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Very High Resolution Remote Sensing Imagery
Classification Using a Fusion of Random Forest
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Area for Example
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Abstract—Recently, convolutional neural networks (CNNs)
showed excellent performance in many tasks, such as computer
vision and remote sensing semantic segmentation. Especially, the
ability to learn high-representation features of CNN draws much
attention. And random forest (RF) algorithm, on the other hand, is
widely applied for variables selection, classification, and regression.
Based on the previous fusion models that fused CNN with the other
models, such as conditional random fields (CRFs), support vector
machine (SVM), and RF, this article tested a method based on the
fusion of an RF classifier and the CNN for a very high resolution
remote sensing (VHRRS) based forests mapping. The study area
is located in the south of China and the main purpose was to
precisely distinguish Lei bamboo forests from the other subtropical
forests. The main novelties of this article are as follows. First, a
test was conducted to confirm if a fusion of CNN and RF make an
improvement in the VHRRS information extraction. Second, based
on RF, variables with high importance were selected. Then, a test
was again conducted to confirm if the learning from the selected
variables will further give better results.

Index Terms—Classification, convolutional neural networks
(CNNs), random forest (RF), subtropical forest, very high
resolution remote sensing (VHRRS).
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I. INTRODUCTION

R EMOTE sensing (RS) techniques, which now cover large
scientific fields, have established themselves as popular

and effective methods for monitoring the environmental changes
and land use cover dynamics [1]–[4]. Very high resolution
remote sensing (VHRRS) images, which contain more valu-
able features, saliently the spatial information, draw much at-
tention these years [3]. And moreover, with the development
of aerospace technology and sensor technology, the VHRRS
images are getting easy and inexpensive to obtain that, in return,
raises a problem that enormous data remain underutilized. Thus,
driven by the explosion of the remotely sensed datasets, the
establishment of accurate and effective methods for remotely
sensed imagery information extraction is a prerequisite for ap-
plications and deep-in investigations of RS technology [5].

An elementary pixel in a certain image is the fusion of multiple
objects on the ground [6]. As a result, the spectrum of a certain
cell is not only determined by the main landcover but also by the
proportions and characters of all objects. Even though VHRRS
images have a better spatial resolution, within-class spectral
variation is still outstanding and sometimes even worse [7],
especially for vegetation [8]. Due to the extreme complexity of
the vegetation composition and diversity of vegetation growth
in the forest, it is universal that the same forest types exhibit
different spectral characteristics. Better methods for information
extraction and land cover discrimination are significantly needed
to take advantage of spatial information of the VHRRS.

The booming of machine learning (ML) algorithms in decades
proved to all that learning features from datasets are more
efficient and practical than defining the features. These ML
methods, for instance, support vector machine (SVM), classifi-
cation and regression tree (CART), k-nearest neighbor (KNN),
and RF are widely employed these years in the remote sensing
fields [9]–[12]. Mostly, these nonparametric algorithms work
well to construct the relationships between inputs and outputs,
for instance, extracting and retrieving of forest quantities in-
formation, such as biomass and soil moisture, and most fre-
quently classification [13]–[15]. Due to this character called
“learning by itself,” various data have been taken into practice,
such as microwave, light detection and ranging, satellite remote

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-6765-2279
https://orcid.org/0000-0003-2005-3452
https://orcid.org/0000-0003-4204-1129
mailto:dongluofan@gmail.com
mailto:dhqrs@126.com
mailto:mfangjie@gmail.com
mailto:hangis2002@163.com
mailto:xuejianli201609@163.com
mailto:zhougm@zafu.edu.cn
mailto:1096178563@qq.com
mailto:1459165815@qq.com
mailto:781792079@126.com
mailto:x522874591@163.com
mailto:lty706695603@163.com


114 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

sensing, and the fusion of multisource and multiresolution data
[16]–[18].

However, there are two problems that always occur. For one
thing, most of these ML algorithms are based on the given
variables and lack the ability to extract information. For another,
the performance of ML algorithms is extremely case specific.
Additional methods for feature extraction and selection, such
as object-based image analysis (OBIA), textural variables, and
vegetation indices, are always needed. For example, Qian et al.
[19] applied the OBIA on the VHRRS to obtain object-level fea-
tures and reduced the dimension. Then, the four ML algorithms
including SVM, CART, normal Bayes (NB), and KNN were
compared, and it turned out that the best ML model depends on
a specific case. Besides, the view that one-fits-all algorithm does
not exist because of the influence of available samples, spatial
resolution, and type of sensors could be found from other works
and reviews as in [6], [20], and [21].

Among these ML algorithms, RF is prevalently employed for
the selection of variables, especially when hundreds of spectral
and spatial features are obtained [22], [23]. Other attributes,
such as tolerability to high dimensionality, efficiency, and being
insensitive to over-fitting, make it one of the most popular
predictors [24]. Both pixel-wise and object-based land-cover
mapping using RF are well investigated [25]–[28]. Features,
such as spectrum and texture, that differ from each other while
involving a high order of self-correlation need to be reduced for
efficiency. And additionally, it is helpful to reveal the relations
between these predictors and targets, such as spectral profiles
and forests’ quality [26], [28]–[30]. However, there is no doubt
that the determination of the initial variables needs expertise
experiments.

Automagical extraction of high-representation variables,
known as representation learning [31], could be achieved by
deep learning (DL). According to recent neuroscience, deep
feature representation could be learned hierarchically from sim-
ple concepts [18]. For examples, recurrent neural network, gen-
erative adversarial networks, deep reinforcement learning, and
convolutional neural networks (CNNs), well-known branches
of DL, have made excellent achievements in the tasks that
were labeled “formidable,” such as complex pattern recognition,
professional chess competition, natural language processing,
and unmanned vehicle [32]–[38].

The CNNs, especially, draw much attention. Applying CNNs
for remote sensing tasks, including object detection, classifica-
tion, and scene recognition, has been brisk for years [39]. The
aforementioned challenges, including a lack of enough anno-
tation samples, intricacy of CNNs, complexity, and quantity of
the RS data [40], are to some extent extenuated by using CNNs.
Amid works concerning CNNs, the most frequently used data
are hyperspectral and VHRRS images [8], [41]–[43], which are
more complicated in terms of dimension and spectral variation.
For CNNs, with powerful learning ability and data augmentation
technology (i.e., rotation, random noise, and crop) to avoid
overfitting [32], [44], many works have shown that applying
CNNs on remote sensing is robust. For example, Zhan et al. [45]
applied CNNs to handle weakly distinguished samples, such as
cloud and snow. Using the high-resolution free data including

Landsat 8 and Sentinel-2, Kussul et al. [46] employed one
-dimensional (1-D) and 2-D CNNs on a large area (28 000 km2)
for discrimination of 11 complex land covers. On the other hand,
open recognition competitions, such as large-scale visual recog-
nition competition spurred the bloom of CNNs. Structures, such
as Vgg, ResNet, fully convolutional network (FCN), are bor-
rowed for remote sensing applications [47]–[50]. Furthermore,
in order to resolve specific remote sensing related difficulties,
some methods are proposed to exclusively dedicate to RS [51].
For instance, Zhang et al. [51] obtained subimage by applying
OBIA and vector analysis. Compared with the popular region
proposal in computer vision fields, OBIA could handle various
shapes and sizes of the real land covers. The multibranch par-
allel network models based on GoogLeNet [34] and skip-layer
architectures based on ResNet [35] are investigated [52], [53].

Additionally, the fusion of the multiimage or multimodel
based on CNNs was well exploited these years. Compared
with the complex network architectures, fusion models and
data are simple and informative. For example, Scarpa et al.
[54] employed a three-layer CNN to fuse Sentinel-1 (synthetic
aperture radar sensor) image and Sentinel-2 (multiresolution
optical sensor) image. Radar, which is weather insensitive,
serves as a compensation for a normalized vegetation index
(NDVI) obtained from optical images. Zhang et al. [18], based
on the traditional multiple layer perception and CNNs, proposed
a hybrid model MLP-CNN. Audebert et al. [55] fused two state-
of-the-art CNN models, the ResNet and SegNet, and took the
digital surface model into consideration. Fu et al. [56] proposed
an improved FCN combined with the conditional random fields
(CRFs) as postprocessing, furthermore, making an improvement
on conventional models [57]–[59].

A combination of CNN and RF, in which the former is
regarded as an extractor and the latter is regarded as a clas-
sifier, comes out with spontaneity. Several works have been
proposed recently [60]–[63]. For instance, the DCNR model
proposed in [60] takes cubic samples, containing spectral-
spatial information, as inputs of CNN and RF as a classifier.
But for VHRRS data, cubic samples, which gather several
neighboring pixels, are far from the informative enough [60].
Thus, this article concentrates on information extraction of
VHRRS. And further, except for learning high-level representa-
tion from the imagery itself, there is the feasibility that learning
from both spectral and other low-level affiliate information
derived from imagery will achieve better performance, costly but
worthwhile.

In this article, we take subtropical forests as the study area for
two reasons. First and most important, subtropical forests are
more complex compared to the uniform northern forests in terms
of forests composition, crown structure, and diversity of tree
types. Even an image with a spatial resolution of 1.2 m cannot
separate a single tree from the subtropical forests. Thus, despite
the heterogeneity of spectrum, high representation features ex-
plored from the spectrum and spatial context are valuable for the
subtropical forests and other similar tasks. Second, monitoring
of subtropical forests is of high value because subtropical forests
cover a large area and play a crucial role in the terrestrial
ecosystem functions [6], [64], [65].
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Fig. 1. Overview of our approaches. (a) Conventional pixel-based and spectrum-based RF classification. (b) Conventional patch-based CNNs classification.
(c) RF classification based on features selected by permutation. (d) Patch-based CNNs classification based on features selected by permutation. (e) Fusion of RF
and CNN based on spectral information. (f) Fusion of RF and CNN based on features selected by permutation.

The innovations of this article mainly include the following.
1) We tested if the fusion of CNN and RF make an improve-

ment of VHRRS information extraction.
2) Based on RF, variables with high importance were se-

lected. We tested if learning from the selected variables
will further better the results.

In this article, the experiments are takenoff based on world-
view2 VHRRS images. First, we tested common CNNs, with
structure and parameters optimization, and RF, with parameters’
optimization as well on the corrected spectral [see Fig. 1(a)
and (b)]. Then, the traditional meaningful variables, such as
vegetation indices and textural features based on gray-level
cooccurrence matrix (GLCM), were obtained and, together with
spectral features were signed “All features.” Permutation and
several RF-based functions were employed to score all the
features and reduce the dimension. The performance of both
the models on “feature set” was tested [see Fig. 1(c) and (d)].
Finally, in the fusion model convolution-RF (ConvRF), RF was
employed on the high-level features extracted by CNNs [see
Fig. 1(e) and (f)].

II. MATERIALS AND METHODS

A. Study Area and Data

The research area is located in Taihuyuan (see Fig. 2), south
of China, which has a monsoon-type climate, warm and humid,

with sufficient sunshine, abundant rainfall, and four distinct sea-
sons. According to the field investigation, the forest of Taihuyuan
is dominated by coniferous forest, broad-leaved forest, and
bamboos. Therefore, the classification system is set to include
ten land cover types: coniferous, building, farmland, bamboos,
broadleaf, road, tea garden, water, bare land, and cutting site.

For this study, the classification was based on worldview-2
remotely sensed imagery with four spectral bands (red, blue,
green, and infrared) and a spatial resolution of 1.2 m. The used
imagery was obtained in June 2016. Radiation calibration and
atmosphere correction were applied. Since the present computer
hardware condition still poses a limitation on data concerning
possible processing volume, it is necessary to divide images into
proper sizes. In this article, we divided the image into patches
of 224 × 224 according to the setting of some famous works of
the ImageNet competition [32]–[35], [44].

B. Features Setting

Variables including vegetation indices and textural features
are taken into consideration, as listed in Table I. Vegetation
indices include the NDVI, normalized difference water index
(NDWI), difference vegetation index (DVI), and ratio vegetation
index (RVI).

The GLCM is employed as the representative of the statis-
tical texture features [66], [67]. Since being proposed in 1979,
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Fig. 2. Location of the study area and the field survey points.

GLCM, based on probability statistics, has been widely em-
ployed in classification tasks as well as the other applications.
The GLCM is defined as a region with N grayscale values that
correspond to an N × N matrix. The value of each pixel (i, j) in
the matrix represents the probability that the gray value is j as
the distance from grayscale value i.

C. Random Forest

The RF is a branch of bagging algorithm [68], and it exhibits
superior performance in cases with noise and weak discrimina-
tion data and is insensitive to the initialization of parameters. An
RF selects several samples randomly (with bootstrap) to build
a decision tree (without pruning) every iteration and constructs
the whole RF by building numerous decision trees. Then, all
trees “vote” for the most popular class—the output.

The RF-based feature selection (permutation) has been widely
used in many domains and is robust for variables involved with
high-dimension and high-order correlation [30]. For example,
for a variable xi, the permutation approach replaces all xi with
a random value and classifies the permutation as noise, thereby

breaking the original association between xi and the result Y.
Meanwhile, by using the Gini coefficient, the RF determines
which variables to be used to minimize the purity decrease of
a predictor. In order to reduce the dimension of the data, the
random forest cross-validation (rfcv) for feature selection, a
function from the add-in package RF, is widely applied for the
determination of the variable number. This function sequentially
reduces the number of predictors (ranked by variable impor-
tance) via a nested cross-validation procedure.

The RF model is generally less sensitive to parameter settings
than some other predictors. The optimization of an RF is mostly
based on two parameters: mtry and ntrees, where mtry is the
number of variables used in splitting a node and ntrees is the
number of trees in an RF. The optimal value of mtry is determined
by traversing all possible values. According to the research of
Breiman [22], the generalization error of the RF converges as
the number of trees increases, a characteristic absent in most
other classifiers. In other words, the model performs better
and better as the value of ntrees increases [29]. Therefore, the
optimization of ntrees is to balance the classification accuracy
with computational effectiveness.



DONG et al.: VHRRS IMAGERY CLASSIFICATION USING A FUSION OF RANDOM FOREST AND DEEP LEARNING TECHNIQUE 117

TABLE I
ALL THE INVOLVED FEATURES ARE LISTED, INCLUDING SPECTRAL BANDS OF IMAGERY, VEGETATION INDICES, AND TEXTURE FEATURES BASED ON GLCM

D. Convolutional Neural Network

A CNN is a multilayer neural network, stacked by convolu-
tional layers and pooling layers alternatively, which learns from
an enormous amount of data with convolutional filters and then
employs fully connected layers. The processes of training CNN
mainly consist of forward-propagation and backpropagation.

1) Forward Propagation: With multiple nonlinear layers
stacked back and forth, the forward propagation procedure
constructs multiple highly abstract representations and com-
putes the output. Many strategies have been developed for
forward propagation, including the convolutional layer, pool-
ing layer, fully connected layer (FC), skip layer, etc., [31],
[69]. The brief explanations of these approaches are as
follows.

1) Convolutional layer: As the main composite of CNN,
the convolutional layer is designed to learn high-level
representation features. A significant contribution of the
convolutional layer is the sharing of parameters (i.e., the
convolution filter) inside a layer, which reduces the num-
ber of trainable parameters and accelerates the training
processes. Activate functions, which greatly improves the

expression ability of the CNNs, are applied after CNNs for
further nonlinearization, including Sigmoid, Tanh, ReLU,
etc.

2) Pooling layer: Pooling layer, the same as subsampling, is
applied for extracting the most significant feature. Another
advantage of applying pooling is translation invariance.
There are several pooling methods widely used including
max-pooling and average-pooling.

3) FC layer: FC is a multilayer neural network applied as the
last few layers of the CNN for computing the probability
that a certain pixel belongs to a class, i.e., a learnable
classifier.

4) Skip layer: The outputs of every layer are connected to
the final layer and directly involves classification [35],
[69]. This structure works similar to a voting system in
which all the outputs vote for the most popular result.
Since the gradient disappearance problem plagues many
models, skip layer connection is useful and enables deeper
network. A lot of investigations show that the fusion of
former and latter feature maps of CNN could improve the
results [24].
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2) Backward Propagation and Optimization: The backward
propagation procedure computes the gradient of the loss with
respect to parameters, by which all the trainable parameters are
updated to minimize the loss [31]. Loss, which is obtained after
forward-propagation and computed by a loss function, leads the
direction of the optimizer. It is crucial to construct an appropriate
loss function for optimization. In our study, cross-entropy loss
function, the commonly used function in classification research,
is applied.

E. Fusion of CNN and RF

The motivation is to apply CNNs to extract high-level repre-
sentation features. In the traditional CNN, an FC layer is applied
as the final decision basis to compute the possibility that a pixel
belongs to each class. However, there are some problems with
applying the FC layer as a classifier, such as easily overfitting
especially with inadequate samples, not robust enough, and
computationally intensive. Many works try to replace the FC
layer in their model with other structures, such as CNN as
decision basis in the FCN [56], [59], [70]. An RF is apparently
more complex and persistent to overfitting. Thus, we replace
the FC layer in CNNs with an RF classifier to achieve better
outcomes.

In the fusion procedure, a remote sensing image and labels
are needed. First, CNN is trained in the first place by end-to-end
using the image and labels. In this process, CNNs are trained
until relatively low loss and high accuracy are achieved. Then,
feature maps are obtained by processing images with the trained
CNNs. The annotation maps are used again to obtain samples
from feature maps for the RF. An RF classifier is trained through
the optimization process we mentioned above with feature maps
and labels. The land-cover map is completed and output by RF.

In this article, two CNNs are trained with spectral features
and features selected by the RF permutation algorithm from
200 features, as explained in Table I, respectively. As it is
well known that active region (every pixel in a feature map
contains information from neighbors) gets larger when CNN
gets deeper, feature maps are obtained layer by layer in order
to test the performance of every CNN extractor. The results are
named according to the CNN that is used and the layers that the
feature map obtained, for example, Spectral-Conv1, Spectral-
Conv2, …, Spectral-Conv8, Selected-Conv1, Selected-Conv2,
…, Selected-Conv8. Approximately 4000 pixels are selected
randomly from the labels and are separated into training data
and test data with a ratio of 0.75 to 0.25 for the construction
of the RF classifier. The classification results of all the RFs are
obtained to make the further comparison.

III. RESULT

In this section, the results of all models are reported. The
samples of our study are selected based on a field survey (see
Fig. 2) and the visual interpretation, and are divided into training
samples and validation samples randomly with a ratio of 0.75 to
0.25. There are many methods for the validation of classification

performance. In this article, user accuracy rate, producer accu-
racy rate, overall accuracy rate, and Kappa coefficient (Kappa)
based on confusion matrix are employed for the validation of
the results [71].

A. RF and CNN With Spectral Data

In this section, the conventional RF and CNN are tested on
spectral data. Here the RF model with spectral data is denoted as
Spectral-RF and CNN with spectral is denoted as Spectral-DL.

1) Construction of the RF: This part details how the Spectral-
RFs are constructed on spectral data. About 400 samples for each
class were randomly selected from labeled samples and were
randomly divided for training and testing with a ratio of 0.75 to
0.25 [22]. The optimal values of mtry and ntrees are determined
by traversing all possible values and picking up the ones with the
lowest out-of-bag (OOB) errors. First, ntrees is set to a relatively
big value. Due to the convergence of RF when the number of the
ntrees grows, the traverse of mtry will not be impacted by ntrees.
With the optimal mtry, the suitable value of ntrees is obtained.
The performance of the Spectral-RF is obtained based on the
test samples. Finally, the constructed Spectral-RF is applied to
the whole image to get the classification map.

2) Construction of the CNN: Parameters setting of the
Spectral-DL are listed in the following. The convolutional filters
are initialized with a window size of 3 × 3 [32]–[34], [72]. The
learning rate is set to 0.0003; the weight decay parameter is set
to 0.0005.

Training samples are of high importance in training CNNs.
According to our field survey, only relatively pure pixels are
labeled as samples. Then, the labeled map is divided into small
patches as well as the raw image. Some subimages are eliminated
if in which labeled pixels are less than 5%. Then, we get about
200 subimages each with a size of n@224 × 224, where n
indicates the number of layers. A total of 25% of the subimages
are chosen for testing, and the rest for the training. Here, we
get about 150 images as training samples and about 50 images
for testing. Since large amounts of samples are always needed
in the training of a CNN model, rotations, and mirror flips
were employed to times the training data, while testing samples
remained unchanged.

3) Results of RF and CNN: The results of RF and CNN are
reported in forms of tables (see Table II), confusion matrices
(see Fig. 3), and classification maps (see Fig. 4).

As elaborated in Table II, OA and Kappa coefficient of
Spectral-RF are 0.830 and 0.809, respectively, while OA and
Kappa coefficient of the Spectral-DL are 0.784 and 0.689,
respectively. In both models, body of water is well recognized,
which indicates water is distinctive by using spectral data ex-
clusively. Although both trained with spectral data, Spectral-
RF outperforms Spectral-DL, especially in terms of broadleaf
forests, tea gardens, and cutting sites.

As represented in confusion matrices (see Fig. 3), which
clearly show the misclassification, Spectral-RF keeps relatively
uniform accuracy rates among all the classes. The confusion
between several vegetation exists in Spectral-RF but not as
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TABLE II
CLASSIFICATION RESULTS OF CONVENTIONAL RF AND DL

In this experiment, we take spectrum as inputs (R, G, B, NIR). N indicates the number of variables. OA indicates the overall accuracy rate. Kappa indicates the
kappa coefficient. The number from 1 to 10 represents land types; 1: Coniferous forest; 2: Farmland; 3: Broadleaf; 4: Tea garden; 5: Bare land; 6: Building;
7: Bamboo; 8: Road; 9: Water; 10: Cutting site.

Fig. 3. (a) Confusion matrix of Spectral-RF. (b) Confusion matrix of Spectral-DL.

salient as does Spectral-DL, that only manages to well extract
between several main vegetation types, such as coniferous forest
and bamboos. A total of 40% of the farmland pixels are misclas-
sified by the Spectral-DL as bamboo forests. And for the tea
gardens, even worse, 69% of which are misclassified as cutting
sites.

As shown in Fig. 4, the “salt-and-pepper effect” is obvious in
Spectral-RF, whereas “edge effect” is outstanding in Spectral-
DL. In scene 1 of Fig. 4, the Spectral-DL fails at the boundary
while keeps integrality inside a patch. In scene 2 of Fig. 4, cutting
sites are not well classified mainly because some economic
nurseries are clear-cut and others are not. In scene 3 of Fig. 4,
the “salt-and-pepper effect” of Spectral-RF could be well caught,
while Spectral-DL makes better.

B. CNN and RF With Selected Variables

In this section, we first conduct variable selection. Then, the
RF and CNN are trained with the selected features. Here the RF
model with all feature sets was denoted as AllFeature-RF, the RF
model with the selected feature set is denoted as Selected-RF,
and CNN with selected feature set is denoted as Selected-DL.

1) Variable Selection: Eight kinds of GLCM textures are
selected, including mean, variance, homogeneity, contrast, dis-
similarity, entropy, angular second moment, and correlation, all
of which are computed in four directions (i.e., 0°, 45°, 90°, and

135°) and four spectral bands (e.g., red, green, blue, and NIR)
[66], [67], [73]. To reduce the number of variables, the mean
values of the four directions are calculated. The window sizes
are set from 3 to 13 with a step of 2–3, 5, 7, 9, 11, 13. The stacked
GLCM variables and vegetation indices (i.e., NDVI, NDWI,
DVI, and RVI) have 200 layers, which are too “heavy” for most
methods—although RF could, theoretically, handle such kind
of a complex data, variable selection is practically needed for
economic purpose.

The variable selection is based on the RF. First, 4000 samples
with 200 variables are randomly selected. Second, as we ex-
plained in the previous section, the best values of the mtry and
ntrees are obtained. With the determined values, rfcv is applied
with tenfold cross validation and the results are shown in Fig. 5 to
determine the performance of the RF as the number of variables
getting less. As shown in Fig. 5, 20 variables are stable enough
to approach a relatively low OOB error.

Permutation is employed to rank all the 200 variables in
terms of variable importance. The decrease accuracy of every
land cover type and mean decrease accuracy (MDA) over all
classes are shown in Fig. 6, based on which 20 variables are
selected for further investigations. For example, in most classes,
features related to the NIR band and G band get high importance
scores. The decrease accuracy of every land cover type is listed to
avoid some extreme exceptions. For example, if a given variable
reached a substantial importance score for a certain land cover
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Fig. 4. Left column shows the ground truth. Mid column shows the results of
Spectral-RF. The right column shows the results of Spectral-DL.

Fig. 5. Effect of the number of variables on OOB error obtained by rfcv for
feature selection with all features.

type, we would have to reconsider the use of MDA. In our study,
after the analysis (see Fig. 6), we picked 20 variables based on
the MDA (see Table II).

2) Results of RF and CNN: With the selected variables listed
in Table III, we reconstruct RF and CNN. In order to make
a comparison, the results of AllFeature-RF are reported in
Table IV, together with the results of Selected-RF and Selected-
DL. Furthermore, confusion matrices and classification maps
of Selected-RF and Selected-DL are reported in Figs. 7 and 8,
respectively.

As reported in Table IV, OA and Kappa coefficient of
AllFeature-RF are 0.958 and 0.953, respectively; OA and Kappa
coefficient of the Selected-DL are 0.957 and 0.952, respectively;
OA and Kappa coefficient of the Selected-DL are 0.942 and

0.922, respectively. Both Selected-RF and Selected-DL have
great improvement compared to spectral-based ones. For ex-
ample, AllFeature-RF is 0.128 and 0.144 higher than that of the
Spectral-RF in OA and Kappa, respectively; the Selected-RF is
0.127 and 0.143 higher than that of the Spectral-RF in OA and
Kappa, respectively; the Selected-DL is 0.158 and 0.233 higher
than that of the Spectral-RF in OA and Kappa, respectively.

As shown in Fig. 7, both AllFeature-RF and Selected-RF
show that most of the land types are correctly classified. Errors
clearly exist inside vegetation and nonvegetation. For instance,
bamboos are classified as coniferous forests, and buildings are
classified as bare land and road. In the case of Selected-DL,
problems became outstanding that tea garden, broadleaf forest,
and farmland, where most of the errors lie in, mixed with each
other with high error classification rates.

The spectral-RF indicates the extent to which land-use types
could be recognized by the spectrum. Cutting sites, for example,
are well discriminated for exhibiting high value in the R band
(see Fig. 6). By contrast, most of the light of the Red band is
absorbed by vegetation for photosynthesis. Body of water has
an NDWI value of approaching 0; bare lands have NDWI values
about –0.4 to –0.2; and vegetation have lower NDWI values.

C. Fusion of RF and CNN

With trained CNNs, the fully connected layers of CNNs with
RF classifier and feature maps of all layers of the CNN are
obtained. Qualities of all the feature maps are tested. Here the
integrated models ConvRF trained with spectral data are denoted
as Spectral-ConvRFn (n = 1, 2, …, 8), where n indicates which
layer it is in the CNN, and ConvRF trained with spectral data are
denoted as Selected-ConvRFn (n = 1, 2, …, 8). The confusion
matrices of the Spectral-ConvRFn and Selected-ConvRFn are
reported in Figs. 9 and 10. The OA and Kappa coefficient are
shown in Fig. 11. And for convenient comparison, only Spectral-
ConvRF7, Spectral-ConvRF8, Spectral-ConvRF7, and Spectral-
ConvRF8 are reported especially, with classification maps in
Fig. 12 and accuracy rates in Table V.

As shown in Table V, the OA and Kappa coefficient of
the Spectral-ConvRF7 are 0.953 and 0.948, respectively; OA
and Kappa coefficient of Spectral-ConvRF8 are 0.962 and
0.958, respectively; OA and Kappa coefficient of Selected-
ConvRF7 are 0.987 and 0.986, respectively; OA and Kappa
coefficient of Spectral-ConvRF8 are 0.991 and 0.990, respec-
tively. The Selected-ConvRF7 and Selected-ConvRF8 are the
best methods (reach the highest OA and Kappa coefficient) in
our study. Selected-ConvRF8 outperforms Selected-ConvRF7
slightly as well as Spectral-ConvRF8 outperforms Spectral-
ConvRF7 slightly.

Together with Figs. 9–11, it is obvious that the accuracy
rates, as well as stability, increase gradually as the layers go
deeper. However, misclassifications exist among all the classes.
As an economic crop, Lei bamboo covers most of the land in
our research area. Intense artificial managements are employed
to cultivate Lei bamboo. For example, Fig. 12 shows a village
and its surroundings, where the traditional crops mix with Lei
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Fig. 6. Variable importance scores of all features. Variable naming is explained as (feature name)-(based spectral band)-(window size), for example, MEA_G_13
indicates the MEA based on the green band with a window size of 13 × 13. Bar colors indicate the spectral bands; green: green band, red: red band, blue: blue
band, orange: NIR band, and black: vegetation index variables.

TABLE III
FEATURES SELECTED FOR FURTHER RESEARCH

Variable naming is explained as (feature name)-(based spectral band)-(window size), for example, MEA_G_13 indicates the MEA based on the
green band with a window size of 13 × 13.

TABLE IV
CLASSIFICATION ACCURACY COMPARISON OF ALLFEATURE-RF, SELECTED-RF, AND SELECTED-DL

N indicates the number of variables. OA indicates the overall accuracy rate. Kappa indicates the kappa coefficient. The number from 1 to 10 represents land
types; 1: Coniferous forest; 2: Farmland; 3: Broadleaf; 4: Tea garden; 5: Bare land; 6: Building; 7: Bamboo; 8: Road; 9: Water; 10: Cutting site.
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Fig. 7. (a) Confusion matrix of AllFeature-RF. (b) Confusion matrix of Selected-RF. (c) Confusion matrix of Selected-DL.

Fig. 8. Result of Selected-RF and Selected-DL where the left column shows
the ground truth, the mid column shows the result of Selected-RF, and the right
column shows the result of Selected-DL.

bamboo. Some roads inside the farmland are classified as bare
land, but it is rational for that since these roads vary in materials
such as stones, soils, and even sand. Obvious bounds still exist
in ConvRF7, which is modified in ConvRF8.

IV. DISCUSSION

The VHRRS land use classification tasks face many dif-
ficulties, for instance, obstruction of an interclass variation,
underutilization of information, limitation of computation, and
needs of expertise experiments. Although RF and CNN, as state-
of-the-art methods, show considerable performance and address
some of these problems, there could be a great improvement, as
shown in our study, by means of adding additional information

and combination of the RF and CNN. Some details are discussed
in the following sections.

A. CNN Structures

For these years, numerous CNN structures have been pro-
posed. Although we are not here in this part to explore the best
CNN structure, we are testing a considerable better structure
as a counterpart of RF. Hence, CNNs with different numbers
of layers are constructed, which are denoted as layer_n. Some
training processes have been shown in Fig. 13, where all the
models are trained from scratch. And the details of the structures
are reported in Table VI. It is obvious that the cross-entropy
loss (CL) of layer_5 is slightly higher than others and FCN8s
got down fast. And with the structures going deeper, the CLs
converge. However, it is well known that the accuracy rate does
not change along with the loss curve. Therefore, the last ten
epochs’ parameters of these structures, as well as layer_8 with
different training ratios, are collected and tested to produce
a violin plot (see Fig. 14). One is unlikely to reach that the
deeper a CNN is, the better the results are because layer_16
and layer_20 do not converge well. Comprehensively taking
effectiveness and economies into consideration, we took layer_8
as a representation of the CNN model.

B. Analysis of RF and CNN

In both cases (Spectral- and Selected-), RFs better CNNs
(see Tables II and IV). Although it is hard to conclude that the
RF is better than CNN for the reason that CNN is sensitive to
parameters setting and structure designs, we could conclude that
RF is more robust than CNN and less sensitive to initialization.

In the case of Spectral-RF (see Fig. 3), it is obvious that
some Lei bamboo forests are misclassified as other land types
(except for water). There are several reasons. First, in order
to conveniently regulate the Lei bamboo, the most important
economic forest in the study area, Lei bamboo is always grown
along with village and road. And, as a typical zone covered
by the subtropical forest, the study area is of a complex forest
distribution where broad-leaved trees are mixed with coniferous.
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Fig. 9. Confusion matrices of Spectral-ConvRF. In the expression of Spectral-ConvRFn, n indicates the layer of CNN.

Fig. 10. Confusion matrices of Selected-ConvRF. In the expression of Spectral-ConvRFn, n indicates the layer of CNN.

However, the invasion of the Lei bamboo into other forest types
leads to a further mixture between bamboos and other vegetation.

The uses of elaborated chosen features, NIR and green bands
as well as their relevant texture features and vegetation indices
(see Fig. 6), make improvements both on RF and CNN. The
GLCM, especially, made great improvement in the results.
According to previous studies, radiational distortion that makes
significant impact on the spectrums does not alter the GLCM
textures very much [74]. Therefore, comparing to use four bands,
the incorporation of the GLCM that derived from the four bands
better the results over nearly all the land-cover types. However,

some classes of CNN are badly discriminated. This is due to
imbalanced training samples, for example, there are limited
areas covered with tea gardens and broadleaf forests. But for RF,
stratified random sampling is applied, this flaw is moderated a
lot. And the edge effect of the CNN cannot be addressed here for
the rigid separation of image. Therefore, further research works
about the irregular and overlap separation of images are needed
(see Figs. 4 and 8).

All models in our study performed well on water discrimi-
nation. Although some of the body of the water exhibits green
color (with a perspective of RGB), NIR band and the vegetation



124 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 11. (a) OA and Kappa coefficient of Spectral-ConvRFn, where n indicates the layer of CNN. (b) OA and Kappa coefficient of Selected-ConvRFn, where n
indicates the layer of CNN.

Fig. 12. Classification maps of Spectral-ConvRF7, Spectral-ConvRF8, Selected-ConvRF7, and Selected-ConvRF8.

TABLE V
CLASSIFICATION ACCURACY COMPARISON OF ALLFEATURE-RF, SELECTED-RF, AND SELECTED-DL

OA indicates the overall accuracy rate. Kappa indicates the kappa coefficient. The number from 1 to 10 represents land types; 1: Coniferous forest; 2:
Farmland; 3: Broadleaf; 4: Tea garden; 5: Bare land; 6: Building; 7: Bamboo; 8: Road; 9: Water; 10: Cutting site.

indices, most of which are computed involved with the NIR
band, make water distinctive (see Fig. 6)—body of water absorbs
the NIR spectrum while vegetations reflect. However, this could
be a disadvantage that some VHRRS and unmanned aerial
vehicle images do not contain bands except for RGB [7], [8].

C. Analysis of the Fusion of CNN and RF

The ConvRF takes advantage of the two machine learning
methods and frees humans from feature selection. Although the
lack of deep-in understanding of the decision process of DL
has labeled it “questionable,” the ability of the CNN models to
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TABLE VI
DETAILS OF THE CNN LAYERS INFORMATION

Processes of how the image goes through are provided. For example, 8@3 × 3 indicates that sizes of the convolutional filter are 3 × 3 and the number of
obtained feature maps is 8.

Fig. 13. Cross-Entropy loss of different structures. Every model was trained
for 100 epochs and then the losses were recorded.

Fig. 14. Every model was trained for 100 epochs and then the OA and Kappa
distributions of the last ten epochs with different CNN structures were recorded.

learn high-level representation from the large amounts of data
has been widely accepted. The high-level representation, kinds
of abstract features and cannot be understood by conventional
language, is undeniably informative [24], [34]. Especially for
VHRRS, CNN learns the complex spatial pattern surrounding

the target pixel [51]. In contrast, the construction of the RF is
under “visible” and rational control.

Edge effect, the most outstanding problem in CNN, results
from the lack of information on the edge of a subimage. How-
ever, another reason is the limitation of hardware that we cannot
take the whole image as input. An overlap during segmentation
will be a possible resolution. As shown in Fig. 12, ConvRF7 still
exhibits the edge-effect, whereas gets smoother in ConvRF8. A
possible reason is that a 3 × 3 average pool layer is applied after
ConvRF.

V. CONCLUSION

In this article, we employed ConvRF for the VHRRS classi-
fication task. The CNN works as a high-level representation ex-
tractor to utilize spectral-spatial features. The RF is constructed
and takes the place of FC layer in the CNN as a classifier. This
combination of the RF and CNN demonstrates better results and
involves less artificial efforts. As shown in our study, textures
and vegetation indices improve OA from 0.830 to 0.957. High
representation extracted by the CNN improves the OA to 0.962.
And further, if the CNN learning from a delicately designed
dataset (band data together with other low-level information
like vegetation indices and textures) in the first place, greater
improvement (with an OA of 0.991), although costly, could be
obtained.

The fusion of CNN and RF could take advantage of the texture
information contained in high spatial resolution imagery and
robustness of the RF as a classifier. The disadvantage of our
work is that the fusion model is computation intensive. Better
hardware, such as memory and graphics processing unit would
be helpful. For RS tasks, such as classification of land use in the
urban area, shapes and edges are crucial. The ConvRF could be
unsatisfactory.

More attention could be focused on the size of the patches in
this fusion model. And given that the DL technology is growing
rapidly, more state-of-the-art CNN models could be taken into
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consideration. The fusion of multilevel feature representation
has a great potential improvement on the existing model.
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