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Abstract—Nitrogen (N) fertilizer management is one of the main
concerns for precision agriculture under corn production, which
aims to not only maximize the profits, but also ensure environmental
sustainability. Effective N fertilizer management can either avoid N
stress or provide timely and accurate detection of in-season N stress
for remedies. Traditional N trial experiments to evaluate different
N management practices have to wait until harvest, and do not allow
tracking of when and how N stress develops. Meanwhile, rapidly
developed remote sensing technology offers new opportunities for
in-season evaluation of N status and detection of N stress for crops,
including both the unmanned aircraft vehicle (UAV)-based and
satellite-based multispectral sensing. In this study, we collected
weekly multispectral images of UAV and Planet Lab’s CubeSat,
as well as various other ground measurements for an experimental
cornfield that included 28 N management treatments in Central
Illinois, 2017. We found that both the UAV- and CubeSat-based
multispectral sensors were able to detect N stress at vegetative
stages before tasseling, and could detect changes in the level of N
stress through derived chlorophyll index green (CIg) for different
N management practices. The CubeSat-based CIg showed high
consistency with the UAV-based CIg (correlation above 0.9), which
indicated the potential of CubeSat-based CIg to be applied for
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N stress detection at a larger spatial scale. This study demon-
strates that the UAV- and CubeSat-based multispectral sensing
has the promising potential to monitor N stress of corn through-
out the growing season, which may assist decision making of N
management.

Index Terms—Corn nitrogen stress, CubeSat, in-season
detection, Planet Lab, unmanned aerial vehicles (UAV).

I. INTRODUCTION

F ERTILIZER management for modern agriculture aims to
supply sufficient fertilizer amounts to avoid nutrient stress

of crops and allow crops to realize their maximum yield potential
[1]–[3]. Meanwhile, fertilizer management also aims to avoid
overapplication to ensure environmental sustainability [4]–[6],
as excessive fertilizer can escape from agroecosystems through
volatilization, denitrification, leaching, and runoff, and cause en-
vironmental concerns [2]. In the US Corn Belt, which produces
nearly 40% of global corn production, the relatively inexpen-
sive N fertilizer compared with the undesirable consequence of
underfertilization for crop yield motivates farmers to apply N
in excess of demonstrated need, with the additional amount as
“insurance” against yield penalty [3]. As a consequence, only
one-third to half of the N fertilizer input is absorbed in the
harvested product [7], [8], whereas substantial N stays in the
soil may become a financial waste and create potential threats
to the environment [9]–[11]. Optimizing fertilizer management
practice and improving N use efficiency (NUE) are thus critical
for agricultural production and environmental sustainability in
the US Corn Belt.

Optimal fertilizer management has as its goal the provision
of N to the crop using correct rate, type, timing, and application
method of fertilizer. While variable rate technology is available
for farmers to apply N with various amount to meet site-specific
demand, the adoption rate is low, and the majority of farmers
retain their tradition of flat rate application [12]–[15]. In that
sense, timing and amount of N fertilizer are the two key factors
in N management. Common practices in the US Corn Belt for
fertilizer applications are that farmers/producers apply N fertil-
izer as one main application, mostly in spring and/or in the fall
(with ammonia) where appropriate, and often some also applied
in season [16]–[19]. These common applications may apply too
much N either in fall or in spring, which would cause more N
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leaching especially after heavy rainfall events, and may also lead
to N deficiency for crops in the late growing season [13], [20].
All of the above may result in a low NUE. To improve the NUE,
there are approaches suggesting to split the N application into
multiple times (the so-called sidedressing) to synchronize crop
N uptake and also reduce N leaching [21]–[23]. However, the
key questions are not well answered about what amount and
what time of N fertilizer should be applied. To address these
questions, agronomists usually rely on farm trial plots to test
different practices and compare end-of-season crop yield from
different plots/practices.

Conventional evaluation for N trials has a critical challenge of
having to wait till the end of the season to check harvested yield
for different trials and different N management practices. This
type of evaluation could not track when and how crop N stress
is developed and progressed. Especially for split N applications,
we require in-season tracking of crop condition to see when and
how the N sidedressing may be needed to mitigate crop N stress
in time to restore yield potential or not. Practically, if the N stress
may be detected near real time, sidedressing decisions (when and
how much to apply extra N fertilizer) can be optimized. Multiple
approaches have been developed in the past to detect crop N
stress, including visual inspection, tissue analysis, and using
chlorophyll meter [24]. These existing approaches have a few
obvious drawbacks [2], [24]–[27]. Primarily, these approaches
are either empirical, labor intensive, or contain uncertainties by
evaluating the whole field based on several samples that defi-
nitely leads to uncertainties. Better approaches to track in-season
crop N stress are thus needed.

Recent rapid developments in both remote sensing technology
and the unmanned aerial vehicle (UAV) offer new opportunities
for real-time evaluation of N status and detection of N stress for
crops. UAV systems allow practitioners to conduct real-time im-
age data collections at local fields and at a high spatial resolution
[25], [28]–[30]. Multispectral remote sensing technology pro-
vides useful reflectance information at different spectral bands
(e.g., visible bands, red-edge bands, and near-infrared (NIR)
bands) that are related to crop growing status and N contents
[31]. For example, the collected multispectral data can be used
to construct various vegetation indices (VI) to estimate crop N
status, e.g., chlorophyll green index [32], chlorophyll red-edge
index, and normalized differential red-edge index [26], [33].
Though the UAV-based multispectral sensing has been used for
various applications in agricultural practice and particularly crop
N stress [29], [34], [35], there are limited studies on using full
growing-season data to trace N stress for further analyses like
real-time N stress detection and to possibly infer N sidedressing
decisions.

In the meantime, emerging CubeSat data have become avail-
able and can provide high spatiotemporal resolution, and various
CubeSat-based applications have been proposed [36]–[38]. For
example, Planet Lab has developed and maintained a complete
PlanetScope constellation, which contains approximately 120
satellites that can image the world almost every day, and each
PlanetScope satellite is a 3U CubeSat (10 × 10 × 30 cm, 1U
represents 10 cm). PlanetScope images have a spatial resolution
of ∼3 m and contain four spectral bands (Blue, Green, Red,

Fig. 1. Study area and the field trials. (a) Location of the experimental field.
(b) UAV image on July 25th (91 DAP). (c) Field trials with treatment numbers
in each plot.

and NIR), which has the potential to be used for monitoring
subfield crop conditions. However, to the best of our knowledge,
no existing work has been done yet to use CubeSat-based multi-
spectral sensing for trial-plot in-season N-stress detection. It is
important to investigate whether the CubeSat-based multispec-
tral sensing has the potential for in-season N-stress detection at
subfield scales, since it may have great potentials for large-scale
applications of crop N stress monitoring.

In this study, we compared the UAV- and CubeSat-based
multispectral images to study in-season corn crop N stress at
a site in the 2017 growing season in Central Illinois. We focused
on a comprehensive N-trial experiment, which included 28 N
management practices varied by different amounts of N fertil-
izer, different ways to split N fertilizer, and different timing of
sidedressing. We systematically evaluated the ability of using
UAV- and CubeSat-based multispectral sensing to track crop
growth conditions and N stress over the whole growing season
for different N management practices. Our study aims to address
the following research questions:

Question 1: How well can UAV- or CubeSat-based multi-
spectral sensing capture N stress symptoms and its temporal
development in corn?

Question 2: What are differences and similarities between
UAV- and CubeSat-based multispectral sensing in terms of cap-
turing the N stress of corn?

II. DATA AND METHODS

A. Study Area and Field Trials

The experimental site is located south of the University of
Illinois at Champaign-Urbana, in Champaign County, Illinois
[see Fig. 1(a)]. Champaign County is in the central U.S. Corn
Belt region, where corn and soybeans are the predominant crops;
corn and soybeans grow on∼96% of the cropland in Champaign
County [39]. The area has a humid continental climate, with
warm summers and cold, moderately snowy winters, which
typically allows production of only one annual crop each year.
During the growing season (May–September), the average tem-
perature is 21.02± 2.93 °C, and the accumulated precipitation is
533.15 mm (1981–2010 Climate Normals). As is common in this
region, the experimental site was rainfed, without supplemental
irrigation.
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The field experiment included 28 different N management
practices. A field about 0.5 ha in size was divided into eight
ranges from North to South. Each range consisted of 14 side-by-
side plots, with each plot consisting of four, 76-cm rows (3 m
wide by 12.8 m long), with cross-alleys 0.9 m wide between
ranges. Each replicate consisted of two ranges [see Fig. 1(c)];
there were four replicates of the experiment, laid out as a ran-
domized complete-block design. The N management practices
included a set of six N rates ranging from 0 to 250 lb/acre
(0–280 kg/ha) applied as urea–ammonium nitrate (UAN) so-
lution injected between rows at planting, and an additional 22
treatment combinations of application timing, N fertilizer form,
and application method).

In this study, we focused on those management practices that
most directly addressed our research questions; that is, how the
different amounts and application timing of N fertilizer affect
crop yield and can be captured by UAV- and CubeSat-based
multispectral sensing. For this study, we focused on treatments
within the following three groups of N management practices:
we use “x–y N” hereafter to represent the N management prac-
tice with x lb/acre (1.12x kg/ha) planting-time application, and
y lb/acre (1.12y kg/ha) sidedressing, and we also specify the
growth stage for sidedressing by using “@ stage.”

1) One-time application with different amounts: N rates ap-
plied as UAN solution injected between corn rows at
planting: 0–0 N, 50–0 N, 100–0 N, 150–0 N, 200–0 N,
and 250–0 N.

2) Two-time applications with different allocations of a fixed
amount of N: injected UAN split between planting and sid-
edressing at stage V5–V6 (40 days after planting (DAP))
with a total of 150 lb/acre (168 kg/ha): 50–100 N, 0–150 N,
and 100–50 N.

3) Two-time applications with different sidedressing timing,
with 100 lb (45.4 kg) injected at planting and 50 lb
(22.7 kg) sidedressed at different corn growth stages:
100–50 N @V5–6, 100–50 N @V9–10, and 100–50 N
@VT. The VT application was made by dribbling the UAN
near the row using a hand boom.

B. Data Collection and Preprocessing

We collected both remote sensing data and in situ measure-
ments, with a total of seven types of data. Remote sensing
data include UAV-based multispectral images and Planet Lab’s
CubeSat-based multispectral images. In situ measurements in-
clude leaf chlorophyll content data measured for the center of the
top-canopy leaves, avoiding the leaf tip and base [40] and using
a soil-plant analyses development (SPAD) 502 meter (Konica
Minolta, Västra Frölunda, Sweden), leaf area index data (LAI)
measured using a LAI 2000 (LI-COR, Lincoln, Nebraska USA),
leaf-level N content from destructive sampling of the center of
the top-canopy leaves, avoiding the leaf tip and base [40], mea-
sured using a Costech ECS 4010 CHNSO Analyzer (Costech,
Valencia, California, USA), crop phenological stages, and crop
grain yield data measured using a 2009 Almaco SPC40 combine
(Almaco, Nevada, Iowa, USA). Fig. 2 shows the collection dates
of these measurements.

Fig. 2. Collection date of different data and the instruments used to collect the
data. (a) x-axis represents date/DAP, and y-axis represents each specific data.
The instruments on the bottom from left to right are (b) MicaSense Rededge
mounted on 3DR Solo, (c) SPAD 502 meter, (d) LI-COR LAI 2000, and
(e) punches and envelopes for leaf sampling.

1) Collection and Processing of the UAV-Based Multispectral
Images: The UAV-based multispectral images were collected
by the “RedEdge” sensor from MicaSense Company mounted
on the UAV “3DR solo” from 3DR Company. The UAV was
operated under Federal Aviation Regulation part 107 require-
ments. The UAV-based multispectral data contain five bands,
including blue band (465–485 nm), green band (550–570 nm),
red band (663–673 nm), red edge band (712–722 nm), and NIR
band (820–860 nm). We calculated three VIs, i.e., normalized
differential red edge (NDRE), chlorophyll index green (CIg),
and chlorophyll index red-edge (CIre), which have been found
to be closely related to canopy-level chlorophyll content [26],
[32], [33]. The formulas of the three VIs are as follows:

NDRE =
NIR− red_edge
NIR + red_edge

CIg =
NIR

green
− 1

CIre =
NIR

red_edge
− 1. (1)

The UAV-based multispectral data were collected weekly
(slightly adjusted by 1–2 days earlier or later to make sure
collection was conducted on clear sunny days) at noon (12:00–
13:00 PM) and at 50 m height above ground with resolution of
3.5 cm/px. All the images were collected with 80% forward
overlap and 60% side overlap to support the orthophoto images
mosaicking processing. We then ingested all the raw images into
the MicaSense DataHub image processing platform to generate
orthophoto images. We further converted the raw collected
image data in the form of digital number (DN) to reflectance
following the instruction of Micasense [41].
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2) Processing and Downscaling of Planet Lab’s CubeSat
Images: The CubeSat-based multispectral data, i.e., the daily
PlanetScope images with 3.125-m spatial resolution, was down-
loaded from the Planet Lab’s website (www.planet.com), which
contains four bands, including blue band (455–515 nm), green
band (500–590 nm), red band (590–670 nm), and NIR band
(780–860 nm). Therefore, only CIg can be calculated from the
PlanetScope images. The data are in the form of DN, which
needs to be transformed into surface reflectance for further
analysis. Due to cloud and revisit frequency issues, we lack
the CubeSat-based images of specific dates when UAV images
were collected. Therefore, we used the Landsat-MODIS fusion
product (30-m resolution) based on the Satellite Data Integration
[42] produced for Champaign county to perform a cumulative
distribution function (CDF) correction for the Planet Lab’s
CubeSat data, and then conducted a pixelwise interpolation to fill
invalid pixel (contaminated by clouds) to daily steps. Before the
CDF, we also preprocessed the data for an “apparent atmospheric
correction” and outlier detection. Specifically, we matched the
mean and the standard deviation of the CubeSat data to the
MODIS Nadir Bidirectional reflectance distribution function
Adjusted Reflectance (NBAR) (MCD43) at the pixel level for the
“apparent atmospheric correction,” and we generated the invalid
pixel mask by combining the unusable data mask provided by
Planet Lab and the outlier pixels detected based on the difference
time series of the CubeSat data and the MODIS NBAR.

The spatial resolution of the CubeSat data is 3.125 m, whereas
the trial plot size is about 3 m∗13.5 m. Therefore, each pixel
should contain information from multiple trial plots, and it is
necessary to downscale the CubeSat data to get spectral infor-
mation of each individual trial plot for the further plot-level
analysis. Since the high-resolution UAV data contain detailed
spatial information, we used it to further downscale CubeSat
images to trial plot scales. The following linear model was used
for downscaling:

Ti ∗
∑4

j=1 (Xij ∗ Sij)
∑4

j=1 Sij

= Yi

Yij = Xij ∗ Ti (j = 1, 2, 3, 4)

Pk =

m∑

i=1

(Yik ∗ Sik)

/
m∑

i=1

Sik. (2)

In the aforementioned equation, we suppose the pixel i con-
tains information from plot j (j=1, 2, 3, 4), shown in Fig. 3.Xij (j
= 1, 2, 3, 4) is the reflectance of a specific UAV-based band from
plot j (j = 1, 2, 3, 4). Sij is the area of plot j (j = 1, 2, 3, 4) within
the pixel i. Yi is the reflectance of a specific CubeSat-based
band. Ti represents the linear relationship between UAV-based
reflectance and CubeSat-based reflectance, which can be calcu-
lated from the equation. Yij is the CubeSat-based reflectance
for part of the plot j from pixel i, which can be calculated by
multiplying the Ti with Xij (j = 1, 2, 3, 4). Pk is the final
CubeSat-based reflectance for plot k (k = 1, 2, 3, …, 112),
which is the summation of the downscaling reflectance of plot k
weighted by the area percentage. An example of the CIg spatial
maps and time series for three distinctive plots is shown in Fig. 4

Fig. 3. Illustration of the downscaling method. Blue square represents pixel
i of a specific CubeSat-based band with reflectance as Yi, which overlaps with
dashed-line square j (j = 1, 2, 3, 4) representing plot j (j = 1, 2, 3, 4). Xij (j =
1, 2, 3, 4) is the reflectance of a specific UAV-based band from plot j (j = 1, 2,
3, 4). We want to calculate Yij (j = 1, 2, 3, 4) (the reflectance value of a specific
CubeSat-based band) of pixel i within plot j (j = 1, 2, 3, 4).

for both UAV- and CubeSat-based images, which all show a clear
seasonal cycle with a peak around 92 DAP.

3) Collection of In Situ Measurements: The in situ measure-
ments were conducted to help interpret the remote sensing data
and verify the resulting findings. Due to the labor intensiveness
of the in situ measurements, only a part of the field was sampled,
and the details are as follows.

Leaf-level N content data for specific plots were generated
using the elemental analyzer on the leaf samples collected in the
field bi-weekly. Nine plots within each of two replicates (Repli-
cates 1 and 2 in Fig. 1) were selected: the six plots with planting-
time applications of N rates ranging from 0 to 250 lb/acre
(0–280 kg/ha) (i.e., 0–0 N, 50–0 N, 100–0 N, 150–0 N, 200–0 N,
and 250–0 N); and three plots with planting-time applications
and sidedressing at V5–V6 stage (i.e., 50–100 N, 0–150 N, and
100–50 N). We collected three leaf-punch samples (diameter
of 1 cm) from center of the top-canopy leaves, avoiding the
leaf tip and base [40]. Samples were dried and ground, and two
subsamples were weighed, and wrapped in Al foil capsules for
total N analysis.

Leaf-level chlorophyll content data were measured by SPAD-
502. The SPAD measure has been used as an indicator of crop N
status [24], [25], [27], [41], [43]. We took SPAD measurements
for all the 28 plots within Replicate 1 (see Fig. 1), on top-canopy
leaves on four plants (two measurements per plant) per plot
biweekly. LAI was collected using LAI-2000 to evaluate the
development of leaf area over time. We measured LAI on all
28 plots in Replicate 1 (see Fig. 1) at the biweekly intervals
from 58 DAP to 148 DAP. Following the standard strategy [44],
samples were evenly collected along the diagonal of each plot,
including one measure above the canopy and four measures
below the canopy with two repeats. Crop phenological stage
information was collected every seven days by visual inspection.
This information is used to identify the critical stages when
evaluating N management based on the results from remote
sensing. The plot-level yield data were collected through the
yield sensor on the harvester, which serves as the standard met-
ric for evaluating the effectiveness of different N management
practices. All the remote sensing data and the field measurements
are aggregated into plot level for further analysis by averaging
the value within each plot.

www.planet.com
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Fig. 4. Example of the CIg time series generated from (a) UAV- and (b) CubeSat-based multispectral sensing for three plots with three distinctive N management
practices, i.e., 0–0 N, 250–0 N, and 0–150 N (the CubeSat-based CIg on 91 DAP is omitted due to the abnormal value). The top panels of both UAV- and
CubeSat-based multispectral sensing show the CIg maps with three plots (highlighted with blue boundary) from three different stages, whose date is marked by
blue arrows. The CubeSat-based CIg has higher values than UAV-based CIg.

C. Data Analysis

We correlated UAV-based VIs (i.e., CIg, CIre, and NDRE)
or CubeSat-based CIg with various in-site measurements (e.g.,
LAI, leaf-level chlorophyll, leaf-level N content, and yield), and
used the Pearson correlation coefficient (r) to quantify the ca-
pability of UAV-/CubeSat-based VIs in capturing the variability
of those biophysical measurements. We then conducted three
groups of analyses to answer the overarching questions raised
in Section I.

1) Group #1 analysis focuses on one planting-time applica-
tion but with different N rates amounts (50–0 N, 100–0 N,
150–0 N, 200–0 N, and 250–0 N). The analysis is bench-
marked with the nonfertilized benchmark trial (0–0 N).
The goal of this group analysis is to study the performance
of UAV-/CubeSat-based VIs in detecting total N amount
induced canopy difference.

2) Group #2 analysis compares the measurements from
three sidedressing treatments at V5–6 stage, which
have the same total N amount (150 lb/acre (168 kg/ha))
but different allocations to spring and sidedressing
applications (0–150 N, 50–100 N, and 100–50 N). The
comparison is benchmarked with the application practice
of 150–0 N (i.e., apply 150 lb/acre (168 kg/ha) in spring
and nothing afterwards). The goal of this group analysis
is to study the performance of UAV-/CubeSat-based VIs
in detecting the canopy difference induced by different
sidedressing N amounts.

3) Group #3 analysis compares the measurements from the
three sidedressing treatments with the same amounts in
both spring and sidedressing applications (100–50 N) but
different sidedressing application windows (V5-6, V9-10,
and VT). The comparison is also benchmarked with the
application practice of 150–0 N. The goal of this group
analysis is to study the performance of UAV-/CubeSat-
based VIs in detecting the canopy difference induced by
different sidedressing time.

In all the three groups analyses, we tracked the individual
trajectories of UAV-/CubeSat-based VIs, leaf-level N content,
and their difference trajectories (�VIs and �N-content, �CIg
will be the focus of the �VIs) between the treatments and
the benchmark trials. Actual corn yield and yield differences
between treatments and benchmark were also analyzed to re-
veal the yield benefits of different treatments. We note that the
difference was calculated for all possible pairs of treatment and
benchmark replicates (e.g., four replicates of treatment and four
replicates of benchmark result in 16 pairs), and arithmetic mean
as well as standard deviations were calculated from all the pairs.

Besides the three groups analyses, further correlation analyses
were also conducted regarding the consistency between UAV-
/CubeSat-based VIs to demonstrate the potential of CubeSat-
based VIs to be applied at a large scale. To verify the consistency,
first, we compared the UAV- and CubeSat-based VI across
different plots and dates. Then, we compared the �VI of UAV-
and CubeSat calculated from the previous three groups analyses.
Finally, we compared the time-series VI of UAV- and CubeSat
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Fig. 5. Correlation between UAV-/CubeSat-based CIg and four biophysical measures, including LAI [m2/m2, (a) and (d)], leaf-level N content [percentage in
dry mass, (b) and (e)], SPAD value indicating leaf-level chlorophyll content [(c) and (f)], and yield [bu/a or 63 kg/ha, (g) and (h)]. (g) Correlation of CIg at
different periods and end-of-season yield. (h) Linear regression on the date with the maximum correlation value in (g) (marked as red points). Different colors in
(a)–(e) represent data collected on different DAP. The green dashed lines in (a)–(f) and (h) represent 95% confidence intervals of linear regression.

for each plot and generated a map showing the spatial pattern of
the correlations.

III. RESULTS

A. Relationship Between VIs and Crop Biophysical Features

We found VI values to be highly correlated with different
measured biophysical characteristics of the crop at different
growing stages (see Figs. 5). UAV-based VIs showed highly
positive correlations (r > 0.915) with LAI before tasseling [see
Figs. 5(a)], which is consistent with the finding from Gitelson
et al. (2003) and indicates UAV-based VIs can capture corn
canopy development before tasseling. The correlation between
UAV-based VIs and LAI after tasseling sharply decreased (r
< 0.636), primarily due to canopy closing and senescence. We

also found UAV-based VIs had highly positive correlations with
leaf-level N content after tasseling [see Figs. 5(b)] and leaf-level
chlorophyll content during the sampling period [starting at the
R3 stage; Figs. 5(c)]. Before tasseling, the leaf-level N content
showed negative correlations with UAV-based VIs, which is
consistent with previous findings [45], [46]. The CubeSat-based
CIg showed similar correlation patterns with these biophysical
measures as UAV-based CIg [see Fig. 5(d)–(f)].

Among different UAV-based VIs, we found UAV-based CIg
has the best performance in terms of capturing plot-level vari-
abilities of early season LAI (r = 0.948) and late season leaf-
level N content (r = 0.951), whereas NDRE had a slightly
better correlation with late season leaf-level chlorophyll (r =
0.913). Based on the performance of correlations with biophys-
ical measures and the fact that only CIg can be calculated from
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Fig. 6. Comparison of (a)–(d) UAV- and CubeSat-based CIg/�CIg, (e) and (f) leaf-level N content/�N-content, and yield/�yield (shaded area in (a)–(f)).The
vertical dashed lines within each subfigure represent three phenology stages (V5–6, V9–10, and VT) of corn. (b), (d), and (f) Horizontal dashed lines
mark the zero value of difference. The error bar represents the standard deviation calculated from the replicated trails. Note that yield/�yield values in
(a)–(d) are based on all four replicates, while those in (e) and (f) are based on only two replicates. Some error bars in (e) are too short to be visible.

CubeSat-based multispectral sensing, we decided to use CIg in
our following analysis.

The correlation between CIg and crop grain yield had a sea-
sonal pattern, which increased in the vegetative and reproductive
stages till ∼R3 stage and then decreased [see Fig. 5(g)]. CIg
measures from UAV and CubeSat showed similar patterns of
the above relationship, except that the CIg:yield correlation
from UAV showed more gradual changes and higher values
than that of CubeSat-based images. Further, the linear regression
results of the date with the maximum correlation [highlighted
red points in Fig. 5(g)] are shown in Fig. 5(h). The maximum
value occurred at the middle of the reproductive stage instead of
the late-vegetative/early-reproductive stage when the peak CIg
occurred, highlighting the importance of late-season canopy N
(as indicated from CIg).

B. Group #1 Analysis: Sensing the Impacts of Different
N Fertilizer Amounts in One-Time Application

We focused on one planting-time application and looked at
CIg responses from different trials with different N fertilizer
amounts in this section, and find the UAV- and CubeSat-based
multispectral sensing can detect N stress at an early stage (see

Fig. 6). In general, both UAV- and CubeSat-based CIg of differ-
ent N treatments showed a similar seasonal cycle [see Fig. 6(a)
and (c)], with a seasonal peak around 90 DAP (10 days after
tasseling at the reproductive stage). More N fertilizer leads to
higher CIg, which is further highlighted by the pattern of �CIg
[see Fig. 6(b) and (d)]. Specifically, UAV-based �CIg gradually
increased till the peak value around 70 DAP (closely before
tasseling); it then remained relatively stable in the middle of the
growing season (80–120 DAP), and drops continuously during
the late growing season. CubeSat-based �CIg follows similar
patterns but contained more noise at the late growing season.

UAV-based �CIg revealed information of in-season crop N
stress [see Fig. 6(d)]. The UAV-based �CIg of 100–0 N was
close to that of 200–0 N before senescence starts (∼120 DAP),
and then matched well with that of 50–0 N during the senescence
period. In comparison, the UAV-based�CIg of 150–0 N showed
similar patterns with those of 200–0 N and 250–0 N throughout
the growing season. Therefore, 100–0 N may not cause much N
stress at the early and peak growing season, but ended up with
N stress at the late growing season. Considering 150 lb/acre
(168 kg/ha) of N may be a safe amount to guarantee the corn
not experiencing N stress, we fixed the total amount of N fertil-
izer as 150 lb/acre (168 kg/ha) for the following two analyses
which focus on sensing the impact of sidedressing (Section III-C
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Fig. 7. Comparison of (a)–(d) UAV- and CubeSat-based CIg/�CIg, (e) and (f) leaf-level N content/�N-content, and yield/�yield (shaded area in
(a)–(f)). The vertical dashed lines within each subfigure represent three phenology stages (V5–6, V9–10, and VT) of corn. The red vertical dashed line indicates
the timing of sidedressing (around V5–6). (b), (d), and (f) Horizontal dashed lines mark the zero value of difference. The error bar represents the standard deviation
calculated from the replicated trails. Note that yield/�yield values in (a)–(d) are based on all four replicates, while those in (e) and (f) are based on only two
replicates. Some error bars in (e) are too short to be visible.

and III-D). Although the uncertainty of UAV-based �CIg could
be largely due to the small sample size (only four replicates
in this study), UAV-based �CIg of all the pairs around 60–70
DAP was significant (error bars above zero) except for 50–0 N,
indicating N stress can be detected at an early stage through the
UAV- and CubeSat-based multispectral sensing.

Leaf-level N content showed a decreasing trend from the
beginning to the end of the growing season [see Fig. 6(e)], which
is consistent with previous findings (Ata-Ul-Karim et al., 2016;
Reich et al., 1997; Vos et al., 2005). The seasonal patterns of
leaf-level N content and CIg were thus significantly different.
This may be largely due to the N dilution effect [46] as the growth
rate of crop is faster than that of N taken. In addition, leaf-level
N was measured on single leaves in the upper canopy, whereas
multispectral CIg was a canopy measure that integrates leaf
and canopy structure information [47]–[49]. Distinguishing the
contributions from different levels of leaves and stems [50] may
rely on the radiative transfer models [51], [52], which is beyond
the scope of this research. However, the leaf-level �N-content
showed a similar seasonal pattern as �CIg with seasonal peak
around 70 DAP [see Fig. 6(f)]. The yield kept increasing when
more N fertilizer is applied (shaded area in Fig. 6) at rates up to
about 150 lb/acre (168 kg/ha), which was similar to the responses
of CIg to N rate.

C. Group #2 Analysis: Sensing the Impacts of
N Fertilizer Sidedressing

We compared measurements from the three sidedressing treat-
ments (i.e., 0–150 N, 50–100 N, 100–50 N), taking the single
planting-time application of 150–0 N as reference, and found
that the UAV- and CubeSat-based CIg can track the progress of
N stress development from these treatments (see Fig. 7). Both
UAV- and CubeSat-based CIg [see Fig. 7(a) and (c)] showed a
similar seasonal cycle as is shown in Fig. 6. However, either
UAV- or CubeSat-based CIg representing different treatments
cannot be distinguished from each other. In comparison, UAV-
based �CIg [see Fig. 7(b)] not only distinguished different
treatments, but also showed the time when the N stress occurred,
intensified, or disappeared. For example, 50–100 N showed
negative UAV-based �CIg at the early growing season caused
by limited amount of planting-time application, which was
consistent with the findings in Section III-B (i.e., 50 lb/acre
(56 kg/ha) causes N stress). After sidedressing, UAV-based
�CIg of 50–100 N continues to expand till 70 DAP and then
reduced steadily, which indicates N stress is gradually alleviated
with sidedressing. A similar pattern was found in 0–150 N except
reduction of UAV-based �CIg started earlier, perhaps due to
the larger amount of N sidedressing. The 100–50 N treatment
showed small UAV-based �CIg at the early growing season,
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Fig. 8. Comparison of UAV- and CubeSat-based CIg/�CIg and yield/�yield (shaded area) for sidedressing at different stages. The vertical dashed lines within
each subfigure represent three phenology stages (V5–6, V9–10, and VT) applied with sidedressing. (b) and (d) Horizontal dashed lines mark the zero value of
difference. The error bar represents the standard deviation calculated from the replicated trails.

which is consistent with the findings in Section III-B (i.e., 100
lb/acre (112 kg/ha) causes limited/no N stress at the early grow-
ing stage). After sidedressing, UAV-based �CIg of 100–50 N
becomes positive during rest of the growing season, indicating
benefits gained from sidedressing. The CubeSat-based �CIg
[see Fig. 7(d)] shows similar patterns as UAV-based �CIg with
seasonal peak around 70 DAP, except that it fails to distinguish
different treatments before 80 DAP.

An interesting finding was that there was a lag between �CIg
and leaf-level �N-content after sidedressing, e.g., leaf-level
�N-content has reduced around 70 DAP, whereas �CIg kept
intensifying [see Fig. 7(b), (d), and (f)]. One possible explanation
for this lag is that it takes time for crop to transform available N to
chlorophyll content (e.g., CIg), which can be detected by remote
sensing. The treatments (i.e., 0–150 N and 50–100 N) with
limited planting-time N application show almost no difference
in terms of �yield (≤5 bu/acre, shaded area in Fig. 7), whereas
the treatment (i.e., 100–50 N) with abundant planting-time N
application shows the benefits regarding the significant positive
�yield (>10 bu/acre, shaded area in Fig. 7).

D. Group #3 Analysis: Sensing the Impacts of Different
Timing in Sidedressing

We explored the timing impacts of sidedressing, and found the
UAV- and CubeSat-based CIg can track the N stress development
throughout the growing season for different N managements.
Again, both UAV- and CubeSat-based CIg from different trials
[see Fig. 8(a) and (c)] showed a similar seasonal cycle, and
�CIg of both platforms had a seasonal peak around 70 DAP,
which were all consistent with the results shown in Figs. 6
and 7. Among the three trials, sidedressing at V5-6 benefits
the corn growth through reducing the time period of N stress,
supported by its smaller negative �CIg around 70 DAP than
other two treatments. Although being affected by the longest N
stress in the early growing season, sidedressing at the critical

VT stage satisfies the N demand for reproductive development
and leads to higher positive �CIg at the late growing season
(after 110 DAP) as well as highest yield boost [see Fig. 9(b)].
For sidedressing at V9-10, we would suppose that its �CIg
should be between the �CIg values with sidedressing at V5-6
and VT. That was not the case: �CIg from V9-10 sidedressing
showed its abnormal negative value throughout the growing
season, indicating that N stress was not alleviated. We found
a possible explanation for such unexpected results. There was a
strong precipitation one day before the N application @V9-10,
which led to increased wetness in the soil. Then, the additional
two days’ precipitation following the N application tended flush
downward, leading to the N lose through runoff and leaching.
There was no precipitation after V5-6 within nine days, whereas
there was very limited precipitation within six days after VT.

E. Consistency Between UAV- and CubeSat-Based CIg

To demonstrate the potential of CubeSat-based CIg to be ap-
plied at large scale, we conducted three correlation analyses for
UAV- and CubeSat-based CIg regarding their consistency (see
Fig. 9). The high correlation between UAV- and CubeSat-based
CIg (0.91) across different plots and dates in Fig. 9(a) confirms
the high consistency, though bias still exists. The correlation of
UAV- and CubeSat-based �CIg [see Fig. 9(b)] that we used to
compare different N management practices also showed a high
value (0.89), and the spatial pattern of the correlation at the plot
level was above 0.85 [see Fig. 9(c)], which all confirm their
consistency.

IV. DISCUSSION

A. In-Season Crop N Stress Detection and Monitoring

Our results demonstrate the potential ability to use UAV- and
CubeSat-based multispectral sensing to detect in-season crop N
stress, and to monitor when the N stress is intensified, alleviated,
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Fig. 9. Comparison between UAV- and CubeSat-based CIg. (a) Correlation between UAV- and CubeSat-based CIg. The points are marked with different styles
to distinguish different dates. (b) Correlation between UAV- and CubeSat-based �CIg from previous three analyses. The points are marked with different styles to
distinguish different N treatments. In (a) and (b), the black lines represent the 1:1 line, the red lines are the fitted lines from linear regression, and the green-dashed
lines represent 95% confidence intervals of the linear regression. (c) Spatial correlation map of UAV- and CubeSat-based CIg. The correlation of each plot is
calculated using the time series of UAV- and CubeSat-based CIg.

or disappeared. At our site, the gradually intensified �CIg till
70 DAP caused by the insufficient planting-time application (see
Figs. 6–8) indicates the ability of UAV- and CubeSat-based CIg
to detect N stress at the early stage (before tasseling). Based on
the correlation analysis between VIs and the crop biophysical
features in Section III-A, we attribute �CIg to the difference in
LAI [32], [33], [53], which means that the insufficient N fertilizer
amount at an early stage may influence the canopy development
of the crop. Our results also demonstrate that the UAV- and
CubeSat-based CIg can monitor and track the N stress through-
out the growing season, including when N stress is alleviated
and even eliminated from sidedressing. For example, 0–150 N
in Fig. 7 shows the�CIg gradually decreases during the 70–100
DAP for treatments with sidedressing, indicating the crop with
N stress may catch up with the unstressed crop by canopy devel-
opment, generate more chlorophyll in leaves, or both during this
period according to our previous correlation analysis. Another
example is 100–50 N @VT in Fig. 8, which shows the �CIg
decreases to zero or even becomes positive value in the late
growing season, which stands for more N/chlorophyll content
in the leaves since the canopy stop developing during this period
[32]. The leaf-level measures of N content confirm the results

derived from CIg. Even though the trends of CIg and N content
are different, the trends of �CIg and �N-content are similar
except there is a lag (∼two weeks) when sidedressing was
adopted (see Fig. 7), which should be considered when using
UAV-/CubeSat-based CIg to track the crop status after remedy
action is conducted in real world application.

B. Comparison Between UAV- and CubeSat-Based
Multispectral Sensing

One goal of this study is to investigate whether the UAV- and
CubeSat-based multispectral sensing have similar or varying
performance in capturing the crop N stress. Our results show
that the CubeSat-based CIg can achieve a similar performance
in detecting in-season N stress as the UAV-based measures.
The high consistency between UAV- and CubeSat-based CIg
(see Fig. 9) indicates potentials of CubeSat-based multispectral
sensing to be applied for crop N stress detection at larger
spatial scales. More spatial details have been revealed from the
measurements of UAV than CubeSat, which is largely expected
due to the UAV’s high spatial resolution and may also be the
reason that the UAV-based CIg has higher correlation with the
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final yield then CubeSat-based throughout the growing season
[see Fig. 5(g)]. However, this may be much less a concern for
row crops, as CubeSat’s 3.125 m resolution usually is sufficiently
fine to capture subfield spatial heterogeneity. For future trial-plot
design, the size of the trial plot should be at least 6.25 (3.125∗2)
m to have one pure pixel within the plot.

Both the UAV- and CubeSat-based multispectral sensing have
their own pros and cons. For UAV-based multispectral sensing, it
has high spatial resolution, flexibility to operate at anytime when
weather allows, and extensibility to mount different sensors for
different purposes. However, it is both time consuming and
labor intensive (a pilot is needed based on the UAV regulation
in the US) and requires relatively intensive data preprocess-
ing. Recently, the network-connected UAVs allow the UAV
swarm to cooperate for big tasks [54], [55], which may be a
potential for the large area application in agriculture. However,
such technology is not mature yet and its cost efficiency is
still to be justified for practical applications. On the contrary,
using some mature data processing pipelines for data correction
mentioned in Section II-B2, the CubeSat-based multispectral
sensing provides ready-to-use data that can be easily expanded
to a large area. Over the past decades, the CubeSat constellation
developed rapidly in the space industry and will provide higher
spatiotemporal resolution images in the future [56].

C. Evaluations of
N Management Practices

The ultimate goal for this study is to find the optimal N
fertilizer management. Our study reveals the following findings
with the further help of UAV- and CubeSat-based multispectral
sensing besides the final yield. Meanwhile, since the following
findings are based on one-year’s trial experiments, we also
suggest these findings with caution, and multiple-years trial or
process-based modeling are further needed to corroborate these
findings.

First, we find that higher rate of one planting-time application
usually leads to more yield but with reduced marginal benefits,
which is supported by the CIg time series that higher N has
higher CIg throughout the growing season (see Fig. 6). This
is consistent with the real-world N management practice that
farmers tend to apply more N fertilizer to guarantee their final
yield facing the interannual variation in weather; however, the
decreased yield boost indicates the inefficiency. Second, with a
fixed total amount of N fertilizer, we find the N sidedressing
has equivalent or better performance comparing to the one
planting-time application at our site (see Figs. 7 and 8). Both the
allocation and the timing of the sidedressing affect the final yield.
For our side, the first application with 100 lb/acre (112 kg/ha)
provides enough N amount that leads to no N stress or recov-
erable N stress during the early stage, then the sidedressing at
the critical stage when corn still has a large N demand (e.g.,
VT stage) seems to lead to better synchronization of plant N
need. However, the weather condition, especially precipitation,
should be considered for the real-world applications due to its
roles in removing available inorganic N through runoff and

leaching; for example, the consecutive precipitations following
the sidedressing at V9–10 stage have may affected performance
of that N management practice (see Fig. 8).

D. Opportunity and Future Work

In this article, we have demonstrated the potential of using
CubeSat-based CIg for the scaling up through the consistency
between UAV- and CubeSat-based CIg (see Fig. 9). These
findings indicate promising potential for using CubeSat data to
track N stress at large scales. However, the real-world situation
is more complicated when scaling up to large areas that need
more considerations. First, the practical strategy may require
farmers to apply sufficient N fertilizer to a certain area as the
benchmark group [25], [31], [33]. Second, when the field scale
is large, environmental factors (e.g., soil type, topography, etc.)
may create significant spatial heterogeneity for the demand of
N fertilizer. Thus, multiple benchmark groups with abundant
N fertilizer under different situations may be needed, and how
to design trial strategy and benchmark groups is a remaining
and urgent question to be addressed. Third, different crop types
may have distinctive responses (e.g., time and amount) when
suffering N stress, which leads to different changes of VI [26],
[53], [57]. Therefore, it is essential to treat different crop types
separately, which requires spatial explicitly early-season crop
type classification [58]. Finally, the UAV-based remote sensing
may serve as the ground truth for the CubeSat-based remote
sensing at a large scale application; however, how the UAV-based
remote sensing is affected by sun azimuth angle, row orientation
to incident light, etc., should be taken into account.

Another goal of this article is to compare the performance
of different VIs (with and without red edge) with regard to
their ability to track the N stress of crop. Even though the
correlations between different UAV-based VIs and various bio-
physical measures were similar for our site, they may change
for different fields, different crops, or different years [26], [33],
[59]. More research is needed to explore the performance of
different satellite-based VIs at a large scale. In addition, it is
also difficult to generalize very much using data from a single
trial. For example, the intensive precipitation may lead to the
abnormal performance of 100–50 N @V9-10 (see Fig. 8).

V. CONCLUSION

In this study, we systematically evaluated the ability to use
UAV- and CubeSat-based multispectral images to track crop
growth conditions and N stress over the whole growing season
for different N management practices at a research site in Central
Illinois. We were able to show that CIg derived from both the
UAV- and CubeSat-based multispectral images could track the
appearance, intensification, and disappearance of crop N stress
as measured by plant-based measurements. Specifically, our
study shows that N stress occurs and intensifies before the corn
tasseling stage at our experimental site, which allows enough
time window to detect the stress and take remedy operations
(i.e., sidedressing). The early N stress can be alleviated or
even disappear afterward with the sidedressing. The UAV-based
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CIg reveals more spatial details among different N treatments
than CubeSat-based CIg at the plot level; however, the high
consistency between UAV- and CubeSat-based CIg indicates
the potential of CubeSat-based CIg to be applied at a larger
scale. Both the CIg time series and final yield showed that N
management practices with sufficient N fertilizer caused little
or no N stress at early growth stages, and sidedressing at VT
in this environment outperformed a single, planting-time appli-
cation. This study demonstrates the UAV- and CubeSat-based
multispectral sensing have the promising potential to monitor N
stress of corn throughout the growing season. This method may
not only be used to evaluate the N management practices, but
also may have application in making N management decisions
in fields.
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