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Quantifying the Effect of Registration Error
on Spatio-Temporal Fusion

Yijie Tang, Qunming Wang , Ka Zhang, and Peter M. Atkinson

Abstract—It is challenging to acquire satellite sensor data with
both fine spatial and fine temporal resolution, especially for mon-
itoring at global scales. Among the widely used global monitoring
satellite sensors, Landsat data have a coarse temporal resolution,
but fine spatial resolution, while moderate resolution imaging spec-
troradiometer (MODIS) data have fine temporal resolution, but
coarse spatial resolution. One solution to this problem is to blend the
two types of data using spatio-temporal fusion, creating images with
both fine temporal and fine spatial resolution. However, reliable
geometric registration of images acquired by different sensors is
a prerequisite of spatio-temporal fusion. Due to the potentially
large differences between the spatial resolutions of the images
to be fused, the geometric registration process always contains
some degree of uncertainty. This article analyzes quantitatively the
influence of geometric registration error on spatio-temporal fusion.
The relationship between registration error and the accuracy of
fusion was investigated under the influence of different temporal
distances between images, different spatial patterns within the
images and using different methods (i.e., spatial and temporal adap-
tive reflectance fusion model (STARFM), and Fit-FC; two typical
spatio-temporal fusion methods). The results show that registration
error has a significant impact on the accuracy of spatio-temporal
fusion; as the registration error increased, the accuracy decreased
monotonically. The effect of registration error in a heterogeneous
region was greater than that in a homogeneous region. Moreover,
the accuracy of fusion was not dependent on the temporal dis-
tance between images to be fused, but rather on their statistical
correlation. Finally, the Fit-FC method was found to be more
accurate than the STARFM method, under all registration error
scenarios.
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I. INTRODUCTION

IN RECENT years, remote sensing has developed rapidly and
has been applied widely, for example, in land use and land

cover change monitoring [1], vegetation monitoring [2], carbon
sequestration monitoring [3], revealing ecosystem climate feed-
backs [4], evaluating forest and ecological environments [5], and
urban monitoring [6]. With rapid changes on the Earth’s surface,
it is becoming increasingly important to perform monitoring at
finer spatial and temporal resolutions. Such fine resolution mon-
itoring sometimes cannot be performed with a single sensor due
to the trade-off between spatial and temporal resolution. Spatio-
temporal fusion is one solution to this problem, which creates
time-series images with fine temporal and spatial resolutions; by
blending images with fine temporal resolution (e.g., MODIS)
and fine spatial resolution (e.g., Landsat) through computer
processing. Great progress has been achieved in developing
spatio-temporal fusion techniques [7], which can be divided
into two main groups: weighting function-based, and spatial
unmixing-based methods.

The basic principle of weighting function-based methods is
to calculate the reflectance of the center fusion pixel through
a weighting function which takes full account of the spectral,
temporal, and spatial information in similar pixels. Such meth-
ods have been used widely. Gao et al. [8] proposed the spatial
and temporal adaptive reflectance fusion model (STARFM),
which includes comprehensive consideration of the spectral dif-
ference between MODIS and Landsat ETM+ data, the temporal
difference between MODIS data of the same pixel location,
and the distance between the center pixel and similar pixels.
Thus, different weights are applied to different pixels to predict
the reflectance of the center pixel. Hilker et al. [9] proposed
the spatial-temporal adaptive algorithm for mapping reflectance
change to solve the problem of rapid land cover change that
is not resolved by STARFM. Tasseled cap transform results
were introduced to calculate the change sequence, which can
increase the prediction accuracy effectively. To deal with low
accuracy in heterogeneous regions, Zhu et al. [10] proposed
the enhanced STARFM. The hypothesis made was that there is
a linear relationship between the changes in the MODIS and
Landsat reflectances during a given period. A conversion coeffi-
cient was introduced to express this relationship quantitatively,
which ensures more accurate prediction of the reflectance of
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small and linear targets. Wang and Atkinson [11] proposed the
Fit-FC model, which realizes spatio-temporal fusion through
three steps: regression model fitting (RM fitting), spatial filtering
(SF), and residual compensation (RC). It was found that the
accuracy of the algorithm was greater than all the comparator
methods, and the model can be implemented with only one pair
of coarse-fine images. Weighting function-based methods can
also be applied to predict land surface temperature with both
fine spatial and temporal resolution [12].

Spatial unmixing-based methods calculate the reflectance of
corresponding classes at the fine spatial resolution by unmixing
pixels in the coarse spatial resolution image, where the coarse
proportions are available (i.e., simulated from temporally close
fine spatial resolution data) [13]. This is in contrast to the
well-known spectral unmixing technique where the reflectance
of class is known and the target is to predict coarse proportions.
Zhukov et al. [14] developed a multisensor multiresolution
technique (MMT). The first step of MMT is to classify the
fine resolution image and upscale the thematic map to the
coarse spatial resolution, such that the proportions of each
class in each of the coarse pixels can be calculated. Then,
the reflectance of each class is estimated by fitting a model
using the coarse reflectance in a local window. Considering the
variation of reflectance within a specific class, Maselli et al. [15]
proposed an LAC-GAC NDVI integration method. It corrects
pixels whose residuals exceed a certain threshold among all
neighboring pixels. The weight of each neighboring pixel is
calculated according to their distance to the center pixel to
be corrected. However, abrupt changes in reflectance between
neighboring pixels always cause uncertainty. To cope with this
problem, Busetto et al. [16] took the spectral similarity and
Euclidean distance between neighboring pixels and the target
pixel into consideration simultaneously when correcting the
target pixel. Specifically, spectral similarity between pixels was
calculated using spectral information in fine spatial resolution
images, to split out pixels that are spatially close to the target
pixel, but spectrally far from the target pixel. Wu et al. [17]
proposed a spatial-temporal data fusion approach (STDFA) to
cope with the heterogeneity of the ground object distribution.
STDFA accounts for the spectral difference between pixels of
the same land cover class and also the nonlinear temporal change
in the reflectance of each class over a period. This method used
the surface reflectance calculation model to calculate the
reflectance change of each fine pixel during the time of interest.
The final prediction is the combination of the reflectance of
the fine spatial resolution pixels at the known time and the
reflectance change over the period. Wu et al. [18] then proposed
the Modified Spatial and Temporal Data Fusion Approach
method to increase the accuracy of STDFA by correcting for
sensor differences and introducing an adaptive window size.

The Flexible Spatiotemporal DAta Fusion (FSDAF) method
proposed by Zhu et al. [19] combines the advantages of
unmixing-based and weighting function-based methods. Liu
et al. [20] proposed an improved FSDAF method, which
employs information from multitime predictions, making full
use of all available images. Besides the above two main groups
of methods, learning-based and Bayesian-based methods

have also been developed for spatio-temporal fusion. The
SParse-representation-based SpatioTemporal reflectance Fusion
Model proposed by Huang [21] selects plenty of patches for
dictionary-pair learning and, thus, the correspondence between
the coarse and fine spatial resolution images can be established.
Song and Huang [22] developed a method using only one pair
of coarse and fine images for prediction. In this method, the
sparse representation is utilized to realize the superresolution of
fine temporal resolution images and a high-pass modulation is
applied for fusion. Wei et al. [23] included prior knowledge to
increase the accuracy of the sparse representation-based method.
This method builds a model containing semicoupled dictionary
learning and structural sparsity. Recently, some learning-based
methods applying deep convolutional neural networks (CNN)
have also been developed. The method proposed by Song et al.
[24] established two five-layer CNNs to achieve spatio-temporal
fusion. As for Bayesian-based methods, Bayesian estimation
theory was applied to spatio-temporal fusion [25]. Moreover,
based on nonlinear geostatistical theory, Bayesian Maximum
Entropy [26] was also developed to fuse data acquired by
different sensors.

No matter which spatio-temporal fusion method is adopted,
reliable geometric registration of the images acquired by differ-
ent sensors is a prerequisite. However, there exist unavoidable
differences between the coarse (e.g., MODIS) and fine spatial
resolution (e.g., Landsat) time-series images to be fused that
make registration challenging [27]. The most obvious challenge
is due to spatial resolution (e.g., zoom factor of around 16
between Landsat and MODIS images). Moreover, additional
factors exist, for example, differences in sensor characteristics
and the bidirectional reflectance distribution function effect due
to differences in viewing angles, Sun elevation, and atmospheric
conditions at the time of imaging. Furthermore, owing to the dif-
ferent observation scales, images acquired from various satellite
sensors may also differ in projection distortion, especially for
the pixels at the edge of the acquisition. The preprocessing of
reprojection of images contributes to the registration error to a
great extent. Thus, the geometric registration process for two or
more types of observations always contains large uncertainty.

Recent studies showed that geometric registration error has
a significant influence on land cover classification and change
detection [28]–[33]. Furthermore, in recent reviews of the lit-
erature on spatio-temporal fusion, it was acknowledged that
the registration error between multisource images plays an im-
portant role in spatio-temporal fusion, and it remains an open
problem [34]–[37]. To the best of our knowledge, however,
very few studies have focused on the extent to which geometric
registration error can affect spatio-temporal fusion results. Based
on existing typical and accurate spatio-temporal fusion methods
(i.e., STARFM [8] and Fit-FC [11]), this article investigated
the influence of registration error between MODIS and Land-
sat images on spatio-temporal fusion under the conditions of
varying temporal distance, spatial patterns, and methods. Note
that the spatial unmixing-based methods were not considered
in this article. The reason is that this type of methods assumes
that within a coarse pixel, all pixels of the same land cover class
share the same reflectance. Thus, the method cannot reproduce
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Fig. 1. Registration error between Landsat and MODIS images.

the intraspectral variation. Moreover, it always results in visually
obvious blocky artifacts.

The remainder of this article is organized into four sections.
Section II quantifies the uncertainty of MODIS data due to
registration error and briefly introduces two spatio-temporal
fusion methods, STARFM, and Fit-FC. Section III introduces the
data including the simulation of MODIS data with registration
errors. Then, the experimental results are provided, including
the quantitative analysis of the influence of registration error on
spatio-temporal fusion, and the influences of temporal distance,
spatial patterns and methods. Section IV further discusses the
findings from the experiments and potential future research,
followed by the conclusion in Section V.

II. METHODS

A. Uncertainty of Registration Error

Error statistics were used to measure quantitatively the influ-
ence of registration error on data. Registration error is produced
mainly by the geometric registration process. As shown in Fig. 1,
it is assumed that the MODIS image shifts nx and ny Landsat
pixels in the x and y directions relative to the Landsat image. The
length ratio between MODIS and Landsat pixels is S, indicating
that each MODIS pixel corresponds to S × S Landsat pixels. For
each pixel in the MODIS image containing registration error, we
can compare it to the ideal MODIS pixel covering S × S Landsat
pixels. The information on the overlap between the two MODIS
pixels is considered to be reliable, as represented in Fig. 1. As
can be seen from Fig. 1, for each MODIS pixel, the area of its
overlap with the corresponding ideal MODIS pixel is the same.

Based on the above analysis, the reliability of MODIS data
containing registration error can be represented by the pro-
portion of overlap with the corresponding ideal MODIS pixel.

Fig. 2. Data error of the registration displacement on MODIS data.

Meanwhile, the data error U can be represented by the proportion
of the nonoverlapping portion in each MODIS pixel. Thus, the
data error can be defined quantitatively as

U = 1− (S − nx)(S − ny)

S2
. (1)

The value range of U is [0, 1]. As registration error increases
in the x or y direction, U increases gradually. If registration errors
nxand ny at the Landsat pixel level are replaced by n′

x and n′
y

at the MODIS pixel level, that is, the registration errors in x and
y direction are n′

x and n′
y MODIS pixels as follows:

n′
x =

nx

S
, n′

y =
ny

S
(2)

then (1) can be simplified as

U = 1− (1− n′
x)(1− n′

y). (3)

In this article, the ratio S = 16 was considered, suggesting
that each MODIS pixel contains 16 × 16 Landsat pixels. In the
registration error simulation process, the deviation of the two
directions is assumed to be the same, that is, n (n = 0, 1 …,
15) Landsat pixels. If n′ (n′ = n/16) is used to represent the
registration error at the MODIS pixel level (i.e., the registration
error is n′ of a MODIS pixel), the error in (3) can be expressed
as

U = 1− (1− n′)2 = 2n′ − n′2. (4)

When the registration error increases to be close to 16 Landsat
pixels or 1 MODIS pixel, the data error will be close to 1,
resulting in a large influence on spatio-temporal fusion. To reveal
how the error in the MODIS data varies with the registration
displacement, the relation between U and n′ in (4) is drawn in
Fig. 2. It is clear that as the registration error increases, the data
error increases correspondingly.

B. STARFM

As one of the most classical spatio-temporal fusion methods,
STARFM has been applied widely in recent years. It is assumed
that for each Landsat pixel, the land cover type does not change
from one date t0 to another date tk. That is, the difference ε0 or εk
between the reflectances observed in the Landsat and MODIS
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images at t0 or tk are equal. Therefore, the reflectance of the
Landsat image at tk can be expressed as follows:

L(xi, yj , tk) = M(xi, yj , tk) + L(xi, yj , t0)−M(xi, yj , t0)
(5)

where (xi, yj) is the pixel location of the Landsat and MODIS
images, and t0 and tk are, respectively, the acquisition dates of
the known image and the image to be predicted.

However, not all MODIS pixels are homogeneous and land
use types can change abruptly and, in any case, change eventu-
ally. STARFM considers the information in neighboring pixels
to increase accuracy. Specifically, it takes the spectral, temporal,
and spatial information of neighboring pixels into account, and
constructs a weighting function to calculate the reflectance of
the target pixel. The final formula for calculating the reflectance
of the target pixel is as follows:

L(xw/2, yw/2, tk) =

w∑

i=1

w∑

j=1

n∑

k=1

Wijk(M(xi, yj , tk)

+ L(xi, yj , t0)−M(xi, yj , t0)) (6)

where n is the number of similar pixels, w is the size of the local
search window, and (xw/2, yw/2) is the location of the center of
the moving window.

The performance of STARFM depends greatly on the size of
the characteristic patch, the spatial heterogeneity of the region,
and more importantly, the magnitude of the land cover changes
in the temporal domain.

C. Fit-FC

The Fit-FC method was proposed as a response to several
problems faced in practical situations such as the difficulty in
obtaining sufficient, high-quality images on dates close to the
date to be predicted and strong phenological changes between
the known and prediction dates. A local RM is used to enhance
the connection between the coarse image on the known date
and the date to be predicted, thus, increasing the accuracy of
the prediction. The methodology of Fit-FC is divided into three
main steps: RM fitting, SF, and RC.

1) RM Fitting: RM fitting is performed based on the local
spatial variation in land cover. In a local window, the coarse band
pixel reflectances acquired on different dates are expressed as a
linear relationship. The moving window is applied to all pixels
and all coarse bands. This coefficient set calculated from the
RM constructed for the coarse data can be applied to fine spatial
resolution images to obtain the initial prediction result, as shown
in (7):

FRM = a(X0, lb)F1(x0, lb) + b(X0, lb). (7)

In (7), x0 is the location of the center Landsat pixel of the
window and X0 is the location of the center MODIS pixel,
where x0 falls withinX0. a(X0, lb) and b(X0, lb) are local linear
regression coefficients estimate based on the RM constructed for
the MODIS data, and F1(x0, lb) is the reflectance of the Landsat
pixel located at x0 in band lb of the known fine spatial resolution
image.

2) SF: To reduce the brick effect in the prediction of the first
step, a spatial filter is used where different weights are assigned
to neighboring pixels to correct the reflectance of the center
pixel, as

FSF(x0, lb) =

m∑

i=1

WiFRM(xi, lb) (8)

where m is the number of similar pixels, Wi is the weight, and
FRM(xi, lb) is the result of step 1.

3) RC: Residuals inevitably exist in the RM, and need to be
considered in the final prediction results. Based on the assump-
tion that similar pixels share similar residuals, the residuals of the
center pixel can be corrected using the residuals of neighboring
pixels. The calculation is in the same way as in (8).

The final prediction is the sum of the above SF and RC
predictions. Fit-FC can be conducted using only one pair of
MODIS-Landsat images, and is especially suitable where strong
phenological changes exist.

D. Accuracy Evaluation Indices

Quantitative evaluation was conducted using the indices of
Root Mean Square Error (RMSE), Correlation Coefficient (CC),
and Universal Image Quality Index (UIQI). They were cal-
culated for each band separately and the values for all bands
were then averaged. The calculation for a single band image is
introduced below.

1) Root Mean Square Error (RMSE): RMSE measures the
difference between the fusion image and the reference image
[39], and its ideal value is 0. That is, the smaller the RMSE, the
more accurate the prediction. RMSE is defined as

RMSE =
1

MN

√√√√
M∑

i=1

N∑

j=1

[
F(i,j) −X(i,j)

]
(9)

where F and X represent the fusion prediction and reference
image (with the same spatial size of M × N), respectively.

Reflectance varies in magnitude across bands. To reduce the
influence of the magnitude of reflectance, it is more appropriate
to use the Relative Root Mean Square Error (RRMSE) [40].
RRMSE is defined as

RRMSE =
RMSE

X(i,j)

(10)

whereX(i,j) is the mean value of the reflectance of the reference
image.

2) Correlation Coefficient (CC): CC is an objective evalu-
ation index reflecting the correlation between the fusion im-
age and the reference image [41]. The ideal value is 1. The
more similar the two images, the closer the CC is to 1. CC is
defined as

CC =

∑M
i=1

∑N
j=1

[
F(i,j) − μF

] [
X(i,j) − μX

]
√∑M

i=1

∑N
j=1

[
F(i,j) − μF

]2 ∑M
i=1

∑N
j=1

[
X(i,j) − μX

]2

(11)
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Fig. 3. Region 1 data (NIR, red, and green bands as RGB). (a)–(d) are Landsat images at t1, t2, t3, and t4, respectively. (e)–(h) are the corresponding
MODIS images.

TABLE I
SUMMARY OF THE EXPERIMENTAL DATA

where μF and μX represent the mean values of F and X,
respectively.

3) Universal Image Quality Index (UIQI): The UIQI pro-
posed by Wang et al. [42] was applied to evaluate the similarity
between the fusion image and the reference image. The closer
the UIQI is to 1, the more accurate the prediction. UIQI is defined
as

UIQI =
σFX

σFσX
× 2μFμX

μ2
F + μ2

X

× 2σFσX

σ2
F + σ2

X

(12)

where σFX represents the covariance between F and X, and σF

and σX are the standard deviations of F and X, respectively.

III. EXPERIMENTAL RESULTS

A. Data

Two datasets were used in this article. The first dataset covers
an irrigation area in Coleambally, New South Wales, Australia
(called Region 1 hereafter), while the second dataset covers the
southern research area of the Boreal Ecosystem-Atmosphere
Study with short growing season and extreme phenological
changes (called Region 2 hereafter). Four Landsat 8 OLI images
with a spatial size of 942 × 942 pixels were used for Region 1.
The Landsat images contain six bands (blue, green, red, NIR,
SWR1, and SWR2 bands). For Region 2, three Landsat 7 ETM+

images with a spatial size of 815 × 815 pixels were used.
As shared by Gao et al. [8], the images contain three bands
(including green, red, and NIR bands). Table I lists the properties
of the images.

Among the set of images, we chose the Landsat data at t1
in Regions 1 and 2 as the known image with which to predict
the Landsat images on the other dates in the two regions. The
Regions 1 and 2 data are shown in Figs. 3 and 4, respectively.
It is seen that the two regions differ significantly in spatial
variation. The local spatial heterogeneity in Region 1 is visually
greater than that in Region 2, where spatial heterogeneity refers
to the spatial complexity and variability of the system or system
attributes [38].

B. Experimental Setup

Fig. 5 shows the methodology and experimental design. It
should be stressed that we simulated MODIS data that have
a registration error with Landsat data, as this allows greater
control on the analysis of the performance where the regis-
tration error and reference are known perfectly. Specifically,
based on the Landsat images at t1 and tk (k = 2, 3, 4), Land-
sat images with n (n = 0, 1 … , 15) pixels registration error
were simulated. That is, the simulated images were produced
by shifting n Landsat pixels both horizontally and vertically.
MODIS images on two dates were then synthesized by up-
scaling the Landsat images (the ratio is 16, i.e., each block
of 16 × 16 Landsat pixels was aggregated to a MODIS pixel)
with registration error on two dates. Figs. 3(e)–(h) and 4(d)–(f)
show the simulated MODIS data without registration error for
Regions 1 and 2, respectively. STARFM and Fit-FC were imple-
mented to fuse the Landsat and MODIS (containing registration
error) images at t1, and MODIS image (containing registration
error) at tk. The fusion results under the condition of n Landsat
pixel(s) registration error were produced, and the accuracy was
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Fig. 4. Region 2 data (NIR, red, and green bands as RGB). (a)–(c) are Landsat images at t1, t2, and t3, respectively. (d)–(f) are the corresponding MODIS images.

Fig. 5. Process of data simulation and experimental setup.

evaluated by comparing with the real Landsat image at tk. Note
that the case of n Landsat pixels registration error is equivalent
to n/16 MODIS pixel registration error (at subpixel level relative
to a MODIS pixel). Only subpixel level misregistration errors
were considered in this article as reported misregistration errors
are typically 1 pixel or less [31].

Five subsections (Sections III-C–G) are included in the re-
mainder of Section III. Sections III-C and D provide the predic-
tions (taking the predictions at t2 as an example) and quantitative
assessment results for Regions 1 and 2, respectively. Sections III-
E–G analyzes the influences of three factors on the prediction
accuracy of spatio-temporal fusion. Specifically, Section III-E
focuses on the influence of temporal distance. Section III-F
defines a metric to quantify the heterogeneity of spatial patterns
and discusses its impact on spatio-temporal fusion. Section III-G
investigates the differences in prediction accuracy caused by
different methods.

C. Region 1

The STARFM and Fit-FC methods were implemented to
predict Landsat images at t2, t3, and t4 for Region 1. The
prediction of the Landsat image at t2 was taken as an example for
detailed description. STARFM and Fit-FC were applied to fuse
the Landsat and MODIS (containing registration error) images
at t1 and MODIS image (containing registration error) at t2.
The STARFM predictions of the Landsat images at t2 and the
corresponding subareas are shown in Fig. 6. With an increase
in the registration error, the hue of the red target at the center
of the first subarea changes gradually. Specifically, the target
in the reference image is bright red, and the STARFM result
is relatively similar to the reference image when there is no
registration error. When the registration error increases to 15
Landsat pixels, however, the target turns to be dark red, which
deviates greatly from the reference. The Fit-FC predictions at t2
for another area are shown in Fig. 7. It can still be noticed that
with an increase in image registration error, the hue of the two
triangle targets changes gradually. The color of the reference
image is magenta and dark red. The color fades gradually
as the registration error increases. When the registration error
increases to 15 Landsat pixels, the color is quite different from
the reference.

From the visual perspective, with an increase in registration
error, the difference between the fusion image and the reference
image increases. As shown in Fig. 8, three indices were used
to evaluate quantitatively the accuracy of the fusion predic-
tions. The conclusion is consistent with that drawn from visual
analysis. That is, the accuracy decreases obviously when the
registration error increases. Moreover, the accuracy changes for
all six bands, which share the same trend. Taking the red band as
an example, when the registration error increases from 0 to 15
Landsat pixels, the RRMSE predicted by STARFM increases by
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Fig. 6. Results of STARFM for Region 1 at t2. (a) is the reference image. (b), (c), and (d) are the STARFM results with 0, 7, 15 Landsat pixels registration error.

Fig. 7. Results of Fit-FC for Region 1 at t2. (a) is the reference image. (b), (c), and (d) are the Fit-FC results with 0, 7, 15 Landsat pixels registration error.

0.0800 from 0.2277 to 0.3077. The CC decreases from 0.8772
to 0.7810 and the UIQI decreases by 0.0923.

D. Region 2

STARFM and Fit-FC were implemented for Region 2. Fig. 9 is
the prediction at t2 for both methods under different registration
errors. By intracomparison, no matter whether STARFM or Fit-
FC was applied, as the registration error changes from 0 to 15
Landsat pixels, the fusion results change accordingly. The white
patch in the STARFM result expands gradually, as for the pink
patch in the Fit-FC result.

Quantitative evaluation of the fusion results for Region 2 at t2
is shown in Fig. 10. It is clear that the accuracy for all three bands
decreases when the registration error increases. For example, for

the NIR band, with the registration error increasing from 0 to 15
Landsat pixels, the RRMSE of STARFM and Fit-FC increases
by 0.0138 and 0.0120, respectively. The CC and UIQI decrease
by 0.0400 and 0.5140 for STARFM, and 0.0333 and 0.0349 for
Fit-FC.

E. Influence of Temporal Distance

Intuitively, the spatio-temporal fusion prediction will be more
accurate if the temporal distance between the prediction time
and the known time is smaller. To test this, the accuracies of
STARFM and Fit-FC were evaluated according to different
temporal distances, and the results are shown in Fig. 11. The
temporal distances between t2, t3, t4 and t1 are 39, 64, 135 days,
respectively. No matter which method was used, the RMSE,
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Fig. 8. Accuracy evaluation of the STARFM and Fit-FC predictions for Region 1 at t2. (a), (c), and (e) are, respectively, the RRMSE, CC, and UIQI of the
STARFM result. (b), (d), and (f) are, respectively, the RRMSE, CC, and UIQI of the Fit-FC result.

CC, and UIQI at t2 are closer to the ideal value, revealing more
accurate prediction.

For Region 2, the same method was applied for the compar-
ison of fusion results of different dates, as shown in Fig. 12.
The temporal distance between t2 and t1 is 48 days, while that
between t3 and t1 is 80 days. Fig. 12 shows that using either
STARFM or Fit-FC, the fusion result at t3 is more accurate on
the contrary. It can be concluded that the accuracy of fusion is

not directly related to the temporal distance between the dates
of the prediction and the known image.

To further investigate the factors affecting the predictions at
different times, we compared the relations between the Landsat
data at known and prediction times statistically. The CC between
the image at the known and prediction time for the two regions is
listed in Table II. As can be seen from Table II, the CC decreases
from t2 to t4 for Region 1. The CC of t2 is the closest to the



TANG et al.: QUANTIFYING THE EFFECT OF REGISTRATION ERROR ON SPATIO-TEMPORAL FUSION 495

Fig. 9. Results of STARFM and Fit-FC for Region 2 at t2. (a) is the reference image. (b) and (c) are the STARFM results produced with 0 and 15 Landsat pixels
registration error. (d) and (e) are the Fit-FC results produced with 0 and 15 Landsat pixels registration error.

TABLE II
CC BETWEEN THE IMAGE AT THE KNOWN TIME (i.e., t1) AND PREDICTION TIME (i.e., t2, t3, OR t4)

ideal value, and correspondingly, the prediction of t2 is the most
accurate among the three periods. For Region 2, although the
temporal distance between t3 and t1 is physically longer, the
statistical correlation between the images on the two dates is
greater, resulting in more accurate prediction. Therefore, the
accuracy of spatio-temporal fusion is not related directly to the
temporal distance between the prediction and known time, but
to the correlation between the two images instead which can be
quantified statistically. For either STARFM or Fit-FC, no matter
how the registration error changes, the prediction accuracy will
be greater when the correlation between the images on the two
dates is greater.

F. Influence of Spatial Patterns

The spatial patterns of the two studied regions were character-
ized using the semivariogram. Specifically, the semivariograms
of the green, red, and NIR bands of the two known images
(images at t1) were calculated. The lag varies from 0 to 100
Landsat pixels. The results for the three bands in the two regions
are shown in Fig. 13.

It is obvious that the overall semivariogram of Region 1 is
larger than that of Region 2, indicating that there is greater
local variance and greater local heterogeneity in reflectance in
Region 1. Meanwhile, the sample variances of the correspond-
ing bands in the two regions were calculated to quantify the
magnitude of variation, as shown in Table III.

The sample variance of the image in Region 1 is much
larger than that of Region 2, especially for the NIR band.
To investigate how the spatial pattern affects the accuracy of
spatio-temporal fusion when registration error exists, it is nec-
essary to fix other factors such as temporal distance between the
known and prediction times. The above analysis of the influence
of temporal distance showed that the correlation between the
images on two dates can influence the image fusion results.
Therefore, to exclude the influence of temporal distance, we
selected images in the two regions that had similar between-date
correlations. The mean CC of the green, red, and NIR band at
t2 is 0.7704 in Region 1, while the mean CC of the three bands
at t3 in Region 2 is 0.7601. Since the difference is not large,
the two times were selected and these two groups of results
were used for comparison. Fig. 14 shows the accuracies for the
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Fig. 10. Accuracy evaluation of STARFM and Fit-FC for Region 2 at t2. (a), (c), and (e) are, respectively, the RRMSE, CC, UIQI of the STARFM result. (b),
(d), and (f) are, respectively, the RRMSE, CC, UIQI of the Fit-FC result.

heterogeneous region (Region 1) and the homogeneous region
(Region 2).

As the registration error increases from 0 to 15 Landsat pixels,
the RMSE values of the heterogeneous and homogeneous re-
gions predicted by STARFM increase by 0.0076 and 0.0017, re-
spectively. For the CC, the values decrease by 0.1007 and 0.0378
for the heterogeneous and homogeneous regions, respectively.
Regarding UIQI, the values decrease correspondingly by 0.0996

and 0.0487. Focusing on the CC of Fit-FC, the values decrease by
0.0994 and 0.0307 for the heterogeneous and homogeneous re-
gions, respectively. Obviously, the accuracy decrease of the het-
erogeneous region is much greater than that of the homogeneous
region. The results suggest that the registration error has a greater
impact on the heterogeneous region than for the homogeneous
region.
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Fig. 11. Accuracy evaluation result for different temporal distance in Region 1. (a), (c), and (e) are, respectively, the RMSE, CC, UIQI of the STARFM result.
(b), (d), and (f) are, respectively, the RMSE, CC, UIQI of the Fit-FC result.

G. Influence of Methods

Fig. 15 shows the accuracies of STARFM and Fit-FC for
Region 2. It is obvious that under the condition of the same
registration error, the accuracy of Fit-FC is larger than that of
STARFM. For example, when the registration error is 7 Landsat
pixels, the RMSE of STARFM at t2 and t3 is 0.0008 and 0.0015
larger than that of Fit-FC. Checking the CC and UIQI at t3, the
Fit-FC method produces values 0.0421 and 0.0440 larger than
STARFM. Thus, it can be concluded that no matter how the
registration error changes, the prediction accuracy of Fit-FC is
consistently greater than that of STARFM.

IV. DISCUSSION

The issue of registration error in remote sensing images was
investigated previously using geostatistics, where the terminol-
ogy of locational error was used instead [43], [44]. The loca-
tional error produced by misregistration (i.e., lateral displace-
ment) between images was shown to lead to a cross-correlated
measurement error (i.e., error in the attribute or measured
variable). It was also shown that the cumulative distribution
function of the observed variable (i.e., the MODIS data with
registration error) is the same as that of the underlying true
variable (i.e., ideal MODIS data without registration error) [43].
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Fig. 12. Accuracy evaluation result for different temporal distance in Region 2. (a), (c), and (e) are, respectively, the RMSE, CC, UIQI of the STARFM result.
(b), (d), and (f) are, respectively, the RMSE, CC, UIQI of the Fit-FC result.

The measurement error is the difference between the observed
and underlying variables. Generally, there are three important
findings of this article which are confirmatory of specific points
from the geostatistical literature.

1) Atkinson [43] suggested that the cross-correlated loca-
tional error does not result in changes to the semivariogram
at large lags [43]. This means the variances (i.e., a priori
variance or semivariogram at infinite lag) of both the
observed and underling variables are actually the same,
as was indeed the case for the MODIS data in this article.
The data used in this article are in accordance with this

conclusion exactly. As displayed in Fig. 16, the vari-
ances of the MODIS images with 0–15 Landsat pixels
registration error do not show obvious differences, which
are very close to the variance of the ideal MODIS image.

2) As reported in [43] and elaborated by Gabrosek and
Cressie [44], locational error results in a predictable
change in the covariance between the observed and under-
lying variables. This was seen in the observed correlation
between the two types of MODIS data in this article
(correlation equals the covariance divided by the variance,
and variance is constant in relation to locational error,
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Fig. 13. Semivariogram of the two regions.

TABLE III
VARIANCES OF THE TWO REGIONS, THE UNIT OF VARIANCE IS ×10−4

(THE SQUARE OF THE SURFACE REFLECTANCE)

as mentioned above), where the correlation decreases
obviously as the registration error increases. To reflect
this point more clearly, the CC between the ideal MODIS
image and MODIS image with registration error is shown
in Fig. 17. It can be found that although the variance of the
MODIS image itself does not vary obviously (as shown in
Fig. 16), its correlation with the ideal MODIS image varies
greatly. More precisely, as the registration error increases,
the CC decreases dramatically.

3) As a result of (2), the measurement error variance is a func-
tion of, and predictable given, the spatial heterogeneity
[43], [44]. Specifically, the measurement error variance is
greater for a specific registration when the heterogeneity
is greater. Thus, the effect of misregistration is greater
for heterogeneous regions. This is exactly the conclusion
drawn from the experimental results in Fig. 14.

The fusion results of different temporal distances reveal that
the essential factor affecting the prediction accuracy is the
correlation between the data, not their temporal distances. This
finding provides important guidance for selecting appropri-
ate known fine spatial resolution data (e.g., Landsat data) for
spatio-temporal fusion in practical applications. It is known that
there exists a periodicity in the phenology of vegetation and
the growth of vegetation changes periodically as a function of
temperature and sunshine. For areas dominated by vegetation,
therefore, it is generally assumed that images acquired at the
same time of the year will tend to be more similar. The factor
of temporal distances, however, should not be ignored, as land
cover changes can sometimes be larger when the known fine
spatial resolution data are temporally distant. As acknowledged
widely, the restoration of land cover changes is one of the greatest
challenges in spatio-temporal fusion. Therefore, when selecting
known fine spatial resolution data, it is important to find the

right balance between the correlation structure and land cover
changes according to different areas and land cover classes.

It can be seen from the experimental results that when reg-
istration error exists, the accuracy of spatio-temporal fusion is
mainly a function of four variables: displacement (quantified
registration error), spatial heterogeneity of the study area, initial
correlation between the data of different times, and the fusion
method. For an accurate fusion method, it will be interesting to
investigate how a model could be developed that predicts the
decrease in accuracy of spatio-temporal fusion for a given: 1)
displacement, 2) heterogeneity, and 3) initial correlation. This
would allow up-front characterization of the accuracy of spatio-
temporal fusion, whether it is likely to be sufficiently accurate for
a given purpose, and how much effort to put into registration. For
example, if the decrease in accuracy is below a defined threshold,
it may be possible to relax the requirement for reliable geometric
registration to some extent. How to quantitatively evaluate the
accuracy of spatio-temporal fusion and determine the threshold
reliably are critical issues.

The large influence of registration error on spatio-temporal
fusion should not be ignored. The accuracy of geometric regis-
tration seriously restricts the effectiveness and accuracy of dif-
ferent spatio-temporal fusion methods in most cases. Moreover,
image registration error is always present to some degree and
negatively affects a wide range of remote sensing techniques,
not only spatio-temporal fusion. Thus, in future, it will be of
great significance to further develop techniques that can reduce
registration error prior to processing and, in the context of this
article, develop new spatio-temporal fusion techniques that are
robust to the effects of geometric registration error. On the
one hand, the registration error can be estimated and reduced
prior to fusion, and the corrected or enhanced data can be used
post-hoc in spatio-temporal fusion. For example, the MODIS
data with registration error can be compared to the data simu-
lated by upscaling the Landsat data with various displacements,
and the optimal solution can be determined as the displace-
ment minimizing the differences or maximizing the correlation.
The estimation of registration error may also be performed at
the Landsat spatial resolution, where the MODIS data can be
downscaled to the Landsat resolution. In this strategy, however,
it is not clear how the uncertainty in downscaling will affect the



500 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 14. Accuracy evaluation of the results for the heterogeneous region (Region 1) and the homogeneous region (Region 2). (a), (c), and (e) are, respectively,
the RMSE, CC, UIQI of the STARFM result. (b), (d), and (f) are, respectively, RMSE, CC, UIQI of the Fit-FC result.

final displacement estimation, as smoothing exists in downscal-
ing. On the other hand, it will also be worthwhile to develop
new techniques that can integrate the estimation of registration
error and spatio-temporal fusion into a single framework, where
the uncertainty of both parts can be controlled jointly. Gabrosek
and Cressie [44] developed a method called kriging after ad-
justing for locational error (KAALE) to incorporate location
error of spatial data in interpolation, where the expectations and
covariances in standard kriging are adjusted for location error.
It would be of great interest to extend KAALE to the change
of support problem (COSP), as studied in the spatio-temporal
fusion problem in this article. Area-to-point kriging [45] has
been shown to be an excellent choice for COSP. Thus, the

integration of KAALE and area-to-point kriging provides an
interesting avenue to cope with registration error in downscaling
for future research.

This article investigated quantitatively the influence of regis-
tration error on two typical and accurate spatio-temporal fusion
methods, i.e., STARFM and Fit-FC. Besides these two methods,
many favorable methods developed in future will also deserve
similar study. In addition, this article focuses on fusion of
MODIS and Landsat data. Such research can also be conducted
for fusing data from other satellites, such as Sentinel-2 and
Sentinel-3 [11]. Finally, this article simulates only the ideal
horizontal and vertical registration error, while in reality, the
registration error could be more complex. Therefore, it would be
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Fig. 15. Accuracy evaluation of the result of STARFM and Fit-FC for Region 2. (a), (c), and (e) are, respectively, the RMSE, CC, UIQI at t2. (b), (d), and (f) are,
respectively, RMSE, CC, UIQI at t3.

Fig. 16. Variance of MODIS images with 0–15 Landsat pixels registration
error. (a) Region 1 t1. (b) Region 2 t1.

Fig. 17. CC between the ideal MODIS image and MODIS images with various
registration errors. (a) Region 1 t1. (b) Region 2 t1.
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worthwhile to account for more complex geometric registration
errors and analyze their effects on spatio-temporal fusion in the
future.

V. CONCLUSION

The misregistration of images at different spatial resolutions is
a critical issue in spatio-temporal fusion. This article investigated
the influence of registration error on spatio-temporal fusion
based on fusing the reflectances of Landsat and MODIS images
for two regions. The quantitative effect of registration error was
evaluated under the influence of different temporal distances,
different spatial patterns, and different methods. The findings
are summarized as follows.

1) Registration error has a significant impact on the accuracy
of spatio-temporal fusion, and the accuracy decreases with
an increase in the registration error.

2) Registration error has a greater impact in heterogeneous
regions than homogeneous regions. As the registration
error increases from 0 to 15 Landsat pixels, the UIQI
decreased by more than 0.09 in a heterogeneous region,
and around 0.03 in a homogeneous region.

3) The accuracy of spatio-temporal fusion does not necessar-
ily increase with a decrease in the temporal distance be-
tween the dates of the prediction and of the known Landsat
image, but is rather related to the correlation between the
images of two dates instead. The larger the correlation
between the image for prediction and the known image,
the greater the prediction accuracy. However, it should be
stressed that separating seasonality from abrupt changes
is crucial, and abrupt changes are likely to accumulate
the greater temporal separation between the prediction
and known images, even if the correlation between them
increases due to seasonality.

4) The Fit-FC method is consistently more accurate than the
STARFM method, no matter how the registration error
changes.

The findings of this article will provide important guidance
for developing methods in the field of spatio-temporal fusion.
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