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Estimating the Urban Fractional Vegetation Cover
Using an Object-Based Mixture Analysis Method

and Sentinel-2 MSI Imagery
Yaotong Cai , Meng Zhang , and Hui Lin

Abstract—Accurate and efficient identification of the urban
vegetation abundance is of great importance for urban planning
and management. A lot of efforts have been made to estimate
the urban fractional vegetation cover (FVC) using multispectral
images by the pixel-based mixture analysis method. However, ur-
ban FVC maps comprising various meaningful landscapes have
wider applications. Compared with other moderate spatial resolu-
tion multispectral imagery (e.g., SPOT, Landsat 8), the Sentinel-2
multispectral instrument (MSI) imagery has higher resolution,
larger coverage, and shorter revisit time. So it may provide higher
accuracy for urban FVC mapping. This article derives an accurate
object-based urban FVC map for Changsha city, China, from the
10-m resolution Sentinel-2 data acquired in 2017. For producing the
urban FVC maps, the mixture analysis methods were applied on
segmental image objects instead of pixels. The results demonstrate
that the object-based mixture analysis method achieved a higher
FVC estimation accuracy than the pixel-based mixture analysis
did, and it effectively removed the “salt and pepper” phenomena.
The object-based linear model fully constrained least squares and
achieved the best estimation accuracy (R2 = 0.92, RMSE= 0.0956).
The red-edge band reflectance information of the MSI imagery can
improve the accuracy of the FVC maps, but not significantly. The
object-based urban FVC maps would be a good alternative to the
traditional pixel-based maps.

Index Terms—Fractional vegetation cover (FVC), object-based
mixture analysis (OBMA), red edge band, Sentinle-2, urban.

I. INTRODUCTION

V EGETATION plays a significant role in nourishing human
beings and keeping the sustainable development of the

global environment [1], [2]. The urban vegetation is of great im-
portance for urban sprawl modeling, air pollution mitigation, and
urban heat island alleviation [3], [4]. The urbanization, however,
decreases the fractional vegetation cover (FVC) quickly [5]–[7].
China has been advancing wide-scale urbanization in the recent
three decades [8], [9]. In 2018, China has 147 cities with the
population larger than 1 million and has 57.35% of the total
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population living in cities [8]. Urban areas are facing decrease
in FVC and environmental degradation [10]. Accurately and
timely monitoring the change of vegetation abundance in urban
areas at regional, national, and global scales is necessary for the
healthy development of cities.

Remote sensing data have been widely used for urban FVC
researches because of its wide coverage, easy accessibility, and
short revisit period [11]–[19]. The aerial photography data, high
spatial resolution imagery, and hyperspectral imagery can pro-
vide promising results, but they have poor spatial and temporal
coverage [20]–[25]. The high price and complex processing
procedure also impede their application in a global scale. The
SAR data are immune to atmospheric conditions and have large
temporal and spatial coverage. But when it is used for FVC esti-
mation, the accuracy is low because of the strong penetration of
radar signals [26], [27]. Multispectral data with moderate spatial
resolutions, such as the Landsat imagery, have been used for
FVC estimation [28]–[31]. The Landsat imagery has achieved
good results in mapping the subpixel urban fractional cover.
However, its relatively low spatial resolution may cause a spec-
trum mixture for estimating the FVC in heterogeneous urban
areas [27], [29]. The Sentinel-2A satellites obtain multispectral
instrument (MSI) images with higher spatial (10, 20, and 60 m)
and spectral resolutions (13 bands) than that of Landsat [32]–
[35], which can bring higher vegetation monitoring accuracy
and FVC estimation accuracy. The red-edge band reflectance of
the Sentinel-2 data, which is little sensitive to spectral noises,
is closely connected with vegetation physiological parameters
(nitrogen content, biomass), so it can be used to detect the health
and pigment status of plants [36]–[38]. Therefore, Sentinel-2A
MSI might be a good option for the FVC estimation.

A number of subpixel methods have been developed to esti-
mate the FVC using the remote sensing data, including linear
spectral mixture models (LSMM) and nonlinear spectral mix-
ture models (NLSMM) [39]–[40]. LSMM includes the spectral
mixture analysis (SMA) and the multiple endmember spectral
mixture analysis (MESMA) [41]–[44]. In the scenarios with
complex endmember spatial structures (vegetation and soil),
multiple scattering is serious. In this case, the NLSMM (such
as, probabilistic model, geometric-optical model, stochastic ge-
ometric model, and fuzzy model) can derive the endmember
abundance more accurately than the LSMM [45]–[48]. However,
the NLSMM contains cross-terminal endmembers, which may
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cause collinearity and may have unmixing errors greater than
that of the LSMM. Therefore, choosing an appropriate estima-
tion model for FVC mapping in complex scenarios with mixed
signals is important.

Usually, the estimation model is determined by the subpixel
analysis, in which the spectral unmixing and FVC map gen-
eration are performed at the pixel level. Actually, the accurate
vegetation information of a meaningful landscape or a defined
geographic zone, which requires the FVC maps at the object
level, is more useful to urban management [49], [50]. The
object-based image analysis (OBIA) can reduce the influence of
surrounding pixels and the “salt and pepper” phenomena by con-
texture procedures and integrating neighborhood information
[51], [52]. Additionally, the OBIA can segment one image into
objects of different scales, creating a layered set that is adaptable
to different applications [53]. Therefore, the OBIA combined
with the spectral unmixing analysis may be a better option for the
urban FVC estimation than the pixel-based unmixing methods.

The advancement of global urbanization inevitably leads to
the reduction and even disappearance of vegetation, affecting
the regional and global climates and ecological environments.
The urban FVC is usually estimated by the pixel-based mix-
ture analysis using moderate spatial resolution images, such
as EO-1/Hyprion and Landsat data. Medium–high resolution
multispectral images (such as Sentinel-2) and the object-based
mixture analysis (OBMA) method are seldom used. This article
is to explore the performance of the OBMA method in estimating
urban FVC using the Sentinel-2 MSI imagery. Both the LSMM
and NLSMM models are used, as the urban areas are hetero-
geneous. The FVC maps are also derived from the Sentinel-2A
data without red edge bands to analyze the influence of red edge
bands on FVC estimation.

II. STUDY AREA AND DATA

A. Study Area

The study area is located in Changsha, latitudes 27°51′ to
28°40′N and longitudes 111°54′ to 113°15′E, a city in the middle
south of China. The city has a subtropical monsoon climate
with four distinct seasons and very rich vegetation types. A
200 km2 region in the downtown was selected as the study
site. It has all typical urban land use/land cover types, such
as residential areas, commercial areas, roads, parks, agriculture
land, forests, water, and wetlands. The urban landscape is usually
composed of vegetation, impervious land, and soil with different
percentages in addition to water [54]. The study site is close to
the Xiangjiang River, so there are streams, pools, and ponds.
Therefore, a revised V (vegetation)-I (impervious surface)-S
(soil)–W (water) model was applied in this study.

B. Remote Sensing Data and Processing

We used the clear (0% cloud cover) Sentinel-2A data
(path/row: N0205_R075_T49RFM) acquired on September 15,
2017 from the European Space Agency website (https://scihub.
copernicus.eu/dhus/) to estimate the FVC. The data have 13
bands, including visible, near-infrared, and short-wave bands.

Fig. 1. Location of the study area and the aerial photographic areas. The study
site is shown as a true color composite of the Sentinel-2 imagery (bands 4, 3,
and 2 as red, green, and blue, respectively).

The five near infrared bands (four red edge bands and one
NIR band) can be used for vegetation monitoring and analysis.
Terrain correction and atmospheric correction were conducted
to the Level-1C data using SRTM DEM and the Sen2Cor al-
gorithm, respectively [55]. Moreover, 23 ground control points
were selected to register the Sentinel-2A images. The 10- and
20-m resolution spectral bands were used in this study, and the
20-m bands were resampled to 10 m by the nearest neighbor
interpolation.

The Landsat 8 OLI data (path/row: 123/40) obtained on
September 12, 2017, which is close to the acquisition date of
the Sentinel-2 images provided by the United States Geolog-
ical Survey, were also used for FVC estimation. It has eight
multispectral bands (resolution 30 m), one panchromatic band
(resolution 15 m), and two thermal bands (resolution 100 m).
Terrain correction, atmospheric correction, and geometric cor-
rection were also performed. Only the 30-m spatial resolution
spectral bands (excluding coastal band) were selected for the
FVC analysis.

The unmanned aerial vehicle (UAV) images (resolution 0.5 m)
with three multispectral bands (red, green, and blue) collected
on September 13, 2017 (no cloud cover) were employed to
assess the accuracy of the FVC estimated from the above two
data. Two aerial photographic areas (see Fig. 1) (0.8 and 1 km2)
were delimited and the flight missions were planned using a DJI
Phantom 4 (DJI, Shenzhen, China). The images were automat-
ically geotagged using the FEIMA UAV Manager during the
flight and both the forward and side overlaps were set as 80%.
Then Pix4DMapper was applied for image orthorectification and
mosaicking.

The collected samples include streets trees, grassland, wood-
land, bare land, water body, road surface, and buildings. The
FieldSpec Pro FR2500 back-mounted field hyperspectral ra-
diometer from the Analytical Spectral Devices (ASD) company
was used to collect the spectra of various materials, and a total of
90 samples of different surfaces were collected to establish ref-
erence spectral library. The spectra data were processed by dark
calibration, wavelength calibration, radiometric calibration, and
reflectance conversion.

https://scihub.copernicus.eu/dhus/
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Fig. 2. Flowchart of the proposed method for urban FVC estimation.

We manually selected the regions of interest (ROI) according
to the location of GPS points and Google Street View on the
Sentinel-2 MSI image. Each component corresponds to an ROI
of about 15–20 pixels. The spectra of these components were
collected for establishing the image spectral library. All spectra
of materials (including border tree, grass, forest, bare land, water
body, road, and building measured by GPS) were converted
using the band response function of Sentinel-2A to establish
the image spectra library.

III. METHODOLOGY

We developed a method for urban FVC estimation using the
Sentinel-2 MSI images and the OBMA method. The proposed
method has four steps (see Fig. 2). First, generate the image
objects by the multiresolution segmentation algorithm. Second,
the endmember purification nonlinear SMA is used to identify
“pure” objects. Subsequently, determine the spectra of each
component using the image spectral library and the reference
spectral library. Finally, the urban FVC maps are produced using
the LSMM or NLSMM models.

A. Image Object Production

In this article, we used the multiresolution segmentation algo-
rithm in eCognition Developer 9.0 (Trimble Germany GmbH,
Munich, Germany) software [56] to produce image objects from
the Sentinel-2 MSI [57]. The multiresolution segmentation algo-
rithm constructs the primitive objects of different sizes using the
heterogeneity threshold (1) and enhances the object generation
response to the landscape patch structure. The heterogeneity
threshold is a function of image layer weight, scale parameter,

shape (defines the weight of color when segmentation), and
compactness. The scale parameter decides the object size, which
influences the endmember selection in the subsequent steps.
Considering the field observations and the spatial resolution of
the images, segmentations used the scale parameters ranging
between 1 and 30 pixels at an interval of 5 pixels for Sentinel-2
and between 1 and 12 pixels at an interval of 2 pixels for Landsat
8 to obtain an optimal scale parameter for creating objects and
endmember selection

hdiff =
∑

c

wc(n1(hmc − h1c) + n2(hmc − h2c)) (1)

where hdiff is the regional heterogeneity, wc represents the
weight of the dimension, n1 and n2 are the area of different
regions, h1c and h2c are the heterogeneity of two adjacent
regions, and hmc is the heterogeneity of the new merged region.

According to the visual examination and a series of tests, the
scale parameters of 5 pixels (Sentinel-2) and 3 pixels (Landsat
8) were determined for endmember selection, and 50 pixels
(Sentinel-2) and 15 pixels (Landsat 8) were set to generate ob-
jects. In addition, the hierarchical segmentation was performed
to create objects at three levels using the scale parameter of
50, 100, and 150 pixels to investigate the advantage of OBMA
in mapping FVC using the Sentinel-2 data. The shape and
compactness required by the algorithm were kept as constants
of 0.9 and 0.1.

B. Endmember Selection Based on Image Objects

Endmember selection is a key step in the SMA and high-
quality FVC map generation. The endmember selection algo-
rithms can be roughly divided into the endmember extraction
algorithms (EEA) and the endmember generation algorithms
(EGAs). EEA, including the pixel purity index [58], vertex
component analysis, [59] and sequential maximum angle con-
vex cone [60], assumes that there are pure pixels of different
land cover types in the images, and all mixed pixels can be
regarded as polyhedrons in the high-dimensional space, and the
vertex of polyhedron is the endmember. EGA includes iterative
error analysis [61], minimum volume transform [62], minimum
volume constraint nonnegative matrix factorization [63], and
endmember purification nonlinear SMA (EP-NSMA) [64]. EGA
does not depend on the pure-pixel assumption and it directly
generates the spectral features of “pure” endmembers. Although
EEA can achieve promising results in some cases, the results of
EGA are closer to actual conditions. Therefore, the EP-NSMA
proposed by Ma et al. [64] was adopted to select the “pure”
endmember in this study. The potential “pure” endmembers were
selected by spectral purification of SMA, and then projected to
the UAV imagery. Wrong endmembers (e.g., shadow pixels and
edge pixels) were manually removed. The remained endmem-
bers include vegetation (197), impervious surface (168), water
(136), and soil (149).

Different from most research works that selected endmembers
on the basis of pixels, this article extracted endmembers from
the image objects, because a “pure” image object is more like
a meaningful geographic unit, on the basis of which the noise,
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TABLE I
PROPOTION OF FINAL LIBRARY FROM SENTINEL-2 OBJECTS AND ASD

HYPERSPECTRAL IMAGERY

shadow/shade, and complexity can be effectively reduced by the
averaged value of the object. Furthermore, the spatial features of
the image objects can improve the endmember selection, thereby
reducing FVC estimation errors.

C. Spectral Library Construction for Each
Biophysical Component

For the SMA, we produced a spectral library containing pure
spectra of the components in the Sentinel-2 and hyperspectral
imagery. The within-class spectral variability due to compo-
nent degradation and exposure differences was considered in
the spectra selection. Subsequently, count-based endmember
selection (CoB) was applied to reduce the effect of interclass
spectral ambiguity and intraclass redundancy [65]. The in_CoB
and out_CoB values of each spectrum in the image spectral
library and the reference spectral library were calculated. We
compared the in_CoB and out_CoB values of the spectra of the
corresponding components in the two spectral libraries (image
spectral library and reference spectral library), and selected the
spectra with higher in_CoB values and lower out_CoB values.
The final spectral libraries for all biophysical components based
on the selected spectral attributes of endmembers were estab-
lished, which are the vegetation spectral library (12), impervious
surface spectral library (8), soil spectral library (3), and water
spectral library (2). The number of the image spectral library
(Sentinel-2 objects) and the reference spectral library (ASD
hyperspectral imagery) are shown in Table I.

D. Object-Based Mixture Analysis

On the basis of the segmented object images, three fixed
endmember mixture analysis models were used for the mixture
analysis, which are the least squares methods using fully con-
strained least squares (FCLS), support vector machine (SVM),
and k-nearest neighbor (kNN). FCLS is an LSMM method, and
SVM and kNN are NLSMM methods. We applied the radial
basis function kernel (a nonlinear kernel) to run the SVM. For
the Sentinel-2A images, the mixture analysis should be done
twice, once with all the reference bands and once with the
red-edge-band free reference bands to analyze the influence of
red-edge on the FVC estimation. All the three algorithms were
also employed to generate FVC maps from the Landsat 8 object
images.

For comparison, the pixel-based mixture analysis methods
were also used to generate FVC maps. Subsequently, the spectral
library of each biophysical component was established using the
approaches described in Sections III-B and -C. FCLS, SVM, and
kNN were then employed to analyze each Sentinel-2A pixel and
Landsat 8 pixel for producing the FVC maps.

Fig. 3. Validation map.

In order to improve the FVC estimation accuracy, the shade
normalization was used to account for the brightness differences
between endmembers and image spectra. The nonshaded end-
member component of each pixel was divided by the sum of all
nonshaded endmember components, and finally the component
of each pixel actually composing the endmember was obtained.

E. FVC Estimation Accuracy Assessment

For the accuracy assessment, the object-based FVC maps
derived from Sentinel-2 and Landsat 8 images were compared
with the manual interpretation results of the UAV images. We
divided the 0.5-m resolution UAV images into 12 classes by the
random forest algorithm (the classification map was validated by
field data at the pixel level). These classes were then assigned to
five components, which are vegetation, impervious surface, soil,
water, and shadow. The labeled pixels were finally aggregated
into the object level, and the fraction of vegetation within an
object was generated. We only validated the vegetation fraction
during the accuracy assessment. A total of 300 objects were
randomly selected from the FVC maps generated from the
Sentinel-2 imagery for the accuracy assessment (see Fig. 3).
The sizes of the selected objects range from 5 to 8 pixels, and the
mean and standard deviations are 6.4 and 1.2 pixels, respectively.
Thus, the classification map generated from the UAV data could
only be used as the reference data. For comparison, the pixel-
based UAV classification maps were first aggregated using the
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Fig. 4. (a) Standard false-color composite of the Sentinel-2 image. (b), (d),
and (f) Pixel-based FVC maps obtained by FCLS, KNN, and SVM, respectively.
(c), (e), and (g) Object-based FVC maps obtained by FCLS, KNN, and SVM,
respectively.

selected validation image objects from the Sentinel-2 imagery.
The coefficient of determination (R2) and RMSE between the
FVC maps generated from Sentinel-2A and Landsat 8 images
was also calculated.

IV. RESULTS AND ANALYSIS

A. Object-Based and Pixel-Based FVC Maps Derived
From Sentinel-2A

The FVC maps derived from Sentinel-2 by the OBMA meth-
ods with the scale parameter of 50 pixels were compared with the
pixel-based FVC maps (see Fig. 4). The FVC maps obtained by
FCLS (FVC-FCLS) and kNN (FVC-kNN) have similar spatial
patterns of the vegetation component, which is close to that of the
standard false composite of the Sentinel-2 image. Forest parks,
cultivated land, and grassland have higher vegetation fractions
than water body, bare land, and impervious surface (such as
commercial areas, residential areas, and road) do. The vegetation
fractions of the FVC maps obtained by SVM (FVC-SVM) are
different. In the FVC-SVM maps, the vegetation fraction values
of many areas are given extreme values of 0 or 1. Because of the
maximum interval property of hyperplane, the SVM classifier is
similar to the pixel dichotomy, which leads to over-classification.
The vegetation fraction results in the object-based FVC-FCLS

Fig. 5. Validation of the Sentinel-2 FVC maps using the reference data. (a), (c),
and (e) Pixel-based FVC maps obtained by FCLS, SVM, and kNN, respectively.
(b), (d), and (f) Object-based FVC maps obtained by FCLS, SVM, and kNN,
respectively.

and FVC-kNN maps are shown by microlandscape units, which
is similar to the actual situation. In the FVC maps obtained by
OBMA, the vegetation fraction is presented at the object level,
which is more useful for city managers. Furthermore, the “salt
and pepper” phenomenon is more serious in the pixel-based
FVC maps. The polarization of FVC maps has been attenuated
in SVM when the OBMA method was used.

B. Accuracy of the FVC Maps

The accuracy of the FVC maps was assessed by the com-
parison with the reference data derived from the UAV images
(see Fig. 5). For the object-based FVC maps [see Fig. 5(a)–(c)],
the regression of Sentinel-2A and reference data yields a slope
of near 1. The coefficient of determination (R2) between the
vegetation fraction in the object-based FVC maps and that in
the reference data is larger than 0.67. Especially, the R2 between
the FVC-FCLS and the reference data and that between FVC-
kNN and the reference data is above 0.89, indicating that the
object-based vegetation fraction estimation methods are feasible
in heavily urbanized areas. The linear model, FCLS, has the
highest accuracy (R2 = 0.92, RMSE = 0.0956), followed by
nonlinear models kNN (R2 = 0.89, RMSE = 0.0988) and SVM
(R2 = 0.67, RMSE = 0.2624). Validation results show that the
pixel-based FVC estimation [see Fig. 5(d)–(f)] has smaller R2

and larger RMSE than that of the object-based FVC estimation,
suggesting that the object-based spectral unmixing method is
more effective. FCLS also has the best performance in the
pixel-based mixture analysis.



346 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6. Multiscale object-based FVC maps derived from Setinel-2A images by
FCLS with scales of (a) 50, (b) 100, and (c) 150. (d) FVC map for land use/land
cover derived from the GF-2 images. (e) FVC map of the street district.

C. Multiscale FVC Maps

The OBMA method can generate multiple scale vegetation
fraction maps adaptable to different applications. The object-
based FCLS-FVC maps derived from the Sentinel-2 data with
the scale parameters of 100, 150, and 150 pixels are shown in
Fig. 6(a)–(c), respectively. The accuracy of these FVC maps is
consistent with that of Fig. 5(a), because they were obtained by
aggregating the OBMA results of the Sentinel-2A data with a
scale parameter of 50 pixels. In the FVC maps of these three
scales, the vegetation fraction shows a consistent pattern.

As the FVC map [see Fig. 6(d)] of land use/land cover derived
from the GF-2 imagery (Fig. 7, Hunan Provincial Department of
Natural Resources, 2017. http://www.enghunan.gov.cn/) shows,
the lowest vegetation fraction (0–0.2) appears in the commer-
cial areas. The residential areas also have very low vegetation
fractions. Park forests, agriculture, and wetland areas have the
largest vegetation coverage (0.8–1.0) [red color in Fig. 6(d)].
At the street district level, the vegetation fraction is 0–0.4 [see
Fig. 6(e)], and the vegetation coverage of most of the street
districts is between 0.2 and 0.4, which provides information
for understanding the social and vegetation structures of urban
neighborhoods.

D. FVC Maps Derived From the Landsat 8 OLI by the
OMBA Method

To evaluate the robustness of the OBMA method, we also
derived the FVC maps of the study area from the Landsat 8
OLI imagery (see Fig. 8). In the FVC-FCLS and FVC-kNN
maps, the spatial patterns of the vegetation fractions are similar

Fig. 7. Land use/land cover map.

to that of the standard false color composite imagery and the real
condition. High vegetation fractions are distributed in or around
forests, parks, and grassland. However, the result of FVC-SVM
is seriously affected by polarization, so values 1 and 0 account for
the majority of the map, the same as the results of the Sentinel-2A
data. And the value 0 is dominating. This could be due to the
low spatial resolution of Landsat8 OLI. The “salt and pepper”
phenomenon is also more obvious in the pixel-based FVC maps,
which is the same to the case of Sentinel-2A.

The determining coefficient (R2), ranging from 0.56 to 0.84,
was observed between the FVC results derived from the Land-
sat8 OLI image using OBMA and that from UAV images across
all validation samples (see Fig. 9). Using the OBMA method,
FCLS achieved R2 of 0.84 and RMSE of 0.1163, which are
better than the corresponding values of kNN (R2 = 0.67, RMSE
= 0.2559) and SVM (R2 = 0.56, RMSE = 0.3215). The OBMA
algorithms perform better than the pixel-based algorithms, re-
flecting the robustness of the OBMA method.

V. DISCUSSION

A. Influence of the Spectral Library on FVC Estimation
Accuracy of Pixel-Based and Object-Based Methods

In this article, the final spectral library consists of the image
spectral library and the reference library. In the image spectral
library, the spectral of each component was derived from the av-
erage value of all endmembers in an object. Although the objects
are relatively pure, endmember pixels have greater spectral vari-
ability than averaged objects, and a spectral library containing
averaged endmembers may be unable to properly capture this
variability. Therefore, we reprocessed the image spectral library

http://www.enghunan.gov.cn/
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Fig. 8. (a) Standard false-color composite of the Landsat 8 image. (b), (d),
and (f) Pixel-based FVC maps obtained by FCLS, KNN, and SVM, respectively.
(c), (e), and (g) Object-based FVC maps obtained by FCLS, KNN, and SVM,
respectively.

by selecting spectrum of the most representative endmember
in the object as that of each component. The proportion of the
reprocessed final library from the image spectral library and
reference spectral library was the same as the previous library
in Section III-C. The accuracies of the pixel-based and object-
based methods are shown in Fig. 10. The outcome demonstrates
that the accuracies of the FVC maps obtained by the pixel-based
mixture analysis based on the spectral library in the pixel scale
are higher than that based on the spectral library containing ASD
spectra and object-extracted (averaged from the complete object)
spectra. However, the results were exactly the opposite when we
used the OBMA based on these two final spectral libraries. This
indicates that the source of the library spectra can influence the
accuracy of the pixel-based and OBMA method. In general, the
object-based method performs better in estimating FVC in urban
areas than the pixel-based method.

B. Merits and Demerits of the Proposed Method

SMA was often applied to obtain the vegetation abundance
in urban areas from the hyperspectral imagery. Multispectral
images have been gradually used to acquire FVC maps, thanks

Fig. 9. Validation of the FVC maps derived from the Landsat8 OLI data using
the reference data. (a), (c), and (e) Pixel-based FVC maps obtained by FCLS,
SVM, and kNN, respectively. (b), (d), and (f) Object-based FVC maps obtained
by FCLS, SVM, and kNN, respectively.

to its wide bandwidth, easy accessibility, and abundant band
information. Although the pixel-based spectral mixture method
has got a wider application than the OBMA algorithm, it cannot
generate satisfying FVC maps in heterogeneous urban areas.

This study demonstrates that the OBMA method is more
preferable for urban FVC estimation than the pixel-based one.
First, the object-based FVC maps have higher accuracies than
the pixel-based FVC maps. Second, the OBMA method can
effectively remove the “salt and pepper” phenomena, which
cannot be done by the pixel-based methods. In this article, the
Sentinel-2 imagery was first segmented into objects, and then
conducted a mixture analysis. Compared with the pixel-based
mixture analysis method, the OBMA has three superiorities.
First, capturing the precise outline of different objects at the
pixel level is difficult, but descripting a tree canopy, house, forest,
and commercial district at the object level is possible. Objects
obtained by the segmentation algorithm are homogeneous and
can provide rich image features. Thus, they can eliminate the
“salt and pepper” phenomenon and are more meaningful for
describing geographic landscapes. Second, the OBMA method
can generate FVC maps of different scales and geographic
zones, which are adaptable to urban management and other
applications. The results indicate that the OBMA method is
robust, so it can be used to process other remote sensing data.

The proposed OBMA method has many advantages in urban
FVC estimation, but it also subjects to some limitations. First
the OBMA method involves the object-based endmember (OBE)
selection. Similar to the pixel-based method, the OBE selection
applies the trial and error procedure, which selects endmembers
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Fig. 10. Validation of the FVC maps derived from the Sentinel-2 data and
reprocessed final spectral library using the reference data. (a), (c), and (e) Pixel-
based FVC maps obtained by FCLS, SVM, and kNN, respectively. (b), (d), and
(f) Object-based FVC maps obtained by FCLS, SVM, and kNN, respectively.

and computes the scores, then uses the threshold method to
achieve an acceptable result. The OBMA method assumes that
the selected OBE is “pure.” However, obtaining pure OBEs
from the MSI imagery in urban areas is a challenge, and even
more difficult from the medium spatial resolution (30 m) OLI
imagery, as it depends on the segmentation scale parameter.
Using a larger scale value in segmentation will generate het-
erogenous objects, making it difficult to acquire pure OBE.
Smaller scale values bring more homogeneous objects favorable
for the OBE selection, but small endmember objects cannot
depict the meaningful geographic unit [50]. Therefore, selecting
a proper scale parameter for segmentation is essential for pure
OBE identification. Arranging an object-based image spectral
library combined with field survey data may be a way to solve
this problem. Measuring the intrasegment homogeneity and the
intersegment disparity could be another effective way to get the
proper scale parameter. Second, the mixture analysis results of
the object-based images are also affected by the scale parameters
of segmentation. Theoretically, the mixture analysis can be ap-
plied to images of any scale segmentation. However, large-scale
parameters in segmentation lead to low accuracies, and may
produce a result with a small-scale value, which is similar to
the case of the pixel-based method. Unmixing the image objects
with an appropriate scale parameter, then aggregating vegetation
abundance of lager objects from the former results may be a
feasible way to solve this problem. Thus, the selection of scale
parameters in segmentation is a decisive step of mixture analysis.
Third, the mixture analysis methods (FCLS, SVM, and kNN)
used in this study assume that the endmember number in a pixel
is constant, so errors appear when the number and type of surface
components change (e.g., heavily urbanized areas). Multiple

endmember mixture analyses, such as the multiple endmember
SMA, allow the variation of endmembers for each pixel, so it
may be a method to address those problems. Fourth, the FVC
results derived from multispectral images by the OBMA are also
subject to the spectral confusion of different surface components
(e.g., shadow and water) in the heterogeneous urban areas. The
spectral confusion will lead to collinearity, reducing the FVC
estimation accuracy [66]. To address these issues, decorrelation
or excluding endmember and image stratification have been
introduced. Additionally, we validated the FVC map generated
by the Sentinel-2 imagery at the object level. This may lead to
some uncertainties because shadow/shade is not considered in
the Sentinel-2 imagery, but it is clearly identified in the UAV
classification map. The pixel-based Markov matrix can be used
for the accuracy assessment of the FVC maps derived from the
Senitnel-2 imagery in the future. The contribution of the band
reflectance in Sentinel-2 data to the FVC estimation also needs
further research.

For complex scenarios with mixed signals, choosing an ap-
propriate mixture analysis model (linear or nonlinear) is sig-
nificant. Among the LSMM (FCLS) and NLSMM (SVM and
kNN) methods, FCLS achieved the highest FVC estimation
accuracy in the urban environment. However, the model should
be selected according to the nonlinearity degree of the mixed
signals, which is the proportion of multiple scattering terms.
If the multiple scattering is serious, the linear combination of
endmembers cannot explain the nonlinear mixed signals, so
NLSMM should be chosen [67]. If the three-dimensional struc-
ture of each endmember in an image is simple, the secondary
collision of photons between different endmembers decreases,
and the LSMM performs better [68]. Therefore, the quantitative
analysis of the multiple scattering intensity in mixed pixels by
field measurement or radiation transfer models and the analysis
of factors affecting multiple scattering, such as area ratio, spatial
distribution, and height difference of terminal elements, will be
helpful to obtain the basis for model selection.

VI. CONCLUSION

This article proposed a “paradigm-shift” in deriving high
resolution (10 m) vegetation abundance over urban areas from
the Sentinel-2A MSI data (5-day) by the OBMA method. The
experiments conducted in Changsha, China showed that the FVC
estimation accuracy can be improved using the OBMA method.
FCLS, an LSMM model, achieved the best estimation accuracy
(R2 = 0.92, RMSE = 0.0956). In general, the proposed method
was effective and robust when it was applied to Sentinel-2A
MSI, Landsat 8 OLI, and Sentinel-2A MSI data without red edge
bands. The red edge band reflectance information in the MSI
imagery can increase the accuracy of the FVC mapping products.
The presented approach may be of significant importance for the
urban vegetation monitoring, urban planning, and management.
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