of the broad bandwidth signals in the reflected signals,
a technique called interferometric GNSS-R (iGNSS-R). Several
studies have analyzed theoretically and/or empirically the im-
provement in precision between the cGNSS-R and iGNSS-R
altimetry, reporting enhancements of between two to six times
in the altimetric precision obtained in 1-s integrated measure-
ment [7]-[11]. However, the iGNSS-R technique requires more
complex hardware solutions when targeting near-nadir geome-
tries, which in addition are not suitable for very small and cheap
spaceborne platforms. A way to increase the altimetric precision
by one to two orders of magnitude, regardless of using iGNSS-R
or cGNSS-R, and even from small and cheap receivers (e.g.,
suitable for nanosatellites), is by tracking the phase of the carrier
electromagnetic signal of the reflected radio link. Given that
GNSS works at L-band, around 20 cm wavelength, being able
to track the carrier phase means that the altimetric delay can
be measured at a few cm level in a few millisecond sampling
intervals. For example, from spacecraft platforms this has been
achieved over ice sheets [12], sea ice [12], [13], and lakes [14].
We will call this technique carrier phase-delay altimetry, or
carrier phase altimetry (CaPA) for short. Carrier phase-delay
altimetry is only possible when the reflection is dominated
by coherent scattering, otherwise the diffuse component adds
randomlike behavior to the carrier phase, from which the delay
cannot be further retrieved. Unfortunately, most reflections off
the ocean surface follow a diffuse scattering mechanism hin-
dering the tracking of the carrier signals. Exceptions are obser-
vations over very calm ocean surface conditions or under very
slant geometries [12]-[14]. The latter condition holds because
the actual roughness observed at very high incidence angles
is effectively reduced. Simulations reported that altimetric re-
trievals using signal carrier information are limited, under such
grazing conditions, to significant wave heights (SWHs) on the
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seasurface <1.2m[15]. We call the latter measurements grazing
angle (GA) carrier phase altimetry (GA CaPA). In total, 70%
of the GNSS radio occultation (RO) atmospheric soundings oc-
curring over the oceans unintentionally present coherent ocean
reflected signals [16]. However, these reflections correspond to
geometries nearly tangent to the surface, not suitable for alti-
metric, i.e., vertical, retrievals [17]. In [18], data acquired from
3500 m altitude flights over open sea waters showed it is optimal
to obtain coherent scattering of GNSS signals and perform
its corresponding phase-delay altimetry in grazing geometries
between ~5° and 30° elevation angle (60°—85° incidence). These
studies are promising, but conducted at slow speeds and low
altitude compared to spaceborne scenarios. Dedicated studies
are required to prove the feasibility of GA CaPA from space,
which is the goal of the study presented in the following. This
is also of interest considering the current development of ESA
PRETTY mission, which will attempt GA altimetry'.

The main impairment to conduct this type of study is the
acquisition of the spaceborne data, as currently the GNSS-R mis-
sions in orbit point their antennas to angles closer to nadir, away
from the grazing geometries. Despite this restriction, we have
reprocessed existing NASA CyGNSS mission raw data samples
to search for GA reflected signals at the edge of the antenna
pattern, and assess whether GA CaPA is possible from space.

II. DATASETS AND PROCESSING

The CyGNSS mission is a constellation of eight microsatel-
lites, <30 kg each, that take near-nadir GNSS-R observations
for wind speed measurements. CyGNSS main objective is to
improve hurricane forecasting by better understanding the inter-
actions between the sea and the air near the core of a storm [3].
The satellites are orbiting at low altitude (~514 km) around
central latitudes (35° orbit inclination), since December 15,
2016. We present the analysis of 63 tracks of GNSS signals
reflected off the sea surface in GA geometries, captured in
raw mode by the NASA’s CyGNSS spacecraft constellation
in the Central American region. This is the region with the
largest number of CyGNSS raw acquisition samples. The raw
acquisition is a mode of operation for which the receiver aboard
only down-converts and samples the antennas’ voltages without
any tracking or demodulation of the transmitted signal structure.
The data, sampled at 16.0362 MHz, are then downlinked to the
ground, where the researchers can process them by means of
flexible software receivers, in laboratory computers. Because
of the large volume of data generated every second under raw
acquisition mode, these operations can only be activated during
short periods of time, typically 1 min, sporadically and for
dedicated studies only.

The data analyzed in this study focus on raw acquisitions over
sea water acquired during 24 different days, one to a few minutes
each day, corresponding to the periods September—October 2017
and September—October 2018. The acquisitions cluster in groups
of two to three days, mainly coincident with the presence of
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Fig. 1. Map of the location of the 63 GA GNSS-R tracks found in the CyGNSS
raw data samples around Central America, wind condition in the color scale; the
numbers identify the tracks in Table II of Appendix A.

tropical cyclones around the antennas’ main footprint. The
proximity of hurricanes within several hundred kilometer of
the reflected tracks under analysis may have enhanced the long
wave portion of the sea state along the tracks. The map with the
location of the specular points of the reflected signals (hereafter
called tracks) is shown in Fig. 1, with indication of the colo-
cated ERA-5 wind speed [19]. Table II in Appendix A lists the
tracks, identifies the receiving CyGNSS satellite, the transmit-
ting GNSS, the date of the acquisition and several aspects of
the surface conditions, according to the ERA-5 products. Note
that, despite the data were mostly acquired during hurricanes
occurring below the receiving satellite, the GA tracks are away
(>1000 km) from its nadir ground track, therefore, the range of
wind speeds found in this set does not exceed 11 m/s.

The processing of the sets has followed the same steps as in
other TDS-1 and CyGNSS raw acquisition phase-delay altimetry
studies, such as [13], [14]. The raw data samples are cross-
correlated against synthetic replicas of the signal, generated by
the software receiver, and for which both the delay and Doppler
effects must be compensated to obtain above-noise correlation.
We used 50 ms coherent integration time, which corresponds to
along-track sampling resolutions of ~400 m. The actual spatial
resolution is a combination of this sampling value and the size
and orientation of the Fresnel zone. Typically, the first Fresnel
zone at GAs expands 1-2 km in the scattering plane direction
and ~400 m in the orthogonal one. The peak of the correlation
function informs about the residual delay and Doppler of the
signal, with respect to the ones used in the synthetic replica
(also called “open-loop” model). The final measured range is
reconstructed combining the information used in the model
and the residual phase value. The readers are pointed to these
articles for details of the processing and altimetric inversion
chain, which requires tropospheric and ionospheric information
to generate atmospheric corrections. ERA-5 and GIM models
have been used, respectively [19], [20]. As in these previous
studies, the altimetric retrievals shown here are not absolute, but
relative altimetric tracks with an offset adjusted to fit the DTU18
mean sea surface (MSS) height. Combination with pseudorange
(group delay observables) ranging measurements could yield to
absolute altimetry, not discussed in this study.
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Fig. 2. Top-left: Altimetric results (circles) obtained from CyGNSS spacecraft 01 data every 50 ms (no further filtering) along a track of GPS PRN15 acquired

on September 15, 2018, at ~17.5° elevation angle over a zone with ~4.6 m/s w

ind and ~0.4 m SWH, and corrected under straight-line propagation assumption.

The MSS height from DTU18 is shown as a red solid line. Top-right: Same for CyGNSS spacecraft 05 receiver and Galileo PRNOS transmitter on October 14,
2018, at ~13.4° elevation angle over ~4.3 m/s wind and ~0.7 m SWH. Bottom-left: Same for CyGNSS spacecraft 04 receiver and Galileo PRN18 transmitter

acquired on September 8, 2017, at ~14.7° elevation angle over a zone with ~
corrections computed assuming straight-line propagation or bending of the rays, r
acquisition, at ~13.1° elevation angle over ~4.4 m/s wind and ~0.7 m SWH.

At GA geometries, the effect of the atmospheric vertical
gradients can be sufficient to bend the rays, increasing the
total range or delay measurement. In case of a bent radio link,
the altimetric retrieval would be better performed by means of
ray-tracers, as suggested for GA altimetry aboard GEROS-ISS
and G-TERN [21], [22] and implemented in the airborne stud-
ies [18]. In this article, both straight-line and ray traced bent
propagations have been considered.

III. RESULTS

Fig. 2 (top) shows two of the altimetric retrievals, one us-
ing GPS signals and the other using Galileo signals, corrected
for tropospheric and ionospheric effects assuming straight-line
propagation. The retrievals, provided every 50 ms without any
further smoothing or filtering, are compared to the DTU18 MSS
height. The results show 1) little noise levels (generally around
or below decimeter level at 50 ms integration), 2) good general fit
with the MSS model, and 3) some slow-varying residual misfits.
Here slow varying refers to dynamics significantly slower than
the 20 Hz retrievals, so not induced by thermal noise of the range

3.3 m/s wind and ~0.5 m SWH. Blue and gray dots correspond to atmospheric
espectively. Bottom-right: Same for GPS PRN12 acquired from the same CyGNSS

measurements. The slow-varying residuals are expected in this
analysis, because the tropospheric and ionospheric corrections
applied are very simple, and other aspects of the mission relevant
to the altimetric inversion are not fully solved (e.g., precise
orbit determination, clock errors, precise platform and antennas
attitude, etc.). Note that these mission related limitations would
not be a problem with a dedicated GA CaPA mission designed
to measure ocean altimetry.

To assess the impact of the bending of the rays in both the
receiver operations and the altimetric retrievals, Fig. 2 (bot-
tom) shows the altimetry along two more reflected tracks, also
from both Galileo and GPS signals. In these cases, we present
the retrievals using straight-line propagation corrections (as in
Fig. 2-top) together with bent propagation corrections. These
corrections are performed using a ray tracer [23], with ERA-5
temperature, pressure, and humidity input [19] and IRI iono-
spheric information [24]. A similar approach was used in the
processing of the airborne campaign data [18]. The analysis of
the differences between the straight-line and bent propagation
corrections shows that the differences are sufficiently small, so
a receiver could neglect the bending effects. This means that
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TABLE I
DISPERSION OF THE ALTIMETRIC RESULTS ATTRIBUTED TO THE
MEASUREMENT SYSTEM ITSELF, 3, OR ALL COMBINED EFFECTS

Track ID | o5y, (em) | o72° (em) | o20mHz (cm) | 015 (cm)
9 2.5 (2.5) 0.6 (0.6) 13 (11) 29 (2.5)
10 4.8 (4.8) 1.1 (1.1) 27 (24) 6 (5.4)
18 3.0 0.7 9 2
22 1.6 0.4 9 2
25 2.3 0.5 39 8.7
31 7.2 1.6 38 8.5
44 8.3 1.9 16 3.6
45 4.7 1.0 30 6.7
49 33 0.7 15 34
51 3.0 0.7 16 3.6
53 6.6 1.5 15 34
61 1.8 0.4 21 4.7

Tides have not been corrected. The two cases in brackets correspond to the inversion
using ray tracers, to account for bent propagation. The third and last columns include the
1-s integration equivalent precision for the measurement system and combined solutions,
ol and o1, respectively.

receivers onboard satellites would not need to implement ray
tracer based corrections to properly track the signals. However,
as it can be seen in Fig. 2 (bottom-left), the retrievals can be
rather different, especially at very low elevation angles, and
therefore ray tracer approaches would be generally required for
proper retrieval algorithms. These retrieval schemes could be
implemented on the ground, in postprocessing.

With the available retrieved tracks, a preliminary precision
figure can be given. It is preliminary because of the limited
amount of tracks, geographical location, seasonal occurrence
(September—October during hurricanes life), the simplicity of
the corrections applied, the lack of some of them (clock errors,
residual precise orbit determination, tides, roughness effects,
etc.), and the generally low gain of the CyGNSS receiving
antenna when pointing to GA geometries. Therefore, the pre-
cision figures of the altimetric retrievals correspond, in fact, to
a mixture of two kinds of errors: random noise and remaining
systematic effects. The former is due to limitations of the mea-
surement system itself, triggered by thermal noise and speckle,
to which we refer as measurement system error hereafter, as in,
e.g., [25]. The latter includes uncertainty and errors in modeling
and corrections, some of which could be better solved in other
or dedicated missions.

We identify the measurement system contribution, ™,
through the root-mean-square error (RMSE) between the 20-Hz
CyGNSS solution and a 1-s sliding window smoothed one,
050, It captures the measurement system precision on the time
scale of the thermal and speckle noise (10 s of milliseconds) by
subtracting a filtered version that has been smoothed by a much
longer (1 s) running average. The measurement system precision
at 20 Hz, obtained for each track, is presented in Table I, with
values between 1.6 and 8.3 cm, a mean of 4.1 cm, and 3.0 cm
median. The measurement system contribution to the precision
budget would be further reduced with longer integration inter-
vals, e.g., cm level after 1 s integration (0™ = oy, /1/20).
These precision levels correspond to the limit of the technique,
should all systematic effects be properly corrected.
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Fig.3. Global map showing the probability of calm conditions, understood as
percentage of time during which the required calm conditions apply, computed
along one year time span. Plot generated with C3S CDS Toolbox. The Toolbox
code is provided in Appendix C.

To take into account the other effects that reduce precision, the
RMSE between our 20-Hz CyGNSS solutions and DTU18 MSS,
020Hz, 18 also compiled in Table 1. It takes values between 9 and
39 cm at 50 ms integration, a median value of 16 and 20 cm mean.
These values are significantly larger than the measurement sys-
tem contribution for a given integration time, an indication that
the systematic effects are predominant in the data processing.
This is expected because of the simplicity of the corrections
applied and the lack of some of them. Their 1-s integration
equivalent precision o1y = o201,/ V20, assuming uncorrelated
20-Hz noise, lays between 2 and 8.7 cm, with 3.6 cm median
and 4.5 cm mean. Note that the RMSE errors at 20 Hz used to
compute o include correlated errors. This has two competing
effects on the interpretation of o1 on the one hand, averaging
to 1 s would not reduce the error as much as in uncorrelated
noise (too optimistic o1 in Table I), whereas on the other hand,
the major correlated residual effects are likely to be corrected in
a dedicated mission or improved analysis (ionosphere, orbits,
clocks, tides); hence, the actual 20-Hz precision figures are
finer than the ones presented in Table I (thus finer o also
expected). The along-track resolution of 1-s integrated solutions
is ~7-8 km.

IV. COHERENCE OF THE SIGNALS

The results presented above and in Appendix B compile re-
trievals from the only 12 tracks out of 63, for which the reflected
signals present coherence (20%). Comparing the characteristics
of the coherent and diffuse tracks, compiled in Table II of
Appendix A, one notices that all the coherent tracks respond
to antenna gains above —15 dB, elevation angles below 25°,
wind speeds up to 6 m/s, SWH below 1.5 m, surface mean
square slopes below 0.004, and waves’ steepness up to 0.021.
We could not find any correlation between coherence and the
orientation of the waves with respect to the scattering plane, but
most of the coherent tracks occurred during local daytime, with
a few exceptions, which could indicate ionospheric scintillation
problems in some of the diffuse tracks. Because of the limited
amount of data, these required conditions are only preliminary,
and perhaps particular to the geographic location and seasonal
moment of the acquisitions.

The required conditions are not sufficient. Among the 63
GA tracks, 36 of them fulfill the required conditions but only
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TABLE II
IDENTIFICATION OF THE 63 TRACKS PROCESSED IN THIS ANALYSIS
ID | Coh. | Elev. | Gr U10 SWH | MSS | Lon. Lat. Date GNSS | PRN | CyGNSS
1 0 19.43 | 6.56 3.15 1.3 0.002 | -101.21 | 12.89 | 20170825 | G 2 4
2 0 1412 | -2 2.75 1.5 0.002 | -97.45 9.33 20170825 | E 3 4
3 0 25.61 | 7.36 11.05 | 2.33 0.012 | -90.25 27.6 20170825 | G 1 4
4 0 13.1 3.61 5.04 1.28 0.002 | -98.08 12.33 | 20170825 | E 3 6
5 0 13.43 | 4.61 3.94 1.17 0.002 | -97.7 14.64 | 20170825 | E 3 7
6 0 13.02 | 3.18 4.84 1.29 0.002 | -97.46 11.74 | 20170825 | E 3 8
7 0 10.9 -13.14 | 3.19 1.33 0.002 | -106.78 | 16.99 | 20170825 | E 8 8
8 0 17.13 | -7.56 7.34 1.11 0.006 | -85.29 29.02 | 20170908 | G 4 4
9 1 1476 | 3.71 3.29 0.5 0.001 | -71.14 12.42 | 20170908 | E 18 4
10 | 1 13.19 | 3.76 4.36 0.74 0.003 | -68.1 12.89 | 20170908 | G 12 4
11 |0 6.52 11.09 | 533 1.54 0.005 | -83.72 7.17 20170909 | E 14 1
12 | 0 2 9.14 8.41 1.87 0.009 | -88.67 6.14 20170909 | E 26 1
13 |0 1236 | -1832 | 7 2.02 0.006 | -62.06 28.74 | 20170909 | E 2 1
14 10 16.01 | -10.9 6.3 23 0.006 | -65.81 30.07 | 20170909 | G 29 1
15 0 5.57 -0.04 2.55 1.29 0.002 | -87.77 12.56 | 20170910 | E 22 6
16 |0 4.15 -3.88 2.31 1.35 0.001 | -90.76 13.52 | 20170910 | E 30 6
17 0 17.28 | 4.47 8.45 1.88 0.009 | -68.36 3494 | 20170910 | G 25 6
18 |1 11.5 3.46 3.72 1.45 0.002 | -47.85 4.59 20170919 | G 7 1
19 0 10.16 | 2.35 3.84 1.36 0.002 | -49.46 4.95 20170919 | G 7 3
20 | O 8.55 -0.27 2.7 1.49 0.002 | -50.54 8.43 20170919 | E 18 6
21 0 15.52 | -0.97 3.86 1.19 0.001 | -70.19 22.58 | 20170919 | E 24 7
22 |1 12.83 | 1.91 2.1 1.3 0 -75.58 27.29 | 20170920 | E 1 6
23 0 8.91 2.07 2.05 2.01 0.001 | -73.9 27.69 | 20170920 | E 1 7
24 10 13.44 | 3.47 3.47 2.2 0.001 | -74.76 29.63 | 20170920 | G 25 8
25 1 1442 | -0.46 2 0.81 0 -76.53 27.13 | 20170920 | E 1 8
26 | 0 18.07 | 3.99 5.97 1.38 0.003 | -76.63 30.87 | 20170921 | G 25 4
27 | 0 124 333 5.77 1.36 0.003 | -76.62 31.19 | 20170921 | G 25 8
28 | 0 9.63 2.44 2.27 2.12 0.001 | -104.55 | 18.01 | 20171007 | G 15 3
29 0 11.13 | 2.3 3.71 2.11 0.002 | -104.17 18.54 | 20171007 | G 15 7
30 | 0 8.59 -1.91 2.14 1.95 0.001 | -89.41 14.21 | 20171008 | E 9 1
31 |1 8.89 -4.59 4.96 0.88 0.003 | -74.06 16.39 | 20171008 | E 1 8
32 10 23.54 | -4.25 3.18 0.55 0.002 | -107.43 | 25.56 | 20171230 | G 22 8
33 10 18.73 | 5.35 2.54 0.61 0.001 | -107.69 | 24.74 | 20180303 | G 16 5
34 10 10.03 1.81 4.2 0.46 0.001 | -79.9 22.23 | 20180821 | B 30 6
35 10 20.54 | 043 7.29 0.87 0.005 | -94.88 27.58 | 20180821 | E 27 6
36 | 0 5.06 10.99 7.27 1.05 0.006 | -86.07 17.09 | 20180822 | B 27 3
37 10 8.28 10.43 6.77 0.78 0.005 | -91.77 19.45 | 20180823 | E 18 7
38 0 17.55 12.36 5.73 1.26 0.004 | -62.93 23.87 | 20180827 | G 25 1
39 10 12.19 | 6.61 9.46 1.36 0.009 | -70.32 21.37 | 20180827 | B 30 1
40 | 0O 6.82 -21.89 | 4.27 0.65 0.002 | -76.5 20.12 | 20180827 | G 31 1
41 | 0 5.69 9.69 8.58 1.35 0.008 | -67.51 16.66 | 20180827 | G 29 1
42 | 0 4.26 2.77 9.2 1.87 0.009 | -73.21 16.55 | 20180827 | E 27 1
43 1 0 7.08 -7.56 6.88 1.2 0.005 | -51.55 23.74 | 20180827 | G 5 1
44 |1 9.66 2.35 4.72 0.6 0.002 | -93.62 18.92 | 20180905 | G 31 1
45 |1 7.92 -0.73 6.18 0.87 0.004 | -86.34 16.94 | 20180905 | G 29 1
46 | 0 2147 | 7.24 7.01 0.52 0.003 | -90.81 19.43 | 20180907 | G 31 2
47 0 2.31 0.39 2.08 1.76 0.002 | -97.93 10.41 | 20180907 | G 26 2
48 | 0 1.98 1.05 5.03 0.83 0.003 | -68.61 12.76 | 20180913 | E 21 2
49 1 17.5 5.28 3.48 0.45 0.001 | -77.65 23.26 | 20180915 | G 15 1
50 |0 8.15 -2.96 5.08 2.42 0.004 | -64.38 20.28 | 20180915 | G 17 1
51 1 13 0.08 2.46 0.21 0 -81.15 22.4 20180915 | E 8 1
52 10 15.11 | 2.46 4.39 0.66 0.003 | -91.28 19.19 | 20181011 | G 17 7
53 1 12.38 | -7.43 5.31 0.6 0.003 | -81.86 15.53 | 20181011 | E 5 7
54 10 11.44 | 3.04 3.73 1.75 0.003 | -95.37 14.58 | 20181012 | B 30 6
55 0 24.08 | 5.81 5.69 0.99 0.003 | -93.33 19.63 | 20181012 | G 17 6
56 | 0 15.13 | -8.01 3.95 0.63 0.001 | -84.6 17.81 | 20181013 | E 7 4
57 10 18.09 | -7.54 2.82 0.6 0.001 | -83.33 19.38 | 20181013 | G 1 4
58 10 13.15 | -9.06 3.84 0.61 0.001 | -84.15 16.59 | 20181013 | E 7 8
5910 20.94 | -4.56 2.25 0.55 0.001 | -83.13 20.27 | 20181013 | G 1 8
60 | 0 20.15 | 6.05 5.52 0.68 0.003 | -81.28 24.02 | 20181014 | G 4 1
61 | 1 13.42 | -8.29 4.08 0.36 0.001 | -81.91 21.56 | 20181014 | E 5 5
62 |0 14.86 | 4.72 8.41 1 0.007 | -89.34 21.93 | 20181014 | G 22 5
63 | 0 9.3 -9.31 4.83 1.25 0.004 | -94.33 15.17 | 20181102 | B 24 6

The different columns relate to: Track ID, coherence (1 for coherence found, 0 otherwise), elevation angle at the specular point (deg), CyGNSS receiver
antenna gain at the direction of the specular point (dB), average wind speed along the track (m/s, from ERA-5 interpolation), SWH averaged along the track
(m, from ERA-5 interpolation), mean slope square (MSS) of the surface waves (ADIM, from ERA-5 interpolation), longitude E averaged along the track
(deg), latitude N averaged along the track (deg), date YYYYMMDD, GNSS constellation (G = GPS, E = Galileo, B = BeiDou3), GNSS transmitter PRN
number and CyGNSS LEO spacecraft number.
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Fig. 4.

Top-left: Simulation of the potential coverage during three days (February 1-3, 2018), using a CyGNSS-like constellation capable to track GA CaPA

between 10° and 20° elevation angles from GPS, Galileo, GLONASS and BeiDou, and colocated with ERA-5 wind and waves products. The tracks correspond
to randomly picked 33% of those under the required wind and wave conditions. Top-right: Same for the period October 11-13, 2018. Center: Number of 1-s
observations in a grid of 0.25° x 0.25° cells across the global oceans, during the three-days period of February 1-3, 2018 (only 33% of those under the required
wind and wave conditions have been considered). Bottom: Same for the October 11-13, 2018, period.

12 result in coherent signals (33%). It is not clear if this per-
centage will prevail in other regions and seasons, so it is a
preliminary number. It is also unclear if it could be improved
with smarter processing techniques. In fact, at this stage we
do not have sufficient data to hypothesize about the coherence
and lack of coherence under the same surface conditions, and it
could also be unrelated to the surface itself. For instance, perhaps
the 12 coherent tracks were captured through secondary lobes
of the antenna, of higher gain than the nominal ones reported
in the paragraph above, or they could be the only ones under

stable ionospheric conditions (no scintillation). Answering these
question will require larger amounts of data, not available at the
moment.

V. DISCUSSION

Assuming that these preliminary findings prevail, what would
be the potential use of precise altimetric retrievals in only ~33%
of the relatively calm scenarios imposed by the required condi-
tions? To answer this question, we have inferred the percentage
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of time during which the required conditions hold across the
globe, over cells of 0.75° x 0.75°, from ERA-5 hourly gridded
reanalysis products provided by the Copernicus Climate Change
Service (C3S ) Climate Data Store (CDS) [19] (see Fig. 3).
To illustrate the effects of the 33% reduction into the spatial
resolution, we have simulated the GA tracks that a CyGNSS-like
constellation would acquire if it were modified to routinely
collect GA reflected signals from GPS, Galileo, GLONASS,
and BeiDou GNSS constellations between 10° and 20° elevation
angles. Two batches of three days each have been simulated,
for two different seasons. After colocating all the tracks with
ERA-5 wind and wave products, only those tracks occurring
under the required conditions are kept, and finally, 33% of them
are randomly selected to show the expected spatial coverage in
three days temporal resolution. As shown in Fig. 4, the examples
from both seasons present a dense mesh of potential altimetric
tracks in three days, sufficiently dense to resolve some subme-
soscale sea surface signals. These figures suggest that CaPA
GA retrievals could successfully monitor a diversity of areas on
the globe. This fact, added to the fine precision figures, makes
this technique suitable to study some submesoscale sea surface
phenomena. Furthermore, submesoscale features emerge or are
magnified under calm conditions, especially just after a wind
event has stirred the upper ocean, when the Ekman circulation
interacts with the underlying mesoscale turbulence resulting in
rich submesoscale structures. A special case of interest would
be the study of hurricane wakes, which last several days after
the pass of the cyclone [26].

Moreover, GNSS RO missions could easily be upgraded to
track these types of reflected signals, without need to modify
their hardware subsystems. This would require an extension
of the open-loop receiver models to account for the dynamics
of the reflected signals, through firmware uploads, which is
simple to implement. Additionally, data storage and downlink
capabilities, and other relevant system specifications should be
updated to avoid loss of RO or GA CaPA data. There are currently
over 16 satellites in orbit that operate GNSS RO payloads, sup-
ported by national or international agencies (e.g., USA/Taiwan
COSMIC and COSMIC-2, EUMETSAT Metop-A to Metop-
C, China FY3, Germany TerraSAR, TandemX, USA/Germany
GRACE-FO, Spain PAZ, etc.), and tens of private commer-
cial ones. This scenario provides a very dense spatio—temporal
coverage of potentially precise phase-delay altimetry, with
the advantages of: 1) already working at two frequencies for
better ionospheric corrections; 2) near-real time download—
short latency for numerical models and operations; and 3)
long-term plans to expand and maintain large number of such
satellites.

VI. CONCLUSION

This study has presented the first GA carrier phase-delay
sea surface altimetric retrievals up to 25° elevation angle from
spaceborne platforms, resulting in a measurement system pre-
cision of 3—4 cm at 20 Hz sampling, a centimeter level with 1 s
integration, despite the fact that the signals were received away
from the antenna main beam. The combined precision figure

takes values between 9 and 39 cm (16 cm median, 20 cm mean)
in 50 ms integration time, mostly driven by residual systematic
errors due to simple or missing corrections. This precision level
could scale down to a few cm level after 1 s integration, with
typically 7-8 km along-track spatial resolution. The measure-
ment system component of the precision is similar to those
obtained with dedicated monostatic radar altimeters, e.g., [27].
However, further investigation is required to test the potential
correction of the different error contributions, especially because
GA CaPA tracks do not repeat, a fact upon which some of the
radar altimeter corrections rely. This could degrade the final
accuracy achievable by the GA CaPA technique, despite its high
measurement system precision.

Over sea water, this precision level is unprecedented in space-
borne GNSS-R, for which it was only achieved over smoother
surfaces such as sea ice [13] and lakes [14]. It is also noted that
it has been achieved using both GPS and Galileo transmitted
signals. The analysis seems to indicate that this technique can be
applied only under certain water surface conditions, relatively
calm (<6 m/s wind, <1.5 m waves). These are required but
not sufficient conditions, as only a third of the tracks under
these calm scenarios do finally present sufficient coherence to
proceed with the CaPA measurements. Why tracks under the
same conditions might present or lack coherence? The limited
amount of data available at the moment, mostly focused on
one geographical area, hurricane season and daytime events,
makes it difficult to investigate. The fact that the CyGNSS
antennas do not point toward GA geometries might also have
negative impact. Nevertheless, even if only 33% of the tracks
acquired under the calm conditions could finally be usable,
the spatio—temporal coverage of a CyGNSS-like mission pre-
pared for GA CaPA measurements would have potential to
study some submesoscale sea phenomena in a diversity of areas
on the earth. Moreover, it would be technologically possible
to implement this technique in GNSS RO missions, opening
the way to combined atmospheric GNSS RO plus altimetric
GNSS-R dual frequency measurements, with unprecedented
spatio—temporal resolution for sea surface altimetric measure-
ments, thus complementing monostatic radar altimetric Flagship
Missions.

APPENDIX A
TRACKS INFORMATION

Table II lists the 63 GNSS-R tracks found in raw
CyGNSS data around the Central American region under GA
geometry.

APPENDIX B
ALTIMETRIC SOLUTIONS

The rest of altimetric GA CaPA solutions as obtained at 50 ms
integration time using CyGNSS raw data are shown in Figs. 5
and 6 (circles), together with the DTU18 MSS height (solid
lines). The title of each plot includes the track ID and the RMSE
error with respect to DTU18 for each particular track, at 50 ms
integration (o20yy)-
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Fig. 5. Altimetric GA CaPA solutions for tracks 18, 22, 25, and 31 (top to
bottom, respectively).
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Fig. 6. Altimetric GA CaPA solutions for tracks 44, 45, 51, and 53 (top
to bottom, respectively). The sharp peak in the GNSS-R solution of track 45
corresponds to the reef by the Island of Jovanni Joseph.
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APPENDIX C
COPERNICUS CLIMATE CHANGE SERVICE (C3S) CLIMATE DATA
STORE (CDS) TooLBOX CODE

Fig. 3 has been generated using C3S CDS Toolbox, which
allows the users to analyze large amounts of climatology data
without need to download them. Fig. 3 is extracted from hourly
ERA-5 reanalysis data corresponding to a full year (2012), origi-
nally gridded at 0.25° x 0.25° cells (~90 GB of data). The wind
and significant wave height values are first averaged to 3 x 3
grid points, equivalent to 0.75° x 0.75° cells. The thresholds
for “required calm conditions” are then applied (<6 m/s wind
speed and < 1.5 m SWH), and finally the number of hours during
which these conditions were fulfilled are accumulated for the
whole year. The results are given in percentage of the year. The
CDS Toolbox runs the scripts prepared by the users, locally at
ECMWEF servers. The script used to generate the data for Fig. 3
is provided as follows:

import cdstoolbox as ct
@ct.application(title='Threshold ex-
ceedance count’)
@ct.output.dataarray ()
def exceedence():
Application main steps:
-extract u, v and swh from ERAS5
for a defined time interval
-calculate wind speed from u and v
-define two indices which are eq
to 1 if a condition is met and 0
otherwise
-multiply the indices and sum the
file up over the time dimension
-normalise the index to return
percentage value
-output the file as a NetCDF
wind_threshold = 6 #m/s
wave_threshold = 1.5 #m
yvear = ['2012"]

month = [
‘01, 02, '03," '04,"
05, 06,
'07," '08,” 09, r10,'
r11, 127

1

day = [
‘01, 02, '03," '04,"
05, 06,
07, 08, 09," "10,"
11, 12,7
13, *14," 15, ’'1l6,’
17, '18,"

19,7 120, '21," '22,"
I23II l24,l

25,7 '26,' '27," '28,’
l29,l 130,1
1311

]
time = [
"00:00,”01:00,702:00, "
"03:00,"04:00,”05:00, '
"06:00,”07:00,708:00, "
09:00,710:00,”711:00, "
12:00,”13:00,714:00, "
*15:00,”16:00,”17:00, "
18:00,719:00,720:00, '
21:00,722:00,723:00"
]
grid = ['3," '3"]
data_u = ct.catalogue.retrieve (
'reanalysis-erab-single-levels, ’
{
'variable’: ’10m_u_component
_of_wind,
'grid’: grid,
"product_type’:
'reanalysis, ’
'year’': year,
‘month’: month,
‘day’ : day,
"time’: time,

data_v= ct.catalogue.retrieve
'reanalysis-erab-single-levels, ’
{
'variable’: ’'10m_v_component
_of_wind,
"grid’: grid,
"product_type’:
'reanalysis, ’
'yvear’': year,
‘month’: month,
"day’: day,
‘time’: time,

data_wave = ct.catalogue.retrieve (
‘reanalysis-era5-single-levels, ’
{

‘variable’: ’‘significant_

height_of_combined_wind_waves

_and_swell, ’
"grid’: grid,
"product_type’:
"reanalysis, ’
'yvear’': year,
‘month’: month,
"day’: day,
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‘time’: time,

wind = ct.math.sgrt((data_u) * (data_u)
+(data_v) * (data_v))
index_wind = ct.cube.where
< wind_threshold, x=1, y=0)
index_wave = ct.cube.where (data_
wave < wave_threshold, x=1, y=0)
index = ct.cube.sum( (index_wave

* index _wind), ‘time’)
normalised_index = index/87.600
#/hours in a year and *100
(percentage)

return (normalised_index)

(wind
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