588 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Anomaly Feature Learning for Unsupervised Change

Detection in Heterogeneous Images: A Deep Sparse
Residual Model

Redha Touati

Abstract—In this article, we propose a novel and simple auto-
matic model based on multimodal anomaly feature learning in a
residual space, aiming at solving the binary classification problem
of temporal change detection (CD) between pairs of heterogeneous
remote sensing images. The model starts by learning from image
pairs the normal existing patterns in the before and after images to
come up with a suitable representation of the normal (nonchange)
class. To achieve this, we employ a stacked sparse autoencoder
trained on a large number of temporal image features (training
data) in an unsupervised manner. To classify pixels of new unseen
image-pairs, the built anomaly detection model reconstructs the in-
put from its representation in the latent space. First, the probe (new)
image (i.e., the bitemporal heterogeneous image pair as the input
request) is encoded in this compact normal space from a stacked
hidden representation. The reconstruction error is computed using
the L2 norm in what we call the residual normal space. In which,
the nonchange patterns are characterized by small reconstruction
errors as a normal class while the change patterns are quantified
by high reconstruction errors categorizing the abnormal class. The
dichotomic (changed/unchanged) classification map is generated
in the residual space by clustering the reconstructed errors using
a Gaussian mixture model. Experimental results on different real
heterogeneous images, reflecting a mixture of imaging and land
surface CD conditions, confirm the robustness of the proposed
anomaly detection model.

Index Terms—Anomalous patterns, change detection (CD),
deep learning, feature space reconstruction, heterogeneous remote
sensing, multimodal anomaly detector, reconstruction error, sparse
autoencoder.

I. INTRODUCTION

OWADAYS, detecting changes between images of the
N same geographical area over time is still an active topic
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in remote sensing image processing. A less explored problem is
the multimodal change detection (CD) which is a challenging
task that can be viewed as the generalization of the classical
monomodal CD problem [1]-[5]. This research area became
active with the launch of new satellite generations with different
sensor characteristics. Definitely, the exploitation of heteroge-
neous multimodal data is important to increase the accuracy
of any CD system. The existing monomodal systems are not
usable as is and need to be adapted to solve the CD problems for
environmental monitoring, deforestation, geological resources
survey, disaster localization and quantification, and urban plan-
ning, to name a few.

Multimodal CD [6] is a data analysis procedure seeking
directly to locate area of change that may have occurred
between two heterogeneous satellite images acquired in the
same region of interest at different times. Practical and tech-
nical advantages of this recent CD procedure have generated
a growing interest, in the remote sensing research commu-
nity since it should be more robust to natural changes due
to environmental variables such as humidity or phenological
state. The issue caused by the environmental variables can
be avoided when comparing images coming from different
sources (i.e., multimodal images) CD based on multimodal
images (heterogeneous) generally refers to differences in two
imaging modes in which acquired images are represented in
two distinct feature spaces that do not share the same statistical
properties. It is a nontrivial problem since it is subject to less
stringent requirements about the source and characteristics of
the acquired data, hence, leading to radically different image
statistics that cannot be compared directly from traditional CD
techniques.

To date, the multimodal CD issue has been addressed by few
works, that can be grouped into five categories in which we
can find parametric models [7]-[10] that use a set of parametric
multidimensional distributions (mixture), nonparametric meth-
ods [11] which aim to minimize an energy model to satisfy an
overdetermined set of constraints, algorithms based on operators
using spatial and temporal similarity measures as in [12]-[14],
projection-based techniques that try to map the two hetero-
geneous images to a common feature space where traditional
monomodal CD can be applied [15]-[18], and, finally, machine
learning methods [19]-[22].

1) In the first category of parametric methods, a set of

multivariate distributions is used for common modeling
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dependencies between the two heterogeneous images ac-
quired from different types of multimodality [7]-[10].

2) Inthe nonparametric methods, we can mention the energy-
based model in the least-squares sense designed to satisfy
an overdetermined constraint scenario which models each
pair of pixels from the before and after multimodal im-
ages [11].

3) The methods of the third family try, first, to estimate
the correspondence between the same existing points in
the before and after heterogeneous images, and then to
identify and detect the areas of change between the two
multimodal images, using invariant similarity measures
by imaging modality (such as correlation and mutual
information) [12]-[14].

4) In the fourth category, projection techniques are used to
transform the two multimodal images into a new common
feature space, in which the before and after heteroge-
neous images share the same statistical properties, and
on which classical monomodal CD methods can then be
exploited [15]-[18].

5) In the last category, relying on machine learning meth-
ods, Merkle et al. [19] used an unsupervised generative
adversarial network consisting of a generator stream that
produces a binary map and a discriminator stream that
tries to discriminate between the result of the generator
and the result of a binarization algorithm. Liu et al. [20]
try, first, to train a couple of convolutional neural networks
in order to transform the two multimodal images in a new
feature space allowing to calculate a difference map. In the
second step, they apply a thresholding image processing
algorithm to detect changes vs. nonchanges area from the
resulting difference map. In the same vein as [20], Zhao
etal. [22] proposed to employ a symmetric neural network
composed of a restricted Boltzmann machine, whose pa-
rameters are updated based on the clustering result. Zhang
etal. [21] based their approach on a denoising autoencoder
network and used selected features of the difference image
to build the network.

Let us note that the parametric techniques by construction
the parametric models suffer from the fact that they are not
easily generalizable for other pairs of different sensors. They
have been specially designed via specific distributions for a
given type of multimodal sensors (e.g., optical/SAR). Whereas
the nonparametric techniques have the ability to process a
wide variety of imaging modalities but they are possibly less
accurate than specific heterogeneous CD models that deal with
specific types of multimodality. The third and fourth family
of techniques are the simplest, mathematically speaking, and
also the most local, in terms of modeling. Because of their
modeling (modeling associated with a neighborhood), they may
have the disadvantage of making it more difficult to conceive
of possible improvements and to understand how these changes
would improve them. The efficiency of machine learning-based
CD models depends on the availability of an adequate massive
amounts of representative training data, sometimes manually
selected and carefully chosen.

As the most advanced form of machine learning, deep learn-
ing was used for feature-based learning. For instance, a deep
autoencoder neural network has been proposed to realize un-
supervised feature learning in order to learn discriminative and
effective features from a large amount of unlabeled data. The
sparse autoencoders have been widely studied for feature-based
deep learning methods [23], [24], as it is highly effective for
finding high-level representations of complex data. In our case,
the multimodal CD problem can be viewed as a binary clas-
sification task in which the change class or region refers to a
set of pixel pairs (or instances), extracted from heterogeneous
image pairs, that stand out as being different from all others.
Such instances can be seen as anomalies that are indicative of
a particular underlying process under the assumption that there
are no errors generated from the sensor. Hence, the change class
refers, practically, to different semantic regions from the same
geographical area that is seen through two different imaging
modalities. This anomaly detection problem can be efficiently
solved using sparse autoencoder since it has the appealing ability
to uncover potential anomalies in unlabeled data [25].

In this article, we propose a new unsupervised CD model
which belongs to the machine learning category, a deep learning
solution that aims to define a model that tries to map, in a residual
space, the changes as anomalies using a stacked layerwise sparse
autoencoders which ensure the encoding and decoding stages
with a well-adapted neural transfer function, for processing
and detecting changes from multimodal remote sensing im-
ages coming from different sources and under different spatial
image resolutions. Compared to the state-of-the-art methods,
the proposed CD model is defined to be more robust to model
the class changes as anomalies, thanks to its flexible learning
architecture which is also well adapted to process new unseen
pair of heterogeneous image inputs (as anomalies) in the absence
of annotated data. Our proposal is to modelize in a residual space
the changes as anomalies. More precisely, we propose an un-
supervised anomaly-based heterogeneous CD modeling based
on learning image features from deep sparse autoencoder neural
network as a multimodal feature extractor to gather useful image
features from the usual image patterns (nonchange or normal
class) existing in the before and after multimodal images in the
absence of labels. The built anomaly detection model utilizes
a reconstruction error vector to perform anomaly detection. To
analyze a new unseen image-pairs, the model projects the input
into a new latent space from which it attempts to map the pro-
jected representation back to reconstruct the input. The residual
difference between the original input and the reconstructed one
defines our residual space. A Gaussian mixture model (GMM) is
then used to model the extracted features in this space to separate
normal from anomalous patterns corresponding, respectively,
to nonchange and change class labels. The advantage of the
proposed CD model lies in its flexibility to process a nonspecific
source type, such as multisensor, multisource, or multilooking
SAR image pairs, avoiding the drawbacks of parametric models
which require knowledge of the conditional distributions; and
the disadvantage of supervised machine learning models is that
they often require labeled and well-balanced training data. The
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main advantage of our model lies on its ability to learn the
underlying latent space.

The rest of this article is organized as follows. Section II
presents the proposed residual CD model and its architecture,
which allows us to learn and to reconstruct a suitable repre-
sentation (feature anomaly space), from which changed and
unchanged areas are then identified as normal/abnormal classes.
Section III describes the experimental framework used to eval-
uate the performance of the proposed CD model, and a set of
experimental results compared to the state-of-the-art multimodal
change detectors. Section IV concludes the article.

II. PROPOSED CHANGE DETECTION MODEL

Let us assume two multimodal remote sensing images ac-
quired before and after a given event in the same geographical
area and also let us consider that the acquired images are coregis-
tered. In order to estimate a binary change detection map which
is supposed to represent the difference between the two temporal
heterogeneous images, we rely on unsupervised reconstruction
machine learning model designed especially to model the change
class as anomalies in our CD problem in order to detect different
possible change events such as floods and urban growing.

The proposed anomaly-based CD model takes as input a
combination of a variety of multimodal remote sensing images,
as a combination of two optical images, SAR/optical or opti-
cal/SAR images, or SAR images with different number of looks.
The pixels in those images cannot be directly compared. The
model is composed of two major parts: an unsupervised learning
sparse-based modeling step, where a training phase is performed
to learn a robust deep sparse change detector; and a binary
clustering step, where a maximum A Posteriori criteria is used
for data clustering (see Fig. 1). More precisely, in the training

phase, the architecture of our CD model is based on stacked
sparse autoencoder with a depth of two sparse layers, where each
single sparse layer has an encoder layer with a corresponding
decoder layer. Based on the proposed architecture, our CD model
takes as input a temporal normal feature space and try to learn
encoder—decoder layers using a layer-wise training technique in
which each sparse layer is trained independently in an unsuper-
vised manner. The internal and optimal values of the deep CD
model parameters (prior) are predetermined using a grid search
method (see Section III-C). The temporal normal feature space is
fed to the first single-layer sparse autoencoder which was trained
to extract low-level feature representations from its hidden layer.
The lower level features are then used to train the second sparse
autoencoder where high-level features are given by its hidden
layer (the second layer) of the stacked sparse autoencoder. The
encoder layer encodes the input in a compact representation,
while the decoder layer ensures to predict the encodings in order
to reconstruct an estimate of the original input. Once the training
phase is accomplished, the built encoder—decoder layers ensure,
respectively, the mapping of new input feature space in a com-
pressed space and then the reconstruction of the original space
from this compact representation. The reconstruction error be-
tween the input features and their reconstructed versions is then
computed using the L2 norm. A clustering step is achieved in the
residual space to generate, as output, two clusters of data (change
versus nonchange) related to our bitemporal CD problem.

A. Unsupervised Learning Sparse Model

The anomaly-based CD problem aims at identifying the (usu-
ally rare) differences of ground features existing locally between
two bitemporal heterogeneous images, acquired over the same
geographical area, with two different imaging modalities (let us
assume that the two remote sensing images are coregistered).
It may be considered as a binary classification task in which
the (small) local spatial changes, over the time, are potential
indicatives of something that have truly changed in the area
of interest and which can thus be identified as anomalies (i.e.,
different data seen through two different imaging modalities).
More precisely, anomalous patterns are referred as patterns in
the data that do not conform to a well-defined notion of normal
behavior [26]. A common strategy to extract anomalies is to
reduce the high-dimensional input space in lower-dimensional
space and then apply a set of distance metrics within the reduced
space in order to identify the anomalies [27].

To this end, supervised classification approaches require la-
beled and often well-balanced training data or, more generally, a
preprocessing stage such as data augmentation to train a classi-
fier model. In heterogeneous CD problem, especially in remote
sensing imagery, training data are generally less available, unla-
beled, and often highly unbalanced. Besides, data augmentation
may be harder since the binary class change and nonchange are
highly imbalanced over the whole acquired data.

In our CD problem, itis important to recall that the changed re-
gions are smaller than the unchanged regions since a significant
event (such as flooding and earthquake) occurs rarely and are
thus very localized in time and space. Consequently, we have to
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Fig. 2. Stacked autoencoder neural network composed of two layers of sparse
autoencoders.
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Fig. 3.
images.

(a) and (b) Original SAR/optical images. (c¢) and (d) Reconstructed

rely on machine learning-based binary classification method in
which the training phase is only performed on patterns belonging
to the predominant class (the nonchange majority class label in
our case) while keeping robust to detect the minority class, i.e.,
the rare events belonging to the change class as anomalies during
the test phase.

Among the existing machine learning-based strategies, the
reconstruction-based methods, using sparse autoencoders, seem
particularly well adapted to our heterogeneous CD problem. Its
main ability is to learn, in the least square sense, a compressed
representation minimizing the reconstruction error of the two
imaging modalities in the residual space and to estimate within
this space the reconstruction error of each bitemporal input
patterns from local gray-level distribution as a reliable anomaly
score. This score can then be exploited to identify the abnormal
(rare) patterns caused by a given event (defining the change
label) and the normal unchanged patterns belonging to the
nonchange class label.

To build our abnormal pattern-based model, we propose to
learn a stacked constrained neural network model which can be
trained with a layer-wise training procedure [28] in order to find
a good representation for the input space [29], [30] and also to
better reconstruct the normal patterns based on the learned mul-
timodal imaging representation [31] (see Figs. 2 and 3). More
precisely, we propose to use a stacked sparse autoencoder, which

offers an unsupervised reconstruction framework consisting of
multiple layers of sparse autoencoders, and which turns out to
be robust to discover interesting structures from input image
data. This allows us to build a robust anomaly CD model to
identify with a high error the unusual and abnormal features
(see Fig. 3). Let us note that deep learning methods, including
deep autoencoder, have been applied to learn cross-modality
and multimodal features. In particular, AECs (autoencoders) are
able to fuse highly heterogeneous pairs of data types, such as
text mixed with images, or audio-linked with video, and even
combining facial expressions with sound, to name a few [27],
[30], [32]-[43]. Hence, this work defines a novel application of
deep networks to learn from heterogeneous normal patterns, a
common space representation, and also an appealing strategy
to reconstruct or fuse different imaging modalities within an
unsupervised feature-based learning strategy [27], [32], [38].

It is important to remember that the intrinsic problems of the
standard autoencoder model make it inefficient [44], [45]. Sparse
autoencoder is a constrained model that can learn relatively
sparse features by introducing a sparse penalty term inspired by
the sparse coding [44] into the autoencoder. Putting constraints
on the autoencoder neural network aims to encourage the spar-
sity of the model [44], [46], and can improve the performance
relative to the traditional autoencoders [44], [45]. This can be
simply achieved by adding a sparse penalty term to the cost
function of the hidden layer to control the number of active
neurons. Hence, the cost function we used in our case for training
the anomaly-based deep sparse model is composed from [45]:

1) Sparsity Regularization Term: Sparsity regularization
tends to create specialized neurons that focus on particular subset
from the training data by increasing the number of inactive
neurons. The average activation of each hidden neuron p; is
expected to be close to a small value, and each hidden neuron
activation is expected to be close to zero, and thus the neurons of
the hidden layer becomes inactive. To achieve this, the sparsity
term is added to the objective function that penalizes p; if it
deviates significantly from a predefined small number p. The
sparsity penalty term {2y 1S employed as in [47], which
attempts to impose a constraint on the sparsity of the output
from the hidden layer. It is defined by

D
1 —
Qsparsity = g plOg <§) + (1 - P) 10g <1 — 5) (1)
i=1 g

7

where p; is the average activation value for the ith hidden layer
unit and D represents the number of neurons in the hidden layer.
The sparsity penalty term constrains the value of p; to be close
to p according to the Kullback—Leibler divergence. This penalty
function possesses the property that Kullback—Leibler diver-
gence KL(p)p;) = 0 if p;=p. Otherwise, it increases mono-
tonically as p; diverges from p.

2) L2 Regularization Term: The L2 regularization term
£2cighis is added to keep the weight magnitudes small during
the feature learning stage in order to prevent overfitting. It is
defined as follows:

1 L N k . 2
Qweights = 5 ; Z Z (W](l)) ()
3j i



592 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

where wj(-? represents the weight, L is the number of hidden

layers, IV is the number of observations, and % is the number of
variables in the training data.

3) Cost Function: The anomaly CD model is based on train-
ing an unsupervised sparse neural network whose cost function
is an adjusted mean squared error function defined by (3) [45]. In
our work, we propose to use a more robust encoding—decoding
neural transfer functions (4) and (5) that better mitigate the
convergence problem, and improve the performance of our CD
model.

k
xkn - xkn + A Qweights + B'Qsparsity 3
n=1fk—1

Mz

where x,, is the input vector and Z,, is an estimate of the input
vector x,. The coefficients A and /3 control, respectively, the
importance of the regularization and the sparsity terms.

4) Transfer Functions: To make our change detector more
effective for anomaly detection, we make use of the positive
saturating linear transfer function for the encoding stage, and
the linear transfer function for the decoding stage. Each encoder
layer has a corresponding decoder layer:

0, if 2<0

fene(2) =q 2, if 0<z<1 4)
1, if z>1

fDec(Z) =Zz. 5)

The encoder maps the input representation = to another en-
coded representation as follows:

where W) is a weight matrix, and b(!) is a bias vector of the
encoding layer.

The decoder maps the encoded representation zg,. to recon-
struct an estimate of the original input representation by

= FD WO 2 + b0 7

where W) is a weight matrix, and b)) is a bias vector of the
decoding layer.

B. Binary Clustering

In this approach, we have formulated the heterogeneous CD
problem into a learning-based reconstruction problem in which
the learned constrained stacked sparse model uses its stacked
hidden representation to map or reconstruct each new input
image pattern. Given a new heterogeneous remote sensing image
pair, we have thus to, first, compute the reconstruction error for
each pixel (or for each feature vector centered on this pixel)
occurring at the same position in the before and after image pair.
The reconstruction error, between the feature vector expressed
in the input feature space and the reconstructed space, is then
measured in the Lo norm sense and the pixels belonging to
the change class label are then simply identified by their high
abnormal reconstruction error.

Based on the reconstruction error, the automatic clustering of
the residual space can be performed by a thresholding technique

Algorithm 1: Prediction Steps of the CD Model.
Step 1:

e I < reconstruct a new input feature space
(test) x using the built deep sparse model
with the optimal parameter

foreach z; € reconstructed space & do
e ¢; < compute the reconstruction error
between z; and z; using the L2 norm

end

Step 2:

e Perform a clustering stage on e;

or a k-means-based classification strategy (k = 2). Another
strategy, less sensitive to false alarms or the a priori assumption
of two spherical class label datasets with the same radius (in
the case of the k-means procedure), consists in estimating the
parameters of a mixture of two Gaussians in the residual space
with the EM algorithm. The MAP rule based on these mixture
parameters is used as final binary decision to assign a normal
class label to the nonchange class and the abnormal class label
to the change class. Algorithm 1 shows the predictions of the
CD model on the new unseen data.

III. EXPERIMENTAL RESULTS

In order to validate and to show the strength of the proposed
model to process both different imaging modality cases and
CD conditions along with different spatial resolutions, we have
conducted our study on 11 real heterogeneous image pairs with
different kinds of modalities, namely multisensor (heteroge-
neous optical images), multisource (optical and SAR images),
and multilooking (heterogeneous SAR images), in which the
change mask (ground-truth) is provided for each heterogeneous
dataset by a photo-interpreter.

In our application, we use the leave-one-out test scenario to
evaluate the performance of the proposed CD model. In this
well-known procedure, we remove one entire dataset fromthe 11
heterogeneous datasets and we train the model on the remaining
heterogeneous datasets. The output of the trained model is then
used to classify the removed dataset. We repeated this process
11 times, and at each time, we resort to the two heterogeneous
images to be our test example.

A. Heterogeneous Dataset Description

e The first multimodal dataset is a pair of SAR/optical
satellite images (Toulouse, France), with size 4404 x 2604
pixels, before and after construction. The SAR image was
taken by the TerraSAR-X satellite (Feb. 2009) and the
optical image by the Pleiades (High-Resolution Optical
Imaging Constellation of CNES, Centre National d’Etudes
Spatiales) satellite (July 2013). The TSX image was coreg-
istered and resampled by [49] with a pixel resolution of 2
m to match the optical image.
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e The second one is a pair of optical/SAR satellite im-
ages (Gloucestershire region, in southwest England, near
Gloucester), with size 2325 x 4135 pixels, before and after
a flooding taking place in an urban and a rural area. The
optical image comes from the Quick Bird 02 (QB02) VHR
satellite (15 July 2006) and the SAR image was acquired
by the TerraSAR-X satellite (July 2007). The TSX image
presents a resolution of 7.3 m and the QB02 image (with
resolution of 0.65 m and 0% cloud cover) was coregistered
and resampled by [49] to match this resolution.

* The third dataset shows two heterogeneous optical images
acquired in Toulouse (Fr) area by different sensor specifi-
cations (size 2000 x 2000 pixels with a resolution of 0.5
m). The before image is acquired by the Pleiades sensor in
May 2012 before the beginning of the construction work,
and the after image is acquired by WorldView?2 satellite
from three (Red, Green, and Blue) spectral bands (11 July
2013) after the construction of a building. The World View2
VHR-image was coregistered by [49] to match the Pleiades
image.

e The fourth dataset [8] is a pair of SAR/SAR satellite
images (Gloucester, U.K.) before and during a flood event
caused by intense and prolonged rainfall, overwhelming
the drainage capacity, on urban and agricultural/rural areas,
with size 762 x 292 pixels, acquired by RADARSAT satel-
lite with different number of looks. The number of looks
for the before SAR image is 1-look image (Sep. 2000) and
the number of looks for the after image is 5-looks (Oct.
2000). These two SAR images have a resolution of about
40 m.

e The fifth dataset [51], [53] consists of one multispectral
image and one SAR image showing the area of Gloucester
(U.K.), with a size of 1318 x 2359 pixels. The multispec-
tral image is taken by the Spot VHR satellite on Sep. 1999
before a flooding event. The SAR image is captured by the
European Remote Sensing (ERS) satellite (around Nov.
2000) during the flooding event. The resolution of these
two images are about 10 m [53].

 The sixth dataset consists of one SAR image and one SPOT
image with the same size of 330 x 590 pixels. The ERS
image is acquired on Nov. 16, 1999 before the flood in
Gloucester, U.K., and the optical image combined with
three bands is acquired on Oct. 21, 2000 during the flood
in Gloucester U.K.

* The seventh dataset is composed of two heterogeneous
optical images. It shows the changes of the Mediterranean
in Sardinia area (Italy). This dataset is acquired by different
sensor specifications, and consists of one TM image and
one optical image. The TM image is the near-infrared band
of the Landsat-5 (Sep. 1995 with a spatial resolution of 30
m). The optical image comes from Google Earth (RGB,
Jul. 1996, Landsat-5) with a spatial resolution of 4 m.
After coregistration, they are of the same pixel-resolution
412 x 300 pixels.

e The eighth dataset shows two heterogeneous optical im-
ages from another area in the south campus of Hubei
province of China were, respectively, acquired by the
QuickBird satellite in May 2002 and the IKONOS satellite

in July 2009, with a size of 240 x 240 pixels. The images
after preprocessing have the same spatial resolution of
3.28 m.

* The ninth dataset is a pair of SAR/optical satellite images
with a size of 291 x 343 pixels. The before image is
acquired by RADARSAT-2 in June 2008 over the River of
China. The optical image comes from Google Earth (Sep.
2010), acquired after a flooding event, and which integrates
imagery from both Quickbird US VHR satellite and SPOTS
satellite. After, coregistration, they are of the same spatial
resolution of 8 m.

e The tenth dataset shows two heterogeneous optical im-
ages covering the campus of Wuhan University in Hubei
province of China. They were, respectively, acquired by
the QuickBird satellite in April 2005 and the IKONOS
satellite in July 2009, and correspond to four bands (red,
green, blue, and NIR band) with a size of 400 x 400 pixels.
The resolution of these images is of 2.44 and 3.28 m. After
resampling, the after image have the same spatial resolution
as the before image, 2.44 m.

» The eleventh data set consists of one SAR image and one
RGB optical image. It shows a piece of the Dongying City
in China, before and after a new building construction. The
SAR image is acquired by RADARSAT-2 (Jun. 2008) with
a spatial resolution of 8 m. The optical image comes from
Google Earth image (Sep. 2012) with a spatial resolution
of 4 m [20]. After coregistration, they are of the same pixel-
resolution to give a size of 921 x 593 pixels.

B. Results and Evaluation

In our anomaly-based CD problem, we first convert the multi-
bands image to a grayscale image; the temporal feature image
space is simply done by collecting the local gray-level intensities
using a squared window of size Sw (Sw = 9 in our case).

We have used an architecture composed of a stacked sparse
autoencoder and consisting of two layers of sparse autoencoders,
where each encoder layer has a corresponding decoder layer,
a deep sparse autoencoder with a number of hidden layers
L;, = 2, thattakes a bitemporal feature vector input of dimension
Dinp = 162(= 2 x 9 x 9). The learned encoder layers compress
the input space into a low-dimensional representation, first into
a number of dimensions dp;, = 80 and then into a number
of dimensions dj,;, = 40. The reconstruction of this compact
representation of dimension dy,;, = 40 is done by using the two
previously learned decoder layers, respectively, from dp,;, = 40
to dp;, = 80, and from 80 to the original input dimension
binp = 162. We recall that in this learning architecture, we use
the satlin function for the encoding stage and the purelin function
for the decoding stage.

Our anomaly-based CD model can be optimized via a layer-
wise training technique [28], using a scaled conjugate gradient
descent algorithm [54], by starting to train the first layer to learn
to encode the normal representation D¥) to d("!1) and to decode
DW) from d"1) | and then to train the second layer to learn to
encode d("1) to d"2) and to decode d"2) from d("!1),

In our application, the coefficients A and g for the L2 reg-
ularization and the sparsity regularization terms were fixed,
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TABLE I
ACCURACY RATE OF CHANGE DETECTION ON THE 11 HETEROGENEOUS DATASETS OBTAINED BY THE PROPOSED METHOD AND THE STATE-OF-THE-ART
MULTIMODAL CHANGE DETECTORS (FIRST UPPER PART OF EACH TABLE) AND MONOMODAL CHANGE DETECTORS (SECOND LOWER PART OF EACH TABLE)

[ Optical/SAR Dataset

[ Accuracy (%) |

Proposed method | 0.961 | [ Optical/Optical Dataset [ Accuracy (%) |
[ SAR/Optical Dataset | Accuracy (%) |(prondes et al. [10], [49] 0.018 [ Proposed method 0.880 |
[ Proposed method | 0.892 | Prendes ef al. [9] 0.854 | Prendes et al. [48], [49] | 0.844 |
| Prendes et al. [48] | 0.844 | Copulas [7], [9] 0.760 Correlation [48], [49] 0.679
[ Correlation [48] ] 0.670 |[ Correlation [7], [9] 0.688 Mutual Inf. [48], [49] 0.759
| Mutual Inf. [48] | 0.580 | Mutual Inf. [7], [9] 0.768 Pixel Dif. [49], [50] 0.708

Pixel Dif. [9], [50] 0.782 Pixel Ratio [49], [50] 0.661

Pixel Ratio [9], [50] 0.813

SAR T-look / SAR 5-looks Dataset [ Accuracy (%) |

[ ERS/Spot Dataset | Accuracy (%) |

|

VHR Optical/SAR D A Y
[ Proposed method [ 0.814 Il ptica ataset | Accuracy (%) || Proposed method | — |
[ Chatelain et al. [8] [ 0.732 ]| Proposed method [ 0.780 || Tineral 17| 0818 |
| Correlation [8] [ 0521 ][ Gregoire eral [SI] | 0.70 ] =
| Ratio edge 8] I 0382 l | Liu et al. [17] | 0.655 |

[ SAR/Optical Dataset

[ Accuracy (%) |

| Proposed method [ 0.767 | [ SAR/Optical Dataset | Accuracy (%) |
PCC [20] 0.961 Proposed method 0.980
SCNN without pre-training [20] 0.958 Zhao et al. [22] 0.979
SCNN with 1 coupling layer [20] 0.964 Liu er al. [20] 0.976
SCNN with 2 coupling layer [20] 0.969 SCNN [22] 0.952
SCNN with 3 coupling layer [20] 0.977 ‘ PCC [20] [ 0.821 |
Zhao et al. [22] 0.974
[ Optical(NIR band)/Optical Dataset [ Accuracy (%) ]| [ Quickbird/IKONOS Dataset | Accuracy (%) |
[ Proposed method [ 0.929 || Proposed method [ 0.847 |
[ Zhang et al. [21] [ 0.975 | Yuqi et al. [52] [ 0.986 |
| PCC [21] [ ossz | | Multiscale [52] [ 0991 |

Quickbird/IKONOS Dataset [ Accuracy (%) |

Proposed method

[ o317 ]

|
|
| Yugqi et al. [52]
[ Multiscale [52]

[ 099 |
[ 0966 |

TABLE II
CONFUSION MATRIX IN TERMS OF NUMBER OF PIXELS AND PERCENTAGE FOR THE 11 MULTIMODAL DATASETS, LE., [TSX/PLEIADES] (4404 x 2604 PIXELS),
[QB02/TSX] (2325 x 4135 PIXELS), [PLEIADES/WORLDVIEW 2] (2000 x 2000 PIXELS), [SAR 1-LOOK / SAR 5-LOOKS] (762 x 292 PIXELS), [SPOT VHR/ ERS]
(1318 x 2359 PIXELS), [ERS/SPOT ] (330 x 590 PIXELS), [MS (NIR)/MS] (412 x 300 PIXELS), [QB02 /IKONOS] (240 x 240 PIXELS), [SAR/OPTICAL]
(291 x 343 PIXELS), [QB02 /IKONOS] (400 x 400 PIXELS), [SAR/OPTICAL] (921 x 593 PIXELS)

[ Multimodal image pairs | TP [

N [ FP [ FN |

TSX/Pleiades 440211 (48.2%)

9791031 (92.8%)

764001 (7.2%) | 472773 (51.8%)

QB02/TSX 419342 (68.0%)

8819894 (98.0%)

177191 (2.0%) 197448 (32.0%)

Pleiades/WorldView 2 339464 (56.0%)

3183160 (93.8%)

210542 (6.2%) | 266834 (44.0%)

SAR 1-look/SAR 5-looks 26544 (68.1%)

154679 (84.3%)

28871 (15.7%) 12410 (31.9%)

VHR Spot/ERS 480846 (70.4%)

1946913 (80.2%)

479675 (19.8%) | 201728 (29.6%)

ERS/spot 13703 (57.2%) 149187 (87.4%) 21555 (12.6%) 10255 (42.8%)

MS (NIR band) /MS 6353 (83.9%) 108577 (93.6%) 7451 (6.4%) 1219 (16.1%)
Quickbird/IKONOS 4689 (54.3%) 44096 (90.1%) 4863 (9.9%) 3952 (45.7%)
SAR/Optical 2317 (73.4%) 74217 (76.8%) 22440 (23.2%) 839 (26.6%)

QuickBird /IKONOS 13450 (52.2%) 117384 (87.4%) 16876 (12.6%) 12290 (47.8%)
SAR/Optical 14746 (66.3%) 520632 (99.4%) 3286 (0.6%) 7489 (33.7%)

respectively, to 0.01 and 4.0. The value of the sparsity proportion
p was set to 0.10 and the maximum number of training epochs
for each of the sparse autoencoder architecture was set to 1000
and 400 epochs.

In order to discuss the obtained results, from the conducted
experiments, we compare our results to the state-of-the-art meth-
odsin terms of classification rate, i.e., the accuracy that measures
the percentage of the correct changed and unchanged pixels.

TP + TN ®)
TP + TN + FN + FP

where TP and TN denote the number of pixels that are correctly
classified, and FN and FP denote the number of misclassified
pixels

ACC =

Table I summarizes the different CD accuracy rates obtained
by our approach and draws a comparison with both supervised
and unsupervised state-of-the-art approaches.

Based on the leave-one-out evaluation strategy, we can notice
that the accuracy rate of the proposed method outperforms the
most state-of-the-art approaches and remains comparable to
the other supervised and unsupervised state-of-the-art methods.
The strength of our model is its ability to process a wide variety
of satellite imaging modalities, i.e., multisources, multisensor,
and multilooking SAR images, under different resolutions. The
method can effectively process images corrupted by differ-
ent noise types and different degradation levels (see Fig. 6
where SAR images are corrupted by different speckle noise
levels).
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Dataset-1

Dataset-6
7,

l).ltasul 11

Fig.4. Heterogeneous (multisource) optical/SAR and SAR/optical datasets. (a)—(c) Image t1, to, ground truth. (d) and (e) Final (changed—unchanged) clustering
result and confusion map (white: TN; red: TP; blue: FP; Cyan: FN) obtained by the proposed approach.

From Table II, we can see also that the changed and unchanged
area are well detected and that the different resulting binary maps
match fairly the different regions shown in the ground truth for
the different satellite imagery sources (see Figs. 4-6).

The global accuracy rate obtained by our unsupervised
anomaly detection model, over the 11 heterogeneous image
pairs, using the leave-one-out evaluation scenario, is 0.863%.

C. Architecture Configuration and Experimental Settings

In all our experiments, we choose the best architecture as the
one having the least mean reconstruction error (MSE) on the
validation set containing only normal patterns. For parameters
settings, we note that our training/validation dataset is a subset
of each multimodal pair image and having dimension d; = 162.
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Fig. 5. Heterogeneous (multisensor) optical/optical dataset. (a)—(c) Image ¢1, t2, ground truth. (d) and (e) Final (changed/unchanged) clustering result and
confusion map (white: TN; red: TP; blue: FP; cyan: FN) obtained by the proposed approach.

(e)

Fig. 6. Heterogeneous (multilooking) SAR/SAR datasets:. (a)—(c) Image ¢, t2, ground truth. (d) and (e) Final (changed/unchanged) clustering result and
confusion map (white: TN; red: TP; blue: FP; cyan: FN) obtained by the proposed approach.
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TABLE III
PARAMETERS OF THE STACKED SPARSE AUTOENCODER

[ Parameter name | Min | Step | Factor | Max |
Hidden layer 1 80 10 - 120
Hidden layer 2 30 10 - 50
Hidden layer 3 10 5 - 20
Hidden layer 4 3 2 - 7

P 0.00625 - 2 0.8
A 0.0001 - 10 0.1
B 05 - 2 8

Algorithm 2: Grid Search Based Hyper-parameter
Optimization of the Proposed CD Model.

Step 1:

e Set of hyperparameters from a defined
space
e Normal training and validation subsets

Step 2:

foreach combination of the model parameters
€ defined space do
e Train the first and second layers of the
sparse AEC model using (Eq.3)
e Compute the MSE on the validation
subset.
end

e Optimal hyper-parameters outputs with the
least squares.

The dataset is randomly subdivided into two subsets: (2/3)
for the training set and (1/3) for the testing set. We inject in
our normal training dataset a proportion of 3.0% anomalous
(change) patterns to form the final training dataset.

We present empirical results produced by our anomaly CD
model on this data subset. We use a simple stacked sparse
neural network model with normal class. The network parameter
settings are described in Table III. In order to fix the neural
network architecture and to find optimal hyperparameters, we
rely on a grid search method performed in a defined space with a
fixed step/factor and using the following hyperparameters space:
number of hidden units per layer for the first, second, third,
and fourth hidden layers; the coefficient of the sparsity term
(; the coefficient of the regularization term A; and the sparsity
proportion p.

Once a layer-wise training strategy was adopted, each layer
was trained independently from the others and the parameter
values (p, A, 3) were varied by exploring different combinations
of optimization parameters for each of the four layers with the
corresponding number of hidden units. We gradually increased
the hidden layer number starting from two layers and chose the
architecture, giving the best parameter values that minimized
the MSE. Algorithm 2 shows the estimation step (with a grid
search-based optimization technique) of the internal parameters
of the stacked sparse neural network reconstruction model.

When the number of hidden layers was set to 3 and 4, the
mean-squared error is, respectively, 0.1385% and 0.1409%,
which are greater than the MSE value of 0.0640% obtained only
with two hidden layers. Therefore, the number of the hidden
layers in our anomaly-based CD model was set to 2 in our
application. Table IV shows the optimal parameters and the MSE
obtained by the grid search method for different architectures
depth.

D. Discussion

Before all, it is important to recall that this type of deep
autoencoder will necessarily be well adapted to our multi-
modal CD detection task, since this one has already proven
its efficiency to learn and fuse highly heterogeneous pairs of
data types in a common space representation [29], [32]-[43]
and also has proven to be effective in modeling/fusing highly
heterogeneous data/sources supported in the multimedia do-
main (such as words/images [33], [34], speech/images [35],
[38], [39], audio/video [32], facial expressions/sound [36], [37],
or multimodal DCE/MRI medical images [29], and two MRI
medical images modalities [43]). In this study (the first study to
our knowledge), we confirm the relevance of this type of deep
autoencoder in dealing/fusing heterogeneous data (or heteroge-
neous imaging modalities) used in remote sensing.

We now discuss the influence of the different parameter set-
tings for our anomaly CD model on 11 benchmark multimodal
datasets using the leave-one-out evaluation strategy. To this end,
we vary the parameter to be evaluated and fix the others to their
optimal values (see Table IV), and quantify the average accuracy.

In our application, the parameter p plays a crucial role because
it conditions the level of sparsity which may affect considerably
our analysis. More precisely, p is used to optimize false alarm
rates in our unsupervised anomaly CD detection problem and
its tuning is based only on normal class images. Indeed, a
small p induces an over classification of many normal class
patterns as anomalous/outliers. In the opposite case, a large
p discourages normal data patterns from being classified as
anomalous/outliers. Thereby, a bad choice of the value of p
classifies many normal patterns as anomalous and increases the
false-positive rate or classify many abnormal patterns as normal
and increases the false negative rate, which decreases the per-
formance of the anomaly CD model (see Table V). Accordingly,
the optimal p (in our case, p = 0.1) balances both false-positive
and false-negative rates (see Table II).

We can notice that the weight decay A and the regulariza-
tion parameter [ affect less the behavior of the autoencoder
compared to the sparsity parameter p (see Table V). The perfor-
mances depicted in Table V show that when the expected average
of the neurons’ activations is too low (i.e., 0.00625) or higher
than (0.8), the performances decrease drastically to 0.579 and
0.715, respectively. This is, theoretically, in concordance with
the fact that higher value of p leads to higher degree of sparsity,
which means that the domain knowledge is not smoothly dis-
tributed with more specialized neurons. A solution could be to
increase the number of neurons but the best strategy is to keep
an equilibrium between specialization and sparsity. Moreover,
Table V does not show any effect of the L, regularization sparsity
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TABLE IV
STACKED SPARSE AUTOENCODER HYPERPARAMETERS OBTAINED ON THE SUBSET MULTIMODAL DATASET WITH THE MEAN SQUARED
RECONSTRUCTION ERROR (MSE)

[ Number of layers [ p | X [ B [ Size of first layer [ Size of second layer [ Size of third layer | Size of fourth layer | MSE |
2 0.1 0.01 | 4 80 40 - - 0.0640
3 0.05 | 0.01 2 110 50 10 - 0.1385
4 0.05 | 0.01 | 4 100 40 10 3 0.1409
TABLE V

AVERAGE CLASSIFICATION ACCURACY AND THE STACKED SPARSE
AUTOENCODER HYPERPARAMETERS USED WITH THE FIRST AND SECOND
HIDDEN LAYERS

| o [ A B | Average accuracy (%) |
0.00625 0.01 4 0.579
0.05 0.01 4 0.822
0.4 0.01 4 0.764
0.8 0.01 4 0.715
0.1 0.0001 4 0.801
0.1 0.001 4 0.808
0.1 0.1 4 0.823
0.1 0.01 0.5 0.830
0.1 0.01 1 0.837
0.1 0.01 2 0.829
0.1 0.01 8 0.832
TABLE VI

IMPACT OF THE SQUARE WINDOW SIZE ON THE AVERAGE
CLASSIFICATION ACCURACY

[ Sw | Average accuracy (%) |
9 0.863
11 0.849
13 0.838
15 0.844

on the generalization performance since we are not at risk of
overfitting as our models were trained on a huge amount of data
patches with diversified content that were taken only from the
nonchange subsets. Also, an unlimited set of training patches
could be generated by data augmentation. In addition, experi-
ments conducted on different numbers of hidden layers show that
augmenting the number of layers does not effectively increase
the average classification accuracy. The average classification
rate obtained using three and four hidden layers with a number
of nodes set to 10 and 3 are, respectively, equal to 0.847%
and 0.845% which are lower than our average classification
rate 0.863% that corresponds to the optimal number (=2) of
layers. Varying the number of nodes of the hidden layers also
does not enhance necessarily the average accuracy. Different
combinations were tested giving very close values to the optimal
average accuracy which is obtained by 80 nodes for the first and
40 nodes in the second hidden layer.

In the same way, the impact of the squared window size (Sw)
is assessed by a comparison study done on the average classifi-
cation accuracy of the anomaly CD model using different sizes.
Table VI demonstrates that the average classification accuracy
is not much significantly influenced by the size (Sw).

To conclude, the results obtained from different experiments
have shown that the choice of the optimization hyperparameters

is a crucial task in the features network setting, particularly the p
parameter which is the key parameter of the network, contrary to
the other parameters such as the depth of the network that does
not significantly influence the anomaly CD model performances.

The main quality of our model is that it achieves a better
classification rate accuracy under different CD conditions, re-
flecting a variety of imaging modalities with different noise
types and levels, where the sensitivity of different parameters
is analyzed (see Table V). This justifies the fact that it can also
be less accurate than some specific supervised/unsupervised
multimodal CD models, dealing only with a specific type of
noise and a specific imaging modalities such as PCC and SCNN
methods [20] which also use denoising algorithms to reduce the
speckle noise of the SAR images and/or the Gaussian noise of
the optical images [particularly when the SAR images are too
much corrupted by the multiplicative speckle noise degrading
their quality and creating for each texture class a kind of macro
texture with grainy patterns (see dataset-9 Fig. 4)].

IV. CONCLUSION

In this article, we have proposed a new anomaly-based CD
model for heterogeneous remote sensing image pairs. This
model exhibits quite interesting properties. First, the proposed
model is based on unsupervised training stage in which a stacked
multimodal sparse autoencoder model employing a satlin and
purlinneural transfer functions is trained to learn and infer a suit-
able latent representation of the normal image patterns existing
in the before and after multimodal images. The training is done
in order to identify and to disentangle from the normal image
patterns (belonging to the nonchange class label) the change
class as unusual from abnormal feature patterns in the residual
space; the trained anomaly-based CD model tries to reconstruct
the feature space for each new unseen image pair by encoding
and decoding the image pair inputs using its stacked hidden
representation. The reconstruction error between the original
input feature and its reconstruction is quantified to generate (for
each pixel) an anomaly-based error score that highlights the
usual and unusual (rare) patterns that belong to the abnormal
class (change class label) or to the normal class (nonchange class
label). Finally, a GMM assigns a class label to each pixel (change
vs. nonchange) in the MAP sense. The different experimentation
conducted on the proposed CD model, in the leave-one-out test
scenario, demonstrates its effectiveness in processing new un-
seen input heterogeneous image pairs. Besides, the model seems
to be flexible enough to process heterogeneous image pairs with
both different spatial resolutions, covering different heteroge-
neous CD conditions (as multisource, multisensor, and multi-
looking image pairs). It accurately determines different kinds
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of natural and/or man-made changes (e.g., major urban con-
struction and changes resulting from different types of natural
phenomenon).
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