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Abstract—The shear volumes of data generated from earth
observation and remote sensing technologies continue to make
major impact; leaping key geospatial applications into the dual
data and compute-intensive era. As a consequence, this rapid
advancement poses new computational and data processing
challenges. We implement a novel remote sensing data flow
(RESFlow) for advancing machine learning to compute with
massive amounts of remotely sensed imagery. The core contribution
is partitioning massive amounts of data into homogeneous
distributions for fitting simple models. RESFlow takes advantage
of Apache Spark and the availability of modern computing
hardware to harness the acceleration of deep learning inference on
expansive remote sensing imagery. The framework incorporates a
strategy to optimize resource utilization across multiple executors
assigned to a single worker. We showcase its deployment in
both computationally and data-intensive workloads for pixel-level
labeling tasks. The pipeline invokes deep learning inference at three
stages; during deep feature extraction, deep metric mapping, and
deep semantic segmentation. The tasks impose compute-intensive
and GPU resource sharing challenges motivating for a parallelized
pipeline for all execution steps. To address the problem of
hardware resource contention, our containerized workflow further
incorporates a novel GPU checkout routine and the ticketing
system across multiple workers. The workflow is demonstrated
with NVIDIA DGX accelerated platforms and offers appreciable
compute speed-ups for deep learning inference on pixel labeling
workloads; processing 21 028 TB of imagery data and delivering
output maps at area rate of 5.245 sq.km/s, amounting to 453 168
sq.km/day—reducing a 28 day workload to 21 h.

Index Terms—Big data applications, high performance
computing, image classification, inference mechanisms, machine
learning, supervised learning.

I. INTRODUCTION

EARTH observation and remote-sensing are both fields
that have undergone a renaissance recently, making major

impacts in key geospatial applications including land cover
mapping, infrastructure mapping, damage assessment, and pop-
ulation distribution studies [1]–[4]. Multiple factors are con-
tributing to this change, including significant improvements and
rapid deployment of satellite technologies that are enabling the
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acquisition of vast volumes of high-resolution imagery at high
velocity rates. As such, remote sensing applications have leaped
into a data and compute-intensive era presenting challenges and
opportunities for new advanced machine learning and computer
vision workflows. Examples of such applications include sup-
porting accurate population distribution estimates, possibilities
to study sustainability outcomes at scale [5], and identifying
urban environments over large contexts using abundant satel-
lite imagery and breakthroughs in deep learning based image
classification [6].

To achieve greater impact with machine learning on data and
compute intense workloads, new approaches are required for ef-
ficient utilization of high-performance computing resources and
to produce efficacious results for end-users. These approaches
need to consider both the computational aspects of their target
applications, as well as the challenges inherent with analyzing
remote sensing data in a generalizable manner. Specifically, we
consider the following three problem areas, which need to be
addressed in order to advance the current state of the art, namely:

1) data-intensive challenges;
2) labor-intensive challenges;
3) compute-intensive challenges.
For clarity, we briefly discuss each of these challenges.
On the data-intensive challenge: The shear volumes of remote

sensing imagery are increasingly becoming heterogeneous and
challenging the efficacy of current machine learning work-
flows [7]. With imagery data acquired as signals from varying
system configurations and environmental conditions, efforts to
analyze such diversity at scale are immediately thwarted by a
lack of workflows whose results are adequately generalizable
both spatially and temporally within the data.

On the labor-intensive challenge: Current techniques from
machine learning, especially deep learning, continue to demon-
strate the near-human performance. However, such methods are
heavily dependent on large annotated datasets. While there are
growing efforts to build open research benchmark data to address
this issue [8], when relevant amounts of high-quality labeled
data are not available, open source data driven models tend to
achieve poor generalization capability. The endeavor to obtain
high-quality training data can then be tedious, especially for
pixel labeling, and is characterized by multiple attributes that
include; availability of domain experts, stratification of data into
diverse representative samples, mitigation of human sampling
bias, and accurate labeling of data samples.

On the compute-intensive challenge: Pixel labeling algo-
rithms pose a compute-intensive workload even under normal
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usage within the natural image domain. When considered in the
context of petabytes of remote sensing data that needs to be
processed, however, with single image files often reaching tens
of gigabytes in size, the efficient use of high-performance com-
puting resources needs to be considered. Here, solutions existing
within a distributed environment, spanning several nodes either
for feature extractor training or model inferencing [7], need to
be considered.

This article seeks to address the abovementioned challenges
from a generic perspective amenable for use in other large scale
object mapping applications using remote sensing imagery. As
such, we propose a novel and efficient single pipeline, herein
referred to as RESFlow, with multiple deep neural networks
for multipass distributed image data analysis performed in an
embarrassingly parallel fashion.

RESFlow seeks to stratify imagery into homogeneous distri-
butions from which levels of diversity are contained to inform the
reuse of models for inference tasks on imagery partitions with
similar characteristics but originating from mixed geographies.
By seeking automated mapping into these homogeneous parti-
tions, our goal is to create data buckets from which to sample
representative images with similar characteristics, mitigating the
need to stratify large and diverse training data. Furthermore,
to address computational aspect of the problem, we formulate
RESflow as constituting a set of subtasks with interdependence
but which are each executable in an embarrassingly parallel
fashion across bucket partitions. As such, no communication of
compute results takes place between partitions. Each partition is
computed upon independently with little communication only
encountered on the last stage to reconstruct inference results for
a given image scene. However, within partitions, subtasks have
dependence on each other, which imposes an order of precedence
on their execution, creating a task scheduling problem and
resource contention that we handle via a novel GPU ticketing
system.

The technical contributions of this article are as follows.
1) We present an unprecedented homogeneous partition-

ing of massive amounts of imagery data based on its
semantic and spectral characteristics. We leverage this
partitioned space to enable efficient indexing 10 s of
models and 1000 s of image patches for distributed pixel
labeling.

2) We take advantage of Apache Spark to provide, for a single
large image scene, fast parallel inference functionality
wherein an area pixel labeling rate of 5.245 sq.km/s,
amounting to 453 168 sq.km/day is achieved—reducing a
28 day workload to 21 h.

3) We present a containerized workflow for Apache Spark
operations coordinated with GPUs for deep learning infer-
ence best practices, e.g., efficient GPU usage and ticketing
across multiple workers, for large deep learning workloads
deployed on GPU clusters.

Although presented for a pixel labeling task on satellite im-
agery, the workflow can easily be deployed to domains that
exhibit the same problematic data characteristics as described
previously. Examples include biomedical and climate image
based applications.

The remainder of this article is arranged as follows.
Section II reviews the components of several satellite image
analytics workflows, including deep neural networks for seman-
tic segmentation and distributed computing frameworks. Using
insights gained from this review, Section III discusses the
proposed high-performance computing-based remote sensing
imagery analytic workflow. To illustrate the workflow, bench-
marking compute efficiency statistics on varying workloads are
presented in Section III-J. Section IV large scale pixel-level
segmentation results for building extraction. Finally, Section V
concludes this article.

II. SATELLITE IMAGE ANALYTICS WITH DEEP NEURAL

NETWORKS AND DISTRIBUTED COMPUTING AT SCALE

Given the prevalent nature of high-resolution remote sens-
ing instruments, it is now conceivable to pursue computer vi-
sion methods for large scale object segmentation. Very-high-
resolution remote sensing imagery, which now supports ground
spatial resolutions of less than 50 cm, is enabling new capability
to exploit subtle and yet expressive spatial features for fitting
highly complex objective functions for structured predictions
with computer vision and machine learning methods. Deep con-
volutional neural networks have become the dominant machine
learning technique for visual recognition, achieving state-of-the-
art results on a number of problems that seek dense semantic
labeling of image pixels. Early attempts on this problem include
work in [9] where an atrous method to expand the support of
filters and reduce the down-sampling for input feature maps to
achieve dense labeling was used. In [10], an efficient and precise
biomedical image segmentation convolutional neural network
(U-net) was proposed. Improving on the architectural design
to reconstruct the original input resolution, Badrinarayanan
et al. [11] proposed a semantic pixel-wise segmentation method
using a fully convolutional neural network (Seg-Net), which
uses decoder-deconvolutional layers to map the low-resolution
encoder feature maps to the full input resolution feature maps.
The use of deep convolutional neural networks extends to other
applications including big data mining for search and retrieval
tasks. Designed to seek expressive spatial and visual content rep-
resentational features, the deep hashing framework created by
Li et al. demonstrated capability for large-scale image retrieval
in [12]. In another image retrieval task, pretrained networks were
used in order to extract intermediate image representation as
input for metric and hash-code learning [13].

In general, to perform complex tasks at the level of humans,
deep learning methods heavily depend upon the availability
of enormous amounts of high-quality annotated data. Despite
the fact that remote sensing instruments are acquiring data in
substantial volumes and the robust computing power needed
to efficiently process it is available; such massive datasets are
not simple to annotate. The process of gathering labeled training
data is mired by inconsistencies, poor selection of representative
samples, and the annotation is often prohibitively expensive.
It is labor-intensive requiring a huge number of worker hours,
making it challenging to train a single high-performing deep
network model for use on wide area geographical coverage.
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Fig. 1. Data, compute, and labor intensity paradigm in remote sensing applica-
tions. (Note: labor is illustrated with color intensity limegreen denotes intensity
in labor demand.)

We, therefore, feel it is appropriate to seek automated work-
flows, which support representative training data selections, e.g.,
avoid underrepresentation, enable localized model for capturing
homogeneous data distributions, or fit models on diverse yet
equally sampled image characteristics.

Moreover, with a growing demand for geospatial applications
to deliver imagery products on data that scales over 10 s of
Terrabytes (TB) of high-resolution outputs per given geographic
region, current applications are gradually becoming immense in
terms of both data and compute requirements. To be specific,
typical workloads for semantic labeling often entail processing
imagery acquired across an average country of land-area size
783 562 sq.km. The accompanying imagery coverage would
span 3 × 783 562 sq.km to account for scene overlapping and
lack of cloud free data. Compare this volume of data against the
largest known computer vision dataset ImageNet [14]. ImageNet
has a total of 14 197 122 images, each at 224 × 224 pixels thus
50 176 pixels per image, totaling 712 354 793 472 pixels. When
sampled at ground-sampling distance of 50 cm, a mosaicking
of all imageNet totals 356 177 sq.km, slightly less the size
of Montana, USA. In contrast, for an average country size, at
50 cm ground sampling distance each RGB image scene spans
about 40 000 × 35 000 pixels and carries ≈13 GB of data for a
total of 3000 scenes (covering equivalent of 3 × 783 562 sq.km
(7 × ImageNet) land-area and totalling ≈39 TB of data). Using
current serial processing pipelines a single image scene takes
35 min to process a pixel-labeling task on a single computing
node with one 16 GB GPU card. Considering the demands to
process multiple country scale products, it is imperative that
object segmentation and semantic labeling tasks are deployed
through parallel and distributed inferencing pipelines to reduce
such computational intensity. With this motivation, we identify
advanced remote sensing dataflows (including RESFlow) to be
located in the top two quadrants of Fig. 1 and continue to develop
core computational modules that can match the demands of such
applications.

Over the past decade, Hadoop has emerged as an early
experimental testbed for several big data applications due to
its excellent large-scale data-handling capability, high fault
tolerance, reliability, and low cost of operation [15]. Hadoop
provides distributed data storage and analysis solutions, which
previously have been exploited for implementing large scale
mean-shift-based image segmentation algorithms [16]. In [17],
an optimization effort on the Hadoop file storage system was
studied to elicit better performance for large scale computing
with image data. The authors of [18] studied a Hadoop and
MapReduce [19] based implementation of the parallel K-means
algorithm to reduce the computational time taken for executing
parallel data clustering on a large number of satellite images.
Pursuing content mining on digital images, the authors in [20]
introduced an approach for large-scale scene retrieval on massive
image databases.

While MapReduce enables large-scale distributed computing
for imagery when used in conjunction with Hadoop, a limi-
tation is seen in its heavy usage of disk input–output (I/O)
operations and network resources to store intermediate steps
during processing. Deterred by this computational cost, Huang
et al. [21] studied Apache Spark [22] to take advantage of its
resilient distributed datasets (RDDs) [23]. Spark has been shown
to accelerate several other remote sensing imagery workloads.
For example, in applications where transregional remote sens-
ing images are key, the frequent data I/O requirements for
mosaicking were shown to benefit from a parallel algorithm
implemented with Spark [22], [24]. The work of Sun et al.
[25] also demonstrates this performance increase, wherein the
authors implement an iterative singular value decomposition
algorithm to process massive amounts of remote sensing data.
In concurrence, high-performance computing environments are
enabling targeted computing with extremely large earth obser-
vation data and the sharing of data in parallel across hundreds
of nodes [26], [27]. Taking advantage of the high processing
power, large memory capacity, and Infiniband (IB) enabled in-
terconnects between nodes in Summit, Kurth et al. [28] proposed
an exascale ready workflow and software stack for extracting
signals for extreme weather patterns using variants of deep
neural networks. The work scaled up to 27 360 V100 GPUs
and sustained throughput of 325.8 PF/s and a parallel efficiency
of 90.7% in single precision. We see these impressive results as
an indication Spark’s ability to enable the processing of remote
sensing data at scale and demonstrate this as part of the RESFlow
framework presented within the remainder of this article.

III. PROPOSED RESFLOW FRAMEWORK

The RESFlow architecture seeks to present itself as an in-
telligent big data engine where end-to-end inference tasks are
efficiently executed while exploiting the geometry of the data
and being agnostic to sensor variations as well as geographic
constraints. To this end, it is formulated to contain several
integrated computational stages and algorithms; providing a
common data pipeline, which is shared across multiple inference
tasks and geospatial applications. At the core of RESFlow is the
concept of data distribution partitioning, which is performed
via efficient geometric based clustering and metric learning.
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Fig. 2. Visual representation of a continuum embedding space for an image
scene. Groupings A, B, and C illustrate sets of image patches that inform
homogeneous data partitions in the workflow.

Both techniques play key roles in the overall mapping of data
to a partitioned image space indexing—a strategy often lacking
in traditional learning workflows. Here, we believe that data
partitioning is key to mitigating bias in training data collection
and labeling (even though not in scope of the current study).
Fig. 2 illustrates the partitioning of an embedding representation
for image patches extracted from a single large satellite image
scene. From this result, the concept of data partitioning can
be observed as the grouping and extraction of homogeneous
image spaces for further exploitation during inference of the
large image scene.

As noted previously, computer vision and machine learning
algorithms are proving superior in providing automated means
to describe the distinctive nature of objects in remotely sensed
image data [1], [5], [6], [29]. However, the deployment of such
algorithms remains a significant challenge when considered on
large geographic areas covered by hundreds of thousands of
images [29].

As is tradition with data/compute intensive applications, suc-
cess depends upon scarce and expensive hardware resources.
It is, therefore, not surprising that the use of hybrid CPU/GPU
technology stacks is emerging as the means to address such
deployment challenges. For example, deep learning function-
ality for analysis can be developed as user defined functions
(UDFs) and used within Apache Spark clusters for inference
deployment on GPU and CPU servers in a resourceful manner.
Motivated by such potential, we combine salient features from
the deep learning frameworks (e.g., TensorFlow and PyTorch)
and big-data capabilities from Apache Spark, to implement
accelerated and parallelized inference modules for use on both
CPU and GPU servers.

The central means to achieving such capabilities is the idea
that both remotely sensed image data, and deep learning models,
can be mapped to and paired within local regions in which the
extreme diversity induced by sensor characteristics and scene
content is constrained. As depicted in Fig. 3, this procedure is
initially facilitated using a learned functional mapping, which
partitions high-dimensional data embeddings into several buck-
ets of similar semantic and spectral content and stored within

an image gallery. The bucket partitions then provide a basis to
train and update associated indexable models, stored within a
model gallery, which can be tailored for specific inference tasks
as defined by the application domain.

We briefly describe the RESFlow architecture several of its
modular components in the following sections.

A. Clustering and Embedding

The first step to enable remote sensing imagery partitioning
is utilizing the clustering and embedding module (CEM) in
RESFlow. The responsibilities of the CEM are two-fold. First,
as the initial step within the coalescing of imagery to appropriate
partitions of the image gallery, the module maps each input
image as a datapoint using a learned feature extractor to an inter-
mediate representation in which other datapoints characterized
by similar acquisition conditions, spectral and semantic content
share a close proximity. This intermediate mapping, or network
embedding, is important as it provides a basis for an appropriate
metric space to be learned in a data-driven manner. Second,
during RESFlow’s initialization, the CEM is used to assign
labels via clustering as a means to assist learning of the metric
space projection function. Here, multiple clustering algorithms
can be considered for usage and the framework is importantly
unconstrained by any specific approach. Within our experimen-
tation, we initially evaluate several popular clustering algorithms
including centroid and hierarchical-based approaches using a
euclidean metric space. Based on its favourable performance
in minimizing intercluser variance, we select agglomerative
clustering with a Ward linkage criterion for use within the
framework.

B. Image-Bucket Assignment

After clustering the partitioned images, we seek to construct
buckets that uniquely represent those clustered images. The
unique binary representation generated for each image plays a
significant role in the following two ways: 1) They provide com-
pact binary bitstrings that preserve semantically similar content
for the partitioned image chips, and 2) The binary bitstrings
provide an efficient image-model indexing mechanism during
large scale inference. This dual benefit is achieved by learning
a hashing metric space whose properties include the following:

1) generating a unique hash-map associated with each dis-
tinct image chip;

2) providing a compact representation that is smaller than the
original input dimensions;

3) a metric space from which the distance property for bi-
nary bitstrings can be used to relate image scenes whose
geographies and image characteristics are also similar.

The resulting binary bitstrings represent a desirable format
with which to both efficiently index pretrained models and
the respective buckets; proving an intuitive gathering space for
localized training data.

The assignment of images to buckets is achieved by first
computing the centroid binary bitstring for each bucket. Each
bucket centroid offers a unique binary bitstring that is reused
to identify each bucket model. Following this assignment, the
centroid gets reused within a hamming space to identify which
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Fig. 3. Overview of the RESFlow framework.

Fig. 4. Comparison between buckets initialized via agglomerative clustering and hash-mapping. Each cluster on the top row is color-coded to denote image
patches belonging to one cluster. The bottom row shows a reconstruction of clusters mapped into hash-buckets. Hash-buckets are reconstructed with a validation
mAP score of 98.3% with fewer image patches on the bottom row noted to have been placed in different buckets than their cluster of origin.

bucket each image chip be assigned to. Fig. 4 illustrates the main
concept upon which RESFlow operates with hash-mapped buck-
ets created via clustering. Here initial clustering provides the key
soft-labels needed to learn the semantic structure of the large
satellite imagery archive. As shown, the reconstruction of the
similar content structure, without emphasizing cluster-bucket
correspondence, is carried out by the hash-mapping function.
Furthermore, the distinct buckets become completely indexable
within the image gallery shown in Fig. 3.

To illustrate the hash-mapping module, we observe the ability
of a convolutional network based model to reconstruct the
CEM generated embedding space while varying the number
of initial clusters. Using agglomerative clustering, we select
clusters to generate the soft-labels based upon a metric of the
smallest variance per cluster obtained over several different
cluster counts. The hash-mapping network is evaluated using
the mean Average Precision (mAP) metric, which assesses the

average value of the maximum precision for different recall lev-
els while reconstructing the structure of initial clusters. Using a
color-coding scheme, Fig. 4 shows the relative changes between
the agglomerative-based clusters and the convolutional neural
network based hash-mapped buckets.

C. Image Gallery

Following their creation via the metric space projection
function, the binary bitstrings generated from input imagery
are partitioned by similarity relative to the distinct buckets
shown in Fig. 4. These partitions form a powerful abstraction,
independently characterizing homogeneous image acquisition
characteristics and spectral content, from which both training
and inference data can be sourced for a related model gallery
network. Further associated with each binary bitstring entry
within this gallery is additional meta-data detailing attributes
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such as geo-information, acquisition conditions, storage loca-
tion, and image subcoordinates. Combined with the efficient
binary representation of each datapoint for rapid image search
capability, the inclusion of these attributes enable rich insights to
be gained through exploratory inspection of the gallery content.
These insights could not only benefit performance evaluation of
models but also help explain complex data characteristics and
their bias.

D. Model Gallery

Once populated, the image gallery presents a collection of ho-
mogeneous partitions. As previously motivated, this collection,
with constrained diversity, is a desirable property when sampling
for both training and inference data with a given deep learning
algorithm. The model gallery will provide a direct mapping
between a bucket partition within the image gallery and a paired
and trained network model that is either fine-tuned during train-
ing, or applied during inference. Following this procedure can
prove as a highly efficient alternative to standard model training
and inference practices, as the localized constraints placed on
the new data which each gallery model sees mitigates the need
for continual retraining.

E. Accelerated Inference

To this point, each of the discussed modules are seen to
play a role in overcoming the extreme variance characteristic
within imagery with the core concept of partitioning remote
sensing imagery. However, the issue of analyzing this data at
sufficient scale to meet the demands of global-size applications
remains a prohibitive concern. In addressing this problem, it is
further observed that each of the modules within RESFlow utilize
elements of deep learning to perform different tasks, presenting
a computationally heavy workload that requires the same GPU
hardware resources to be reused in a single inference run.
However, RESFlow’s building blocks and their functionality are
amenable to massive parallelization across the partitioned image
space. In recognition of this condition, we exploit Apache Spark
as a fabric for distributing and coordinating the framework’s
computations at scale. Learning from libraries such as Tensor-
flowOnSpark [30] and Tensorframes [31], we leverage Spark’s
big data capability to ingest large quantities of input data and
process these using deep learning frameworks complimentary
to Spark in a fault-tolerant and highly parallel manner. Fig. 5
shows RESFlow tile inference and reconstruction illustration.
The tile partitioning strategy injects a key property that allows
for spatially noncontiguous image tiles to be processed by a
single bucket model—enabling consistent inference over wide
geographic conditions.

F. Application Space

By design, the modules presented thus far within the RESFlow
framework have been agnostic to any specific application or
use case within the realm of remote-sensing imagery. In this
manner, one could think of the model gallery partitioned to
fulfill multiple tasks such as object detection, neighborhood and

Fig. 5. RESFlow tile inference and reconstruction illustration. Colors denote
inference deployment of different gallery models as assigned by the image-
bucket module. The tile partitioning strategy injects a key property that allows for
spatially noncontiguous image tiles to be processed by a single bucket model—
enabling consistent inference over wide geographic conditions.

settlement mapping, or temporal change detection, which are
only a subset of potential applications. Based on this premise,
within the application space multiple copies of the model gallery
are formed, each containing trained models, which are uniformly
purposed to perform a given task.

G. Image Analytics Via Parallel Computing

1) Satellite Imagery RDDs: Spark currently does not support
extended image file types such as. tiff or. dicom to be serialized
into byte arrays encapsulated within its RDD objects.1 As a
consequence of this limitation, a design choice was required
between either converting the collected sensor-based imagery
used within RESFlow into supported formats (such as 8 b jpg),
or to instead use RDD objects to store path-based references
to the location of the imagery stored within network storage.
The former approach would result in a loss of data precision
(32–8 b for each scene), while the latter would force the image
data to be read twice from disk during workflow execution (once
for hashing and embedding, and a second time for per-bucket
inference). With precedence being placed on precision to enable
higher levels of accuracy during training, we choose the latter
option and instantiate an RDD to contain the paths of the scene
data to be analyzed in RESFlow.

2) Spark-Based UDFs: We implement several UDFs within
Spark in order to realize RESFlow’s operation. Represented in
Fig. 6, these functions encapsulate tasks such as getting the
extent of a given scene tile, or performing inference across
a partition-based bucket. We utilise external libraries such as
Tensorflow [32], Pytorch [33], and GDAL [34] to assist in
performing these operations, which act upon one or more rows
records within a given RDD partition.

3) GPU Allocation Heuristic: An important limitation in
using Spark for RESFlow’s implementation is its lack of support
for GPU-based resources. Here, first-class status is given to
cluster-based resources such as CPU cores and RAM; allowing
a fixed quantity of these resources to be allocated to instan-
tiate a spark-executor. On the other hand, Spark contains no

1[Online]. Available: https://issues.apache.org/jira/browse/SPARK-21866
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Fig. 6. RESFlow parallel inferencing flow: a high-level representation of the Spark-based transformations and actions implementation.

functionality to enable GPUs to be exclusively associated with
a given executor in the same manner. When considered in the
light of how Spark runs tasks that belong to the same processing
stage, maintaining independence, and concurrency, this lack of
GPU resource allocation can become problematic. For example,
during the embedding and hashing step of the workflow each
executor is required to process the data within its associated
partitions via GPU computation. With no robust mechanism to
reserve a GPU for a given executor, this step may result in several
executors utilizing the same GPU—causing the stage to fail as
the limited amount of GPU RAM is quickly exhausted by the
concurrent executor tasks.

As a workaround to this problem, we implemented a simplistic
GPU checkout routine that allows for the soft-assignment of
GPU resources to take place between the executors on a given
worker node. We accomplish this by creating a ticketing folder
within the executors’ shared work-space, into which we place
one or more “tickets” per physical GPU within the node. Using
this ticket-system metaphor, when an executor requires the use
of a GPU, it scans the ticketing folder for available instances—
removing a ticket if one is available, or returning a ticket if the
GPU resource is no longer required.

Systems specifications: The computing environments for all
experiments consist of various Spark cluster configurations on
GPU optimized platforms. All Spark clusters are configured to
take advantage of the NVIDIA DGX Systems as they deliver an
integrated hardware and software solution thats been optimized
to deliver faster time-to-solution with latest GPU resources.
Nvidia-DGX1 systems: We first consider an environment with
3xNvidia-DGX1 machines each capable of a total of 80 threads
from 40 cores via two Xeon CPU E5-2698 processors oper-
ating at 2.20 GHz with 512 G DDR4 of system RAM. Each
machine has eight 16 GB Volta GPUs achieving a maximum
graphics clock of 1530 MHz and a maximum memory clock
speed of 877 MHz with a 300 W power cap on each GPU.
The all SSD-based local storage has 500 G for the OS with
an additional 7 TB on Raid 0 for data storage. Each machine is
connected to the network file system (NFS) storage via a single
10 GB Ethernet network connection. In total, we have three

such machines that are interconnected via 4 × 100 GB EDR
IB ports (2 GPUs per IB connection). Nvidia-DGX2 systems:
For the second environment, we consider cluster nodes setup on
NVIDIA DGX2 systems, which each combine 16 GPUs fully
interconnected via NVLink. The first node, a Nvidia-DGX2,
can run 96 threads from 48 cores via two Xeon Platinum 8168
processors operating at 2.7 GHz with 1.5 TB of the DDR4
system RAM. The machine has sixteen 32 GB Volta 350 W
GPUs with max clocks of 1597/958 (Graphics/Memory). Local
storage consist of a 1 TB NVME Raid 1 boot partition and a
30 TB NVME Raid0 data partitoin offering maximum transfer
speeds of approx 20 GB/s. The machine has 8× 100 GB EDR IB
Ports (2 GPUs per IB port). The second node, Nvidia-DGX2-H,
similarly has 96 threads with 48 cores, however, with two Xeon
Platinum 8174 operating at 3.1 GHz with 1.5 TB RAM DDR4
2666. The machine has sixteen 32 GB OCed Volta GPUs running
at 450 W maximum power consumption with max clocks of
1702/1107 (Graphics/Memory), local storage consists of a 1 TB
NVME Raid 1 boot partition, and a 30 TB NVME Raid0 data
partition offering maximum transfer speeds of approx 20 GB/s.
The machine equally has 8 × 100 GB EDR IB Ports (2 GPUs
per IB port).

Experimental evaluations are conducted by first setting up a
single-Nvidia-DGX1 Spark cluster as follows: a configuration
of one master node and eight workers. The cluster is instan-
tiated from singularity containers. Each worker is allocated
30 GB memory and 9 cores and is responsible for launch-
ing a single executor. At execution the master node runs the
driver process whose allocated memory is 10 GB. Extending
this configuration to a three-node Nvidia-DGX1 Spark clus-
ter, we instantiate a singularity container with single master
node and eight workers on one Nvidia-DGX1 machine and
add two more singularity instances on two more additional
machines each equipped to support eight workers with allocation
of 30 GB memory and 9 cores per worker. Two more clus-
ters, single-node Nvidia-DGX2-H Spark cluster, and two-node
Nvidia-DGX2 Spark cluster, are setup in a similar manner, how-
ever, each worker is allocated 80 GB of memory and 6 cores per
worker.
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TABLE I
SOURCES AND NUMBER OF LABELLED DATA FOR TRAINING, VALIDATION,

AND TESTING EVALUATION

H. Case Study: Building Footprint Mapping

Country scale building footprint mapping fits the scope of both
a data and compute-intensive application. We envision current
deep learning algorithms for solving this case study benefiting
from a hybrid combination of the in-memory computing capabil-
ity of Apache Spark and high-performance computing hardware
platforms.

Our experimental dataset consists of (0.3–0.7)-m resolution
satellite imagery acquired by Digital Globe constellations, i.e.,
WorldView-2, and WorldView-3. These constellations provide
high-resolution imagery that is suitable for pixel level semantic
segmentation objects. As summarized in Table I, training and
validation image data (using a 90%:10% split) is collected from
several countries Ethiopia, South Sudan, Zambia. Each sample
is a 500 × 500 pixel RGB image with an associated label mask.
Importantly, we further explore out-of-country/out-of-sample
testing regions from other different geographical areas. These
areas consist of New Mexico of the United States, Puerto Rico,
Alabama, and Arizona, and are used to demonstrate both the
deployment and generalization performance of RESFlow. These
testing sets also represent a more realistic use-case of the frame-
work once placed in production where rapid inferencing is much
needed. Table I summarizes the distribution of testing samples
that are used from each of the out-of-sample locations.

I. Workflow Initialization

To initialize the RESFlow ensemble with all available training
samples, we selected an optimal count of six buckets for the im-
age and model galleries based-off the average intracluster vari-
ance measured over a range of cluster numbers used for the CEM.
For each of these buckets, we trained four different convolutional
neural networks for the building mapping task where training
and validation data are from its corresponding image gallery
bucket. We picked these CNNs, which each contain encoder
and decoder paths, namely ResNet50-FCN, [35], U-net [10],
Seg-Net [36], and DeepLab [37] without multiple feature fusion,
based on various sizes of model (number of parameters to train)
as well as their superior performance on semantic segmentation
tasks. The number of parameters for these models are listed in
Table II. This also showcases the flexibility of the modularized
application space in RESFlow where researchers can easily set
up the preferred algorithms to test the model gallery. In training,
we utilize standard binary cross entropy as a cost function to

TABLE II
NUMBER OF PARAMETERS AND TRAINING TIME FOR USED CNNs

Speed decreases with model complexity.

Fig. 7. F1 scores on validation set for the tested CNNs. The models were
trained on a regular DGX-1 machine (top) and on a SPARK GPU cluster
(bottom).

guide model learning. During testing (performing inferencing)
on the out-of-sample data, each of these trained models becomes
responsible for independently performing building extraction on
testing samples, which are assigned to its membership via the
same process of image gallery mapping. When reporting results,
we refer to this combined quorum of models as RESFlow. All
of the CNNs were concurrently trained from scratch, without
using any pretrained models. Hyper parameters are held constant
through all experiments so that we limit number of variables
in the experimental runs. The final selected hyper parameter
values used are learning rate of 0.002, batch size of 6, and
Adam as the optimizer. These values are reused across all the
four architectures.

J. Performance and Computational Efficiency

Among the main contributions of this article, improving
workload computational efficiency is vital in processing large
volumes of data. RESFlow seeks to achieve this by combining
algorithmic innovations as well as accelerated deep learning
computing capable system architectures for remote sensing data
analytics. More specific, its capability to partition data in the
metric space offers desirable properties for large scale accel-
erated training and inferencing tasks. We observe and assess
the system behavior under varying workloads and different
computing environments to identify computational tradeoffs
between constrained resources and need to process large vol-
umes of imagery. The deep learning fully convolutional network
of choice is the U-Net architecture [10], selected for its fast
training convergence across the 60% F1-score on validation of
300 samples, as shown in Fig. 7.
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Fig. 8. Example building footprint mapping results for the RESFlow models on held-out New Mexico, Puerto Rico, and South Sudan data. Owing to the varying
image characteristics and geographies image tiles clipped from same image scene are processed in parallel using different bucket models. Note: varying mask
colours denote different bucket models for a total of six models from the model gallery.

TABLE III
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON ONE-NODE

NVIDIA-DGX1 SPARK CLUSTER

*Indicates a result for which soft GPU-executor assignment is needed to prevent run failure.

To provide an appropriate comparison of the performance,
we additionally train a single U-Net model, again using all
available training samples with the identical fully convolutional
network architecture. We refer to this monolithic network as
the Mono model, and measure its performance across the entire
out-of-sample test set. As metrics, we utilize the Intersection
over Union (IoU) in addition to F1 scores in order to follow the
accepted community standard [38] and report the performance
results in Table IV. To quantitatively assert the viability of our
proposed framework, Table IV presents the performance of both
the Mono and RESFlow models on the held-out set of test data.
Here, RESFlow is seen to perform very similarly to the Mono
model for two of the three test regions. This is considerable, as
each model from the RESFlow Image Gallery sees considerably
less data compared to its Mono model counterpart during train-
ing, and yet is able to generalize to a similar degree. This is not
true for the New Mexico region, however, with a large deficit in
the performance being observed. Furthermore, visual maps to
illustrate the performance of RESFlow ensemble of models over
large geographic extents is shown in Fig. 8.

Tables III and VI illustrate the computational performance of
deploying RESFlow on an Apache Spark cluster equipped with
deep learning modules based on PyTorch and Tensorflow. The
baseline is recorded to average 35 min for pixel-level semantic
segmentation inferencing time for a single image scene of size

TABLE IV
RESULTS FOR HELD-OUT TESTING DATA

40 000 × 35 000 pixels and data volume of 11 GB processed on
a single Nvidia DGX1 V100 GPU. Fig. 9 shows the speedup as a
function of both the number of GPUs and data sizes in GigaBytes
(computed from number of image scenes). The speedup is calcu-
lated as the ratio of the baseline execution time to the normalized
compute time for given number of GPUs. For all different size
workloads, we observe a tremendous speed up ranging from 9×
to over 400× across all Spark cluster environments. Overall,
Tables III–V and Fig. 9 demonstrate the speedup factors of the
various cluster configurations.

We report on the strong and weak scaling of the segmentation
inference module. The embedding and hashing modules are
embarrassingly parallel with operations performed at image
patch level to completion and always benefiting from additional
numbers of GPU workers. To establish the strong scaling aspect
of the workflow, Fig. 9 shows the speed-up performance over
six workloads of data (between 1 and 12 image scenes) while
varying the number of spark-based workers. The inference
module is parallelizable while the merging of image patches
to reconstruct the large scene is performed in a serial fashion;
perhaps introducing an upper limit on the compute speed-up.
An immediate observation is that compute speedup does not
assume a linear increase with additional GPUs—parallelization
efficiency decreases for each workload as the amount of GPU
workers are increased. The presence of the increasing and
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Fig. 9. Log-scale speed up of varying workloads when processed with RESflow parallel inference. Using serial processing single GPU baseline that averages
inference speed of 35 min per 40 000 × 35 000 pixel image scene.

TABLE V
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON ONE-NODE

NVIDIA-DGX2-H SPARK CLUSTER

*Indicates a result for which soft GPU-executor assignment is needed to prevent run failure.

TABLE VI
COMPUTE EFFICIENCY (IN MINS) ON VARYING WORKLOADS ON TWO-NODE

NVIDIA-DGX2-H SPARK CLUSTER

decreasing trends on the performance curves could be explained
by highlighting two aspects. The first is due to algorithmic
implementation of our workflow. As aforementioned the
most important contribution of our workflow is its ability
to partition or tile large imagery and enable computing at
scale. During inference execution on tiled partitions, worker
processors do not communicate with one another, however
on completion, we perform a reduceByKey2 operation
within Spark to group all tiles of the same image scene ID
for merging into the large extent output mask. The merging
operation for output mask reconstruction is performed by a
single worker. As illustrated from Fig. 9, the performance
bottleneck is more pronounced for workers executing on
6 GPUs or more. In addition, inferencing of fewer image

2While a typicalreduce operation within Spark collects all data into a single
data point, thereduceByKey collects all data intoN distinct data points, where
each datapoint is associated with a unique key from the data.

scene appears to incur the largest compromise on speed up.
The second aspect significantly influencing the observed perfor-
mance bottleneck is attributed to increased I/O read activities.
The computational efficiency introduced by RESFlow benefits
tremendously from the lazy evaluation of Spark RDD data
transformation. Throughout the pipeline, image data are only
read from disk at inference time for each corresponding image
tile. As a result, an increase in workers executing on more GPUs
concurrently, thereby adding to the I/O read count, considerably
compounds and causes a decrease in the compute performance.
Tables III–VI further illustrate computational efficiency across
a range imagery data sizes (or as measured in land area square
kilometers). To establish weak scaling, we increase the workload
on each GPU processor and also observe an improved weak
scaling aspect of the workflow. Each row shows the compute
time obtained for different area sizes for a fixed number of GPUs.
The results indicate a desirable scaling factor, i.e., computational
efficiency appears to increase as the land area to map (calculated
for number of image scenes) correspondingly increases. For
example, in Fig. 9, for 12 GPU-workers, the compute speed for
an area of 313.97 sq.km (or a single image coverage with data
size of 15.03 GB) is a 6.91× improvement over the baseline
of 35 min to process a single image scene. However, for an
increased workload or land area of 4141.16 sq.km (or 12 image
scenes with data size of 197.13 GB), the speed-up reaches 750×
over the baseline. This performance increase appears to be due
to fact that overall communication and system bottlenecks are
more dependent on the number of GPUs than on the land area.

We also evaluate the overall inference performance for vary-
ing input image size to the U-Net network architecture. Fig. 10
provides results for RGB image input of size 500× 500× 3,
800× 800× 3, 1000× 1000× 3, and 1500× 1500× 3. Infer-
ence is done in batches of size 12, 8, 5, and 2 image scenes, re-
spectively. Compute efficiency is observed to vary with network
completing inference at rate 1220 per seconds (or throughput
of 3.7 GB/s) for image tiles of size 500× 500× 3, which has
an equivalent area rate of 23.45 sq.km/s. Given the smaller size
in input image, I/O reads are increased putting a burden to the
NFS file system. By considering much larger input images not
only do we reduce the amount of I/O reads per image scene but
we also increase both the throughput and the equivalent land
area mapped. For example, with 1000× 1000× 3 input images
the network reaches a peak inference throughput of 6.59 GB/s
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Fig. 10. Illustration of total area mapped per second for different image input
sizes on a Nvidia-DGX2-H Spark cluster.

(processing a total of 564 images/s) and equivalence of mapping
50.78 sq.km/s. At this rate, we posit that the GPU compute time
dominates the I/O read. However, when for much larger input im-
age sizes, we note a throughput degradation to level of 4.69 GB/s
(processing a total of 178 images/s) for 1500× 1500× 3 tiles.
Even though larger tiles increase the GPU utilization time they
also require allocation of larger memory footprint for the infer-
ence results.

IV. LARGE SCALE EXPERIMENTS

A. Training

We first evaluate several aspects of the training phase
in the SPARK-enabled GPU clusters. Taking advantage of
the partitioned image gallery, there is no interaction be-
tween buckets, turning the model training into an embar-
rassingly parallel task. As shown in Table II, the train-
ing speed scales with the complexity of the model (i.e.,
number of trainable parameters). Also, note that the total
time needed to achieve the model convergence is also lin-
ear to the number of training samples (total training time =
number of training samples × seconds/ sample). In Fig. 7, we
demonstrate the similar model training performance achieved
by a regular DGX-1 and a SPARK-enabled DGX-1. Because
of different network initialization conditions (as we trained
the models from scratch), the learning curves are not identical
under these two computing environments. Nevertheless, with
the fixed training hyper parameters, we can see the best F1
scores obtained from both computing platforms for these four
models are similar: Seg-Net and U-Net both deliver F1 scores
slightly above 0.7, DeepLab has F1 scores close to 0.7, and
ResNet50-FCN achieves F1 scores close to 0.65. In addition,
the training improvements become trivial after ∼25 epochs for
both computing environments except for ResNet50-FCN, which
requires longer training epochs (∼60 epochs) to get optimized
parameters.

B. Inference

We here present the large scale inferencing results produced
by the RESFlow model gallery on three states/countries: Puerto

TABLE VII
RESFlow DEPLOYMENT PERFORMANCE ON TWO-NODE NVIDIA-DGX2

SPARK CLUSTER

Rico, New Mexico of the United States, and South Sudan. Fig. 8
visualizes output building semantic segmentation maps across
varying geographies that encompass the abovementioned three
test sites. Finally, having evaluated the different components for
RESFlow, e.g., impact of varying number of workers for different
number of image to process in a single batch (see Fig. 9),
establishing the throughput bounds as a function of input image
size (see Fig. 10), we assess the scalability and applicability of
deploying the workflow as depicted in Section II on 14 TB of
imagery data covering the State of New Mexico. We select the
Two-node Nvidia-DGX2 Spark cluster to execute the task with
28 GPUs and batch size of 12 for image scenes. The pipeline
execution entails computing three deep learning tasks for each
image tile: deep feature extraction stage, a deep hashing stage,
and a deep semantic segmentation inference. The main goal for
the large scale deployment was to assess the performance of
our pipeline when deployed for production task. Therefore, we
account for both read and write (I/O) bottlenecks in addition
to the compute time. Table VII presents the throughput for this
workload.

This end-to-end inferencing workflow demonstrates large-
scale processing of vast amounts of satellite imagery. Averaging
a throughput of 0.243 GB/s (or 5.245 sq.km/s) inference of the
entire set of 1440 image scene completed in 21 h—A tremendous
achievement over a previous serial based inference workflow
that would have taken over 28 days to complete.

V. CONCLUSION AND FUTURE WORK

With a novel remote sensing data partitioning concept, this ar-
ticle presented a parallel inferencing workflow based on acceler-
ated AI deployment hardware. Demonstrated on the pixel label-
ing challenge, we extended herein, Apache Spark based satellite
imagery RDDs for processing with deep learning at scale and
demonstrated compute efficiency across TB of high-resolution
data covering land area equivalent of 787 300 sq.km. We
achieve unprecedented pixel labeling area rates of 5.245 sq.km/s,
amounting to 453 168 sq.km/day (or a daily capacity processing
of 21 028 TB) demonstrating a reduction of a 28 day workload
to 21 h. We further make an observation and identify work-
flow bottlenecks by studying compute speedup performance
metrics as the amount of GPU workers are increased. In order
to leverage Apache Spark to support deep feature learning and
accommodate the problem of model generalization, the remote
sensing data partitioning, the central concept in RESFlow, is
realized from a combined set of four modules. RESFlow ignites
optimism about a number of other relevant, and perhaps such
new research directions, including enabling faster search for
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retrieval of images with similar content, combining human geog-
raphy and machine learning, e.g., establishing limiting bounds
and the performance of models learned from finer abstract and
deconflated geographical spaces, establishing robustness and
stability of learning models for objects that are rare in some
geographies and common in others. These directions involve
studying varying heterogeneous levels of imagery data and their
impact on training and inference tasks, and can potentially bene-
fit from sensor and geographic agnostic workflows as compared
to spatially constrained approaches. Other future directions: un-
derstanding the staging of geospatial workloads and deploying
containerized workflows on supercomputing platforms presents
a future research direction for our work. In addition, the work
can be extended by exploring methodologies to enable better ar-
chitectural design of computers specific to geospatial processing
to benefit more applications.
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