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Multilabel Remote Sensing Image Retrieval Based
on Fully Convolutional Network

Zhenfeng Shao, Weixun Zhou

Abstract—Conventional remote sensing image retrieval (RSIR)
system usually performs single-label retrieval where each image
is annotated by a single label representing the most significant
semantic content of the image. In this scenario, however, the
scene complexity of remote sensing images is ignored, where an
image might have multiple classes (i.e., multiple labels), result-
ing in poor retrieval performance. We therefore propose a novel
multilabel RSIR approach based on fully convolutional network
(FCN). Specifically, FCN is first trained to predict segmentation
map of each image in the considered image archive. We then obtain
multilabel vector and extract region convolutional features of each
image based on its segmentation map. The extracted region features
are finally used to perform region-based multilabel retrieval. The
experimental results show that our approach achieves state-of-
the-art performance in contrast to handcrafted and convolutional
neural network features.

Index Terms—Fully convolutional networks (FCN), multilabel
retrieval, multilabel vector, region convolutional features (RCFs),
remote sensing image retrieval (RSIR), single-label retrieval.

I. INTRODUCTION

HE RECENT development in remote sensing (RS) tech-
T nology has resulted in a considerable volume of RS
archives, which makes it a significant challenge of searching
images of interest from a large-scale RS archive in the literature.
Remote sensing image retrieval (RSIR) is a simple yet effec-
tive method to solve this problem. An RSIR system generally
has two main parts: feature extraction and similarity measure.
The goal of feature extraction is to develop the representation
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of the images which can be used to measure the similarity
later. In similarity measure, the query image is matched with
other images in the archive to retrieve the most similar images.
However, RS community has been focused mainly on develop-
ing discriminative image features due to the fact that retrieval
performance greatly depends on the effectiveness of extracted
features.

Conventional RSIR approaches are based on low-level visual
features extracted either globally or locally. Color (spectral) and
texture features are commonly used as global features for RSIR
problem. In [1], the morphology-based spectral features are pro-
posed and explored for RS image retrieval. In [2], morphological
texture descriptors are computed and combined color channels in
[3]. In contrast to global features, local features are generally ex-
tracted from image patches of interest, with bag-of-visual-words
(BoVW) [4] framework to build the feature representations. An
improved color texture descriptor is proposed by incorporating
discriminative information and usually achieves better perfor-
mance than global features. This is due to the fact that local
representations are able to narrow down the semantic gap since
the RS image content is characterized in a small neighborhood
region [5]. As an example, the scale invariant feature transform
(SIFT) descriptors are extracted and aggregated by BoVW to
generate compact features for RSIR in [6]. Although these
RSIR methods mentioned above are able to achieve reliable
performance, they are essentially single-label approaches. For
single-label RSIR, each image in the archive is labeled by a
single, coarse class label. However, the scene complexity of RS
images is ignored in this scenario, where an image is likely to
have multiple classes (i.e., multiple labels). Single labels are suf-
ficient to address RS problems where the image contains simple
content, such as to distinguish between building and river image
categories, while multiple labels are required for distinguish-
ing more complex image categories, such as dense residential
and medium residential, where the differences only lie in the
density of buildings. Thus, in the case of RSIR problem with
such complex image categories, multilabel RSIR approaches
are needed.

Multilabel analysis is an effective method for image retrieval
and classification in computer vision field [7]-[12]. Inspired
by these works, RS community has recently focused on de-
veloping multilabel approaches to overcome the limitations of
single-label RSIR methods. In [13], an image scene semantic
matching scheme is proposed for multilabel RSIR, in which
an object-based support vector machine classifier is used to
obtain classification maps of images in the archive, and in the
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Process of multilabel analysis and SSRCF extraction. Convl_1,2 and conv5_1,2,3 represent two (convl_1, convl_2) and three (conv5_1, conv5_2,

conv5_3) convolution layers, respectively. Each color in the connected regions (also called components or objects) represents one connected region.

other work [14], image visual, object, and semantic features are
combined to perform a coarse-to-fine retrieval of RS images
from multiple sensors. In [15] and [16], a novel multilabel RSIR
system combining spectral and spatial features is presented for
hyperspectral image retrieval. In the recent work [17], a semisu-
pervised graph-theoretic method is introduced for multilabel
RSIR, in which only a small number of images are manually
labeled for training. These approaches, however, greatly depend
on the preliminary segmentation results, and generally rely on a
set of combined handcrafted features to perform retrieval. There
are few study in multilabel RSIR using deep learning and par-
ticularly convolutional neural networks (CNN) features which
have been proved to be more effective on tasks including image
super-resolution [ 18], hyperspectral imagery classification [19],
[20], and RSIR [21]-[26].

In this article, we therefore propose a novel multilabel RSIR
method based on fully convolutional network (FCN), which has
several advantages over the existing standard multilabel RSIR
methods. In general, standard methods such as [17] contain a
couple of steps including image segmentation, region feature
extraction, label annotation, etc., while our approach integrates
these steps in a single framework based on FCN (see Fig. 1)
which simplifies the process of multilabel analysis and feature
extraction. More importantly, standard methods need to fuse
different handcrafted features in order to achieve good perfor-
mance, while our approach can learn CNN features that are sim-
ple yet effective for multilabel RSIR problems. In our approach,
we first train a FCN network adapted from the pretrained CNN
to generate semantic segmentation map of each image in the
considered archive. We then compute multilabel vector and ex-
tract region convolutional features (RCFs) of each image based
on corresponding segmentation map. For the computation of

multilabel vector, it can be directly obtained from the segmen-
tation map, while for the extraction of RCFs, feature map up-
sampling and flattening, and region search are needed to find the
local convolutional features that lie in each connected region. We
finally apply the extracted RCFs to perform multilabel retrieval
using a region-based similarity measure.

Our contributions in this article are summarized as follows.

1) We propose a novel multilabel RSIR method based on

FCN, which combines image segmentation, label annota-
tion, and region feature extraction in a single framework.
We propose to extract the learned RCFs instead of hand-
crafted features for multilabel RSIR.
We release a dense labeling RS dataset that can be used
for pixel-based problems such as multilabel retrieval,
multilabel classification, semantic segmentation, etc., and
provide baseline results for multilabel retrieval.

The remaining article is organized as follows. Section II
presents our multilabel RSIR approach based on FCN.
Section III first introduces the dataset used for training
FCN and evaluating multilabel retrieval performance, and
then shows the experimental results. Section IV draws the
conclusion.

2)

3)

II. MULTILABEL RETRIEVAL BASED ON FCN

Multilabel RSIR system can lead to finer retrieval benefiting
from image multilabel information and generally contains three
parts, i.e., multilabel analysis, feature extraction, and similarity
measure. Multilabel analysis and feature extraction are more
important compared to similarity measure, since the perfor-
mance significantly relies on the effectiveness of the extracted
multilabel vector and RCFs.



320 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

We explore using FCN to perform multilabel analysis and
feature extraction. Given an image, FCN is able to predict the
label for each pixel which has been widely used in semantic seg-
mentation since [27]. In order to perform pixelwise prediction,
FCN consists of downsampling and upsampling paths where
semantic or contextual information are captured, and spatial
information is recovered, respectively. Features can be extracted
from convolutional layers and multilabel prediction can be ob-
tained based on the prediction map from FCN. Therefore, FCN
provides a potential solution to achieve our main goals (i.e.,
multilabel analysis and feature extraction) within one unified
model.

A. Architecture of FCN

In practice, FCN is usually adapted from the CNNs pretrained
onImageNet [28], for example, the very deep network (VGG-16)
[29] by using convolutional layers instead of fully connected
layers. There are three variants of FCN [27]; three networks,
namely, FCN-32s, FCN-16s, and FCN-8s have been used in se-
mantic segmentation. In this article, we choose FCN-8s (termed
FCN hereafter) for multilabel analysis and RCF extraction since
FCN-32s and FCN-16s achieve worse segmentation perfor-
mance than FCN-8s in our preliminary experiments described
in Section III. The better segmentation performance can provide
more accurate extracted region and thus better features can be
extracted.

We follow the steps in [27] to build our FCN and the details
are as followed. The first two fully connected layers of VGG-16
are converted into convolution layers (i.e., conv6 and conv7
layers in Fig. 1). The last fully connected layer (i.e., classifier
layer) is modified to output N (the number of classes in our
dataset) classes, followed by a transposed convolution layer
(also inappropriately called deconvolution layer sometimes)
to upsample the coarse predictions to dense predictions. The
upsampled predictions are fused with the outputs of pool3 and
pool4 layers to provide further precision via skip connection.
We refer the readers to [11] for more details on how to build
FCN with the pretrained VGG-16 network.

To train FCN, our dense labeling dataset is divided into
training set Dy and retrieval set Dg. Training set is used for
training FCN, and retrieval set is used for multilabel retrieval
performance evaluation.

B. Multilabel Analysis

The goal of multilabel analysis is to obtain image multilabel
vector achieved by the following two steps: 1) semantic segmen-
tation, and 2) postprocessing, as shown in Fig. 1.

Semantic segmentation refers to generating the segmentation
prediction map by feeding through the image in D to FCN,
and can be denoted as follows:

Y; = f(D%) (1)

where D% is the ith image in Dg; f(e) is the function that maps
image to segmentation map, which is FCN in this article; Y is
the segmentation map that has the same size as D?,, each pixel

in Y; has a label in {1,2,..., N}; and N is the total number
of classes. Once the initial segmentation map is obtained, we
use morphological operation and region merging as two post-
processing steps to improve segmentation result. Specifically,
morphological opening and closing operations are first used to
eliminate small objects, and then each connected region with the
area smaller than 10 pixels is merged into its largest neighbor
region. Afterward, given a segmentation map, we can build the
N-D multilabel vector L; for the corresponding image

where [;(j =1,2,...,N) equals to 1 or 0, indicating whether
D', contains the jth class. Itis noted that by performing semantic
segmentation, each image is able to obtain pixelwise labels;
however, these labels in total only form one multilabel vector for
the image by checking the occurrence of the labels. For example,
an image divided into regions with three classes (labels) 1, 3, 4
and five classes in total, and then the multilabel vector will be
[1,0,1,1,0].

Li=l,lo, ...

C. RCF Extraction

The convolutional layers of CNNs have been demonstrated
to generate local descriptors for RSIR [22]. Like SIFT, these
local features can also be postprocessed using feature aggrega-
tion approaches to generate a compact feature vector. We take
inspiration from [22], and propose to extract single-scale and
multiscale RCFs (called SSRCF and MSRCEF, respectively) for
multilabel RSIR.

“Region convolutional features (RCFs) are region-based fea-
tures extracted from convolutional layers.” As aforementioned,
segmentation map is not only used to output the multilabel for
image but also used to extract the RCFs. But the problem is that
the segmentation map is pixel based, which contradicts region.
To address the above challenge, we propose to use connected
component analysis to group pixels into regions which is termed
connected regions. And thus, in general, to extract RCF for both
single scale and multiscale, three steps are needed namely region
search, feature map upsampling, and feature map flattening. We
describe the details for extracting SSRCF and MSRCEF in similar
approach. The pipeline for the extraction of SSRCF_c5 is shown
in Fig. 1.

1) Region Search: This step aims to find n connected regions
R; = [R},R?,...,R"] in Y; using a connectivity of 8. This
results in that D% is divided into a set of connected regions
based on its segmentation map Y;, which transfers the pixels in
a segmentation map into groups. Fig. 2 shows some example
images of region search.

2) Feature Map Upsampling: It is impossible to directly
extract SSRCF since the size of feature map does not match
that of the segmentation map. The feature map from conv
layer is downsampled by pooling, resulting in its size reduced.
Therefore, to extract SSRCF, the feature map is needed to be
upsampled so that it has the same size as segmentation map does.
In this article, feature maps from conv5_3, conv6, and conv7
layers are extracted, and the corresponding SSRCF features are
termed as SSRCF_c5, SSRCF_c6, and SSRCF_c7, respectively.
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©

Fig. 2. Some example images of connected region search. (a) Source image.
(b) Segmentation map. (c) Eight-connected regions (each connected region is
illustrated in different color).

Inspired by the transposed convolution in FCN, we upsample the
feature map using the same technique to make it have the same
size as DY, and it can be defined as follows:

Fs = fy(F) (3)

where F is the feature map of D}é extracted from conv5_3 layer,
/(@) is bilinear interpolation function, and F is the upsampled
W x H x D feature map

Fs(1,1) Fs(1,2) Fs(1,W)
FS(2>1> FS(2?2) FS(2aW)

FS - . . . . (4)
FS(Hvl) FS(H’Q) FS(H7W)

where W and H are the width and height of feature map, re-
spectively. Fs(p,q)(p=1,2,...,H;g=1,2,...,W)isarow
feature vector with the dimension of D.

3) Feature Map Flattening: This step aims to flatten the
upsampled feature map to a two-dimensional feature map which
will be overlapped with the connected regions to extract RCFs.
The process of flattening the W x H x D feature map Fg to

WH x D feature map FY is defined as follows:
Fg = [Fs(1,1) Fs(1,2) -+ Fs(H,W)]". ©)

To obtain SSRCF_c5 of D}}c, we first obtain the convolutional
feature matrix Fg , (Fg, consists of convolutional feature vec-
tors in I that are located in R}) of region R(t =1,2,...,n)
by comparing the pixel coordinates of R! and Fis(p, q), and then
SSRCF_c5 can be achieved

X, =[x 22 x,]7 (6)

where z+(t = 1,2,...,n) is the max convolutional feature vec-
tor of R! and is defined as follows:

Ty = fmax(Fng"t) (7)

where fiax(®) is a function computing the maximum value of
each column in Fg ;.

Regarding the extraction of MSRCEF, it is similar to that of
SSRCEF, and the difference only lies in that MSRCF is extracted
based on multiscale feature map. In this article, we propose
two strategies to obtain multiscale feature maps, as shown in
Fig. 3. The first strategy is fusing the feature maps of two
different layers. In our approach, conv6 and conv7 layers are
selected to achieve the multiscale feature map due to the fact that
the higher layers of CNN tend to learn better (more powerful)
features. Specifically, the feature maps of conv6 and conv7 are
first upsampled to have the same size as the input image and
then combined to obtain the fused feature map

Ffuse = Fconve T Fconv7 (8)

where “+” sign represents summation, and Ffge is the fused
feature map, and Fonyve and Fiony7 are the upsampled feature
maps of conv6 and conv7, respectively. MSRCF extracted based
on Fise is termed as MSRCF_c67. For the second strategy,
the multiscale feature maps are directly extracted from two
multiscale layers (termed as sum1 and sum?2 hereafter) of FCN,
as shown in Fig. 3. It can be observed that sum1 fuses the feature
maps of pool4 and output layers, and sum?2 fuses the feature maps
of suml and pool3 layers. Therefore, both suml and sum?2 can
extract multiscale feature maps for the extraction of MSRCF.
We refer the readers to [27] for more details on these two layers.
MSRCEF extracted based on feature maps of sum1 and sum2 are
termed as MSRCF_s1 and MSRCE_s2, respectively.

D. Similarity Measure and Performance Evaluation

After the extraction of SSRCF and MSRCEF, each image in
Dp, is represented by a RCF matrix. We choose the region-based
distance [5] to measure image similarity. Let I, and I, be the
query image and another image in the archive, respectively; the
region-based distance is defined as follows:

I &K
D(X,,X,) = — Z;mln(DLz (i, 25)) 9
1=
where X, = [z1, 22, ... | and X, = [21, 29, ..., 2,]T are
the RCFs of I, and I, respectively, z;(i = 1,2,...,m) is the
feature vector of region Rfl inly,andz;(j =1,2,...,n)is the
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Fig. 3. Two strategies for multiscale feature map extraction.

feature vector of region RY in I,., and Diz (e)is 1 x nEuclidean
distance matrix between feature vectors of Rfl and RJ.

To evaluate the multilabel retrieval performance of SSRCF
and MSRCEF, we follow [17] and choose accuracy, precision, and
recall as performance evaluation metrics. In addition, hamming
loss (HL) and F1-measure (F1) are also used. These metrics are
defined as follows:

M

P = - > [adln] (10)
Prceuaey = 77 ﬁ; :i;QC—fil )
Pprecision = % :41 % (12)

Precan = % i |LQ|I/J\QL|Rl| (13)
i=1

Pam g AR

where A, A, and V are logical XOR, logical AND and logical OR
operations, respectively. |e| is the number of nonzeros, L is the
multilabel vector of query image, L, is the multilabel vector of
the ith returned image I?;, NV is the number of labels (i.e., image
classes), and M is the number of returned images in one query.

III. EXPERIMENTS AND ANALYSIS

This section first introduces two dense labeling datasets and
experimental settings for multilabel RSIR, and then presents the
retrieval performance of our SSRCF and MSRCEF features.

NS
fused feature
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Fig. 4. Example images and corresponding labeling results. (The first, third,
five, and seventh rows are source images, and the second, fourth, sixth, and
eighth rows are corresponding labeling results, respectively.)

A. Datasets

Dense labeling remote sensing dataset (DLRSD) is the first
dense labeling dataset used in our experiment. It is manually
labeled based on the UC Merced archive [6] and first presented
in our previous work [30]. Specifically, each of the image in
UC Merced archive is labeled per pixel with the following 17
classes, i.e., airplane, bare soil, building, car, chaparral, court,
dock, field, grass, mobile home, pavement, sand, sea, ship, tank,
tree, and water, which are proposed in [17]. DLRSD contains
2100 RGB images with the spatial size of 256 x 256 and the
resolution is 0.3 m. Fig. 4 shows some example images with
the corresponding pixelwise labeling results, and Table I shows
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TABLE I
OVERVIEW OF DLRSD DATASET

Class Number of Images Label
airplane 100 1
bare soil 754 2
building 713 3
car 897 4
chaparral 116 5
court 105 6
dock 100 7
field 103 8
grass 977 9
mobile home 102 10
pavement 1331 11
sand 291 12
sea 101 13
ship 103 14
tank 100 15
tree 1021 16
water 208 17

| - . bare soil
% @ building
W © pavement
X (O road
‘ ) vegetation
! @ water

Fig. 5. Example images and corresponding labeling results. (The first, third,
and five rows are source images, and the second, fourth, and sixth rows are
corresponding labeling results, respectively.)

the overview of DLRSD dataset including the 17 classes as well
as the number of images and label corresponding to each class.
The readers can be referred to [30] for more details.

Wuhan dense labeling dataset (WHDLD) is the second dense
labeling dataset used in our experiment. It is cropped from a large
RS image of Wuhan urban area and the pixels of each image in
WHDLD is manually labeled with the following six classes,
i.e., building, road, pavement, vegetation, bare soil, and water.
WHDLD contains 4940 RGB images with the spatial size of
256 x 256 and the resolution is 2 m. Fig. 5 shows some example
images with the corresponding pixelwise labeling results, and
Table II shows the overview of WHDLD dataset including the
contained six classes as well as the number of images and label
corresponding to each class.

TABLE II
OVERVIEW OF WHDLD DATASET

Class Number of Images Label
building 3722 1
road 3162 2
pavement 3881 3
vegetation 4631 4
bare soil 3539 5
water 3886 6

B. Experimental Settings

For DLRSD and WHDLD datasets, we randomly select 80%
images as training set D7 and the rest 20% images as retrieval
set Dgr. With respect to FCN architecture, we modify the last
fully connected layer of VGG-16 to have 17 and 6 output
classes for DLRSD and WHDLD datasets, respectively. During
training, the weights of VGG-16 are transferred to FCN and the
weights of the transposed convolutional layer are fixed to bilinear
interpolation. The learning rate, batch size, and the number of
epochs are set to 0.0001, 10, and 120 for DLRSD dataset, and
set to 0.001, 32, and 120 for WHDLD dataset. Our FCN is
implemented by using MatConvNet [31] as the deep learning
framework, and trained with stochastic gradient decent as the
optimizer. It is worth noting that we perform 420 queries for
DLRSD dataset and 988 queries for WHDLD dataset, and the
query image is also regarded a similar image during one query.

In terms of successful matching in multilabel RSIR, we define
that two similar images must contain at least one overlapped
label. Therefore, we propose to perform a two-step retrieval
process to avoid invalid search where query image cannot even
find one overlapped label with any images in Dg. In detail, we
first remove images without any overlapped labels with query
images from Dp, and second query image is compared with
each of the remaining images using the region-based distance
(9) to find the top 20 most similar images.

The proposed RCFs (i.e., SSRCF and MSRCF) are compared
with handcrafted and CNN features to evaluate their multilabel
retrieval performance. For handcrafted features, we select color
histogram (CH), local binary pattern (LBP) [32], Gabor texture
(GT)[33],GIST [34], BoVW [4], and the recent multilabel RSIR
approach MLIR [30], while for CNN features, we select pre-
trained Fc (P-Fc), single-label Fc (S-Fc), multilabel Fc (M-Fc),
and the pretrained region convolutional (P-Conv) features.

Tables III and IV show the detailed implementations of hand-
crafted and CNN features including feature dimension, param-
eter setting, feature normalization, and distance used for simi-
larity measure. It is worth noting that SSRCF and MSRCF are
compared with both image-level and region-level handcrafted
and CNN features to demonstrate their advantages for multilabel
retrieval. Specifically, CH, LBP, GT, GIST, BoVW, P-Fc, S-Fc,
and M-Fc are image-level features represented with feature
vectors, while MLIR and P-Conv are region-level features rep-
resented with feature matrixes. In Table IV, VGGM [35] and
VGG-16 are used as pretrained CNNs to extract image-level
and region-level CNN features, respectively. In addition, Caffe
[36] is selected as the deep learning framework to fine-tune
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TABLE III
DETAILED IMPLEMENTATIONS OF HANDCRAFTED FEATURES

TABLE IV
DETAILED IMPLEMENTATIONS OF CNN FEATURES

Implementation
Features  Dimension o
Extraction Similarity Meas-
ure
P-Fc is extracted from the
P-Fc Fc layer of pre-trained
VGGM.
S-Fc is extracted from the L, normalization is
Fc layer of fine-tuned wused before meas-
S-Fe 4096-D VGGM using single-label  uring the similarity
dataset. with L, distance.
M-Fc is extracted from the
Fc layer of fine-tuned
M-Fe VGGM using multi-label
dataset.
P-Conv is similar to the L, normalization is
proposed SSRCF, but the used before meas-
P-Conv 512-D feature maps are extracted uring the similarity

from the conv5_3 layer of
pre-trained VGG-16.

with region-based
distance (9).

Implementation
Features Dimension
Extraction Similarity Measure
Color  histogram is
extracted by quantizing
Color each channel of the
Histogram 96-D RGB color space into
(CH) 32 bins and concate-
nating the three histo-
grams.
The uniform rotation
invariant histogram is
LBP 10-D extracted with 8 pixel L, normalization is
circular neighborhood used before measur-
of radius 1. ing the similarity. L,
. ) distance is used for
Five scales and eight color histogram and
Gabor orientations are con- BoVW, and L, dis-
Texture 80-D sidered and the Gabor  tance is used for LBP,
(GT) filter window size iS  Gabor texture and
32x32. GIST.
The default parameters
GIST 512-D of.orlgmal 1mpl§men-
tation are considered
[34].
K is empirically set as
150 and 200 for
BovW KD DLRSD and WHDLD
datasets, respectively.
MLIR The default parameters of original implementation are consid-

ered [30].

single-label and multilabel CNN to extract S-Fc and M-Fc
features.

C. Experimental Results

1) Multilabel Retrieval Performance of SSRCF and MSRCF':
Multilabel retrieval performance relies on multilabel vectors and
RCFs; at the meantime, the accurate segmentation map results in
extracting good features and providing accurate multilabel vec-
tors mentioned above, as described in Section II. We therefore
first evaluate the segmentation performance of different FCN
networks before retrieval. Following the performance metrics
used in [27], we use pixel accuracy (pacc), mean accuracy
(macc), and mean IU (miu) to report the segmentation perfor-
mance of our FCN (i.e., FCN-8s), FCN-32s, and FCN-16s, as
shown in Table V. As can be seen, our FCN (FCN-8s) is able
to achieve the best performance on both DLRSD and WHDLD
datasets in terms of pacc, macc, and miu values, and thus it is
able to provide optimal solution for multilabel retrieval.

The multilabel retrieval performance of our SSRCF and
MSRCEF features on DLRSD and WHDLD datasets is shown
in Tables VI and VII, respectively. For SSRCF feature, we
evaluate features extracted from conv5_3 (SSRCF_c5), conv6
(SSRCEF_c6), and conv7 (SSRCF_c7) layers. In Table VI, it
can be observed that SSRCF_c7 achieves better performance

TABLE V
SEGMENTATION PERFORMANCE OF OUR FCN, FCN-32s, AND FCN-16S ON
TwO DENSE-LABELING DATASETS

DLRSD WHDLD
Metries “"FCN- FCN-  FCN- FCN-  FCN-  FCN-
32s 16s 8s 32s 16s 8s
pacc  0.7425  0.7905 0.8054 0.7656  0.7958  0.8106
mace 07267 07886  0.8234 0.6454  0.6849  0.6765
miu 0.5503  0.6369  0.6770 0.5076  0.5528  0.5603
TABLE VI
MULTILABEL RETRIEVAL PERFORMANCE OF SSRCF FEATURE
Features HL Accuracy Precision Recall F1
DLRSD
SS‘ESCF— 0.1164 0.6928 0.7916 0.8483  0.7936
SSREE 01108 0.6909 0.8192 0.8191 07911
SSREE- 0103 0.6939 0.8191 0.8246 07943
WHDLD
SSREE ousen 0.8119 08818 09195  0.8842
SSREE 003 0.7862 0.8876  0.8843  0.8647
RO 0.1668 0.7925 0.8785 09005 0.8691

than SSRCF _c¢5 and SSRCF _c6 on DLRSD dataset in terms
of HL (0.1103), Accuracy (0.6939) and F1 (0.7943) values,
and SSRCF_c5 outperforms SSRCF_c6 and SSRCF_c7 on
WHDLD dataset in terms of HL (0.1561), Accuracy (0.8119),
Recall (0.9195) and F1 (0.8842) values. The results indicate
that there are slight differences among the performances of
SSRCF extracted from different layers, and SSRCF extracted
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TABLE VII
MULTILABEL RETRIEVAL PERFORMANCE OF MSRCF FEATURE
ON TWO DENSE-LABELING DATASETS

TABLE VIII
COMPARISONS OF REGION CONVOLUTIONAL AND HANDCRAFTED FEATURES
ON TWO DENSE-LABELING DATASETS

Features HL Accuracy Precision Recall F1 Features HL Accuracy Precision Recall F1
DLRSD DLRSD
MSRCF_ 4111 0.6913 0.8178 08213 0.7916 CH 0.1980 0.4895 0.6359 0.6291  0.5932
c67 : : : : :
MSRCF LBP 0.2087 0.4904 0.6213 0.6492 0.5983
- 0.1051 0.7193 0.7996 0.8830 0.8150
sl GT 0.1931 0.5129 0.6484 0.6527 0.6167
MSRCF
o 01072 0.7172 0.7916 0.8870 0.8133 GIST 0.2217 0.3926 0.5961 0.4866 0.4800
WHDLD BoVW 0.1718 0.5454 0.6952 0.6603 0.6459
MSRCFE MLIR 0.2017 0.5440 0.6095 07717  0.6539
- 0.1675 0.7909 0.8815 0.8956 0.8679
" ScngZF SSRCF 0.1103 0.6939 0.8191 0.8246  0.7943
g 01280 0.8493 0.8818 0.9625 0.9084 MSRCF  0.1051 0.7193 0.7996 0.8830 0.8150
MSI:ZCF— 0.1151 0.8628 0.8912 0.9684 0.9172 WHDLD
CH 0.2159 0.7328 0.8543 0.8499  0.8252
LBP 0.2261 0.7245 0.8477 0.8473 0.8202
from higher layer does not show distinct advantages over SSRCF GT 02271 07338 0.8507 08478 0.8268
ethzaCtE/?Sflr;’Crrl‘:];’WCr layers. s £ dwith th GIST 0.2550 0.6924 0.8475 0.7881  0.7907
or eature, we evaluate features extracted with the
. . BoVW 0.2513 0.7013 0.8216 0.8328 0.7991
two proposed strategies. In Table VII, it can be observed that MLIR 02651 06074 07881 0.8614 07963
MSRCEF extracted using the second strategy (extracting mul- ’ ’ ' ' '
tiscale feature maps directly from suml or sum2 layers, i.e., SSRCK 01561 08119 08818 09193 08842
MSRCF_s1 and MSRCF_s2) outperforms MSRCF extracted MSRCF  0.1151 0.8628 0.8912 09684 09172
using the first strategy (extracting multiscale feature maps by
TABLE IX

fusing conv6 and conv7 layer, i.e., MSRCF_c67) on DLRSD and
WHDLD datasets. More specifically, MSRCF_s1 achieves bet-
ter performance than MSRCF_c67 and MSRCF_s2 on DLRSD
dataset in terms of HL (0.1051), Accuracy (0.7193) and F1
(0.8150) values, and MSRCF_s2 outperforms MSRCF_c67 and
MSRCEF_s1 on WHDLD dataset in terms of all five performance
metrics. From the results in Tables VI and VII, we can conclude
that MSRCF generally outperforms SSRCEF, specifically with
an improvement of 0.0254 in accuracy and of 0.0207 in F1 on
DLRSD dataset, and with an improvement of 0.0509 in accuracy
and of 0.033 in F1 on WHDLD dataset.

2) Performance Comparison of RCF and Handcrafted
Features: SSRCF and MSRCF that achieve the best perfor-
mances in Tables VI and VII are compared against handcrafted
features, as shown in Table VIII. RCF, and MSRCF in partic-
ular, improves multilabel retrieval performance of handcrafted
features including single-label RSIR approaches such as CH,
LBP, GT, GIST, BoVW, and recent multilabel RSIR approach
MLIR. For example, SSRCF shows an improvement of 0.1485
in accuracy and 0.1484 in F1 over BoVW (the best performing
handcrafted feature) on DLRSD dataset, and for MSRCE, the
improvement is even more significant, specifically 0.1739 higher
in accuracy and 0.1691 higher in F1. For WHDLD dataset,
SSRCF and MSRCF also result in significant improvement
over the best performing handcrafted feature (i.e., GT). The
results in Table VIII indicate that our approach achieves a re-
markable improvement over handcrafted features for multilabel
retrieval.

3) Performance Comparison of RCF and CNN Features:
SSRCF and MSRCF are further compared against CNN features,
and the results are shown in Table IX. For both DLRSD and

COMPARISONS OF REGION CONVOLUTIONAL AND CNN FEATURES
ON TWO DENSE-LABELING DATASETS

Features HL Accuracy Precision Recall F1
DLRSD
P-Fc 0.1259 0.6582 0.7823 0.7848 0.7584
S-Fc¢ 0.1255 0.6580 0.7845 0.7831 0.7582
M-Fe 0.1164 0.6675 0.8163 0.7782 0.7681
P-Conv 0.1310 0.6630 0.7629 0.8189 0.7650
SSRCF 0.1103 0.6939 0.8191 0.8246 0.7943
MSRCF 0.1051 0.7193 0.7996 0.8830 0.8150
WHDLD
P-Fc 0.1942 0.7599 0.8889 0.8442 0.8457
S-Fe N/A N/A N/A N/A N/A
M-Fc¢ 0.1887 0.7675 0.8881 0.8557 0.8518
P-Conv 0.2003 0.7678 0.8557 0.8865 0.8526
SSRCF 0.1561 0.8119 0.8818 0.9195 0.8842
MSRCF 0.1151 0.8628 0.8912 0.9684 0.9172

WHDLD datasets, RCF and particularly MSRCF outperform
other CNN features including pretrained CNN features P-Fc
and P-Conv, and fine-tuned CNN features S-Fc (S-Fc is not
available for WHDLD dataset since the single label of each
image is unknown.) and M-Fc. As an example, SSRCF shows an
improvement of 0.0264 in accuracy and 0.0262 in F1 over M-Fc
(the best performing CNN feature) on DLRSD dataset, and for
MSRCEF, the improvement is even more remarkable and is of
0.0518 in accuracy and of 0.0469 in F1. For WHDLD dataset,
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Fig. 6. Tennis court image retrieval in DLRSD dataset. (a) Query image.
(b) Images retrieved by BoVW. (c) Images retrieved by M-Fc. (d) Images
retrieved by SSRCEF. (e) Images retrieved by MSRCE.

SSRCF and MSRCF also result in significant improvement
over the best performing CNN feature (i.e., M-Fc). The results
in Table IX indicate that our approach achieves a remarkable
improvement over CNN features for multilabel retrieval.

4) Multilabel Image Retrieval Instances: In order to further
evaluate the performance of our proposed multilabel retrieval
approach, we select BoVW, M-Fc, SSRCF, and MSRCF for
DLRSD dataset, and select GT, M-Fc, SSRCF, and MSRCEF for
WHDLD dataset to perform multilabel retrieval and return the
top four similar images, as shown in Figs. 6-9.

Fig. 6 shows an example of images in DLRSD dataset re-
trieved by BoVW, M-Fc, SSRCF, and MSRCF. The query image
is selected from the tennis court category of UC Merced archive,
and the multiple labels associated with each image are given
above the related image. From the results, one can see that all
the images retrieved by the proposed SSRCF [see Fig. 6(d)]
and MSRCEF [see Fig. 6(e)] contain tennis court. On the con-
trary, the images retrieved by BoVW [see Fig. 6(b)] and M-Fc
[see Fig. 6(c)] have at least one image that does not contain
tennis court. For example, the third image retrieved by M-Fc
originally belongs to medium residential category of the UC
Merced archive, and for BoVW, these four images originally
belong to golf course, dense residential, airplane, and storage
tank categories of the UC Merced archive, respectively.
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S

23491116
o
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Fig. 7.
(b) Images retrieved by BoVW. (c¢) Images retrieved by M-Fc. (d) Images
retrieved by SSRCE. (e) Images retrieved by MSRCF.

Intersection image retrieval in DLRSD dataset. (a) Query image.

Fig. 7 illustrates another example of images in DLRSD dataset
retrieved by BoVW, M-Fc, SSRCF, and MSRCF with the query
image taken from the intersection category. It is obvious that all
the images (except for the first image retrieved by MSRCF) re-
trieved by SSRCF and MSRCEF originally belong to intersection
category of the UC Merced archive. From a visual analysis of
the top four returned images, we can conclude that our proposed
approach is able to accurately obtain the multiple primitive
classes associated with each query image and thus retrieve those
visually most similar images in DLRSD dataset.

Fig. 8 shows an example of images in WHDLD dataset
retrieved by GT, M-Fc, SSRCF, and MSRCEF. The query image
is associated with two primitive classes, namely vegetation and
water (see Table II). From these returned images, one can see that
images retrieved by the proposed SSRCF and MSRCF contain
all the two classes (i.e., vegetation and water). On the contrary,
the images retrieved by GT and M-Fc mostly contain other
primitive classes [see Fig. 8(b) and (c)]. Fig. 9 illustrates another
example of images retrieved by GT, M-Fc, SSRCF, and MSRCF.
The query image is associated with six primitive classes, namely
building, road, pavement, vegetation, bare soil, and water. It is
obvious that images retrieved by the proposed MSRCF contain
all the six primitive classes [see Fig. 9(e)], and images retrieved
by the proposed SSRCF contain most of the six primitive classes
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Fig. 8. Multilabel image retrieval in WHDLD dataset. (a) Query image.
(b) Images retrieved by GT. (c) Images retrieved by M-Fc. (d) Images retrieved
by SSRCE. (e) Images retrieved by MSRCF.
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Fig. 9. Multilabel image retrieval in WHDLD dataset. (a) Query image.
(b) Images retrieved by GT. (c) Images retrieved by M-Fc. (d) Images retrieved
by SSRCE. (e) Images retrieved by MSRCF.

[see Fig. 9(d)]. From a visual analysis of the top four returned
images, we can conclude that our proposed approach is able to
accurately obtain the multiple primitive classes associated with
each query image and thus retrieve those visually most similar
images in WHDLD dataset.

IV. CONCLUSION

In this article, we present a novel multilabel RSIR approach
based on FCN. In our approach, FCN is first trained to predict
the segmentation map of each image in our retrieval archive. We
then obtain multilabel vectors and extract single-scale and multi-
scale RCFs of each image based on corresponding segmentation
map. Finally, the region-based distance is used to measure the
similarity between query image and other images in the archive.

Our multilabel RSIR approach is compared against hand-
crafted and CNN features using two dense-labeling datasets.
Experimental results demonstrate that our approach outperforms
state-of-the-art RSIR approaches including handcrafted features
such as CH, LBP, GT, GIST, BoVW, and MLIR, and CNN
features such as P-Fc, S-Fc, M-Fc, and P-Conv on both DLRSD
and WHDLD datasets.

There are some limitations of our article. For example, the
spatial relationships between different regions are not consid-
ered while measuring image similarity using the region-based
distance. It is worth noting that the retrieval performance of
our proposed approach can be further improved if the afore-
mentioned problem can be addressed. In the future, we plan to
design a FCN layer that can directly extract multiscale RCFs,
and take the spatial relationships between different connected
regions into consideration while computing image similarity.
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