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Abstract—Hyperspectral unmixing (HSU) is an essential tech-
nique that aims to address the mixed pixels problem in hyper-
spectral imagery via estimating the abundance of each endmember
at every pixel given the endmembers. This article introduces two
approaches intending to solve the challenge of the mixed pixels us-
ing deep convolutional autoencoders (DCAEs), namely pixel-based
DCAE, and cube-based DCAE. The former estimates abundances
with the help of only spectral information, while the latter utilizes
both spectral and spatial information which results in better un-
mixing performance. In the proposed frameworks, the weights of
the decoder are set equal to the endmembers in order to address the
issue in a supervised scenario. The proposed frameworks are also
adapted to the VGG-Net that proved increasing depth with small
convolution filters (3 × 3) leads to a considerable improvement. In
other words, inspired by this idea, we utilize small and fixed kernels
of size 3 in all layers of both proposed frameworks. The network
is trained via the spectral information divergence objective func-
tion, and the dropout and regularization techniques are utilized to
prevent overfitting. The superiority of the proposed frameworks is
proven via conducting some experiments on both synthetic and real
hyperspectral datasets and drawing a comparison with state-of-
the-art methods. Moreover, the quantitative and visual evaluation
of the proposed frameworks indicate the necessity of integrating
spatial information into the HSU.

Index Terms—Deep convolutional autoencoders (DCAEs),
hyperspectral unmixing (HSU), spectral-spatial information,
VGG-Net.

I. INTRODUCTION

R EMOTE sensing (RS) aims to acquire information about
phenomena or objects on the Earth without any physical

contact [1]. Hyperspectral data processing is a hot topic in this
field that deals with hyperspectral images (HSIs), gathered by
hyperspectral sensors in hundreds or thousands of contiguous
spectral bands. It contributes to a wide range of applications,
such as environmental monitoring, food analysis, biotechnology,
and precision agriculture [2]. Hyperspectral unmixing (HSU)
deals with one of the challenging problems in HSIs, mixed pixels,
in which each pixel contains more than one distinct substance.
Generally, HSIs suffer from having a low spatial resolution in
spite of high resolution in the spectral domain, and that is why
the mixed pixels issue occurs. HSU technique is to parse each
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pixel spectrum into a set of pure spectra (i.e., endmembers)
and their corresponding proportions (i.e., abundance). Generally
speaking, HSU comprises three main parts, namely, estimating
the number of endmembers, extracting endmembers, and esti-
mating the corresponding abundances. In this article, the term
unmixing depicts the abundance estimation step as the number
of endmembers and their signatures are assumed to be known.

Mixed pixels issue can be addressed in three different sce-
narios, namely, supervised, semisupervised, and unsupervised.
In a supervised scenario, which is of concern in this article,
endmembers are known a priori. They can be extracted from
the data empirically [3] or via endmember extraction algorithms,
such as vertex component analysis (VCA) [4] and N-FINDR [5],
or captured from spectral libraries, e.g., Advanced Spaceborne
Thermal Emission Reflection Radiometer (ASTER) and United
States Geological Survey (USGS). The aim of HSU in this
scenario is to estimate the abundances of the endmembers
in each pixel. HSU approaches in an unsupervised scenario,
such as [6]–[8], propose to estimate both endmembers and the
corresponding abundances simultaneously from HSIs given the
number of endmembers. HSU approaches in a semi-supervised
scenario like [9] try to determine the optimal subset of the
endmembers that suits the data from a given spectral library
in advance.

There are two types of mixing models for the HSU: The linear
mixing model (LMM) and the families of the nonlinear mixing
models (NMMs) [10]. The LMM works on the assumption
that the incident light interacts with a single component, and
consequently each pixel spectrum is formulated as a linear com-
bination of the endmembers and the corresponding abundances.
NMMs are more committed to the actual mechanism of the
hyperspectral sensors, albeit with computational cost and need
for prior knowledge about the scene. On the contrary, the LMM
has been widely utilized thanks to its simplicity and effectiveness
in HSU algorithms [11], as adopted in this article.

In recent years, a number of algorithms have been suggested
to deal with the linear mixing problem in a supervised scenario.
It can be tackled by solving an optimization problem subjected
to the physical constraints, referred to as fully constrained least
square (FCLS). This algorithm has been modified by introduc-
ing a variable splitting and solving the optimization problem
with the alternating direction method of multipliers (ADMM)
in [12], denoted as SUnSAL and its developed version that
employs spatial information via total variation (TV) regular-
izer in [13], expressed as SUnSAL-TV. Perturbed linear mix-
ing model (PLMM) [14] and augmented linear mixing model
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(ALMM) [15] approaches try to estimate abundances when
the hyperspectral imagery endures spectral variability. In the
former, the problem is addressed by presenting a novel LMM
that possesses an additive perturbation term in each endmember.
In the latter, a spectral variability dictionary is introduced in the
first step, and then a data-driven learning strategy is adopted
to estimate abundances. After modeling the spectral variabil-
ity, both of these approaches solve their designed optimization
algorithm by the ADMM.

With the advent of deep learning, it appears to gain great
popularity in state-of-the-art algorithms. Deep learning archi-
tectures have been frequently employed in pattern recognition
and computer vision domains to enhance the performance com-
pared with the state-of-the-art algorithms [16]. Currently, they
are in focus of interest in RS applications [17]. However, by
examining the literature, it is proved that they have not been
applied in unmixing as other applications, like classification and
pansharpening. In order to fill this gap, a new link between deep
learning architectures and the HSU in the supervised scenario is
established in this article in which a deep convolutional autoen-
coder (DCAE) network is employed to overcome the mixed pixel
issue.

The recent attempts at utilizing neural networks for unmixing
purpose are [11], [18]–[25] where the papers [18]–[21] follow
the supervised learning approach and the rest follow the unsuper-
vised learning approach. In other words, [18]–[21] address the
problem by performing a pixel-based fuzzy classifier and map
each pixel vector or its dimensionally reduced version to the
corresponding abundances without requiring the endmembers.
These papers follow the supervised learning approach, which
means both input samples and the corresponding output samples
are available, and the network learns the mapping function from
the input to the output, which is not true in practical scenarios
due to the absence of a so-called groundtruth of abundance
maps [20], [26]. Among the remainder, the paper [22] deals with
the issue in the supervised scenario, while [11], [23]–[25] tackle
it in the unsupervised scenario. In [22], a Hopfield neural net-
work (HNN) is employed whose novelty lies in utilizing a HNN
for solving the seminonnegative matrix factorization problem,
where both the abundances and the nonlinear coefficients are
obtained after the training process. The papers [11], [23]–[25]
present autoencoder (AE) networks that sort out the problem in
the unsupervised scenario.

In this article, an end-to-end 1-D DCAE and 3-D DCAE
are proposed for addressing the mixed pixels problem in a
supervised scenario, referred to as pixel-based DCAE and cube-
based DCAE, respectively. The proposed DCAEs are able to
estimate the abundances given the endmembers with the help
of hierarchical features of different depth that are extracted
via convolutional neural networks (CNNs) from HSI. In more
details, the main contribution is threefold.

(1) To the authors’ best knowledge, this is the first attempt
at HSU using a DCAE. With this aim, two DCAEs are
proposed to extract spectral and spectral–spatial informa-
tion of HSI. The presented cube-based DCAE is able to
learn the spectral–spatial information at high level, which
produces better unmixing performance.

(2) Empirically and inspired by the VGG-Net, using very
small receptive fields of size (1× 3) in the pixel-based
DCAE, and (3 × 3 × 3) and (1× 1× 3) in the cube-
based DCAE, gives an improved performance among the
other possible architectures.

(3) In order to train the network, the spectral information
divergence (SID) [27] objective function is employed.
Moreover, the dropout technique is utilized to prevent
the overfitting that exists in RS domain due to the limited
number of training samples.

The rest of this article is organized as follows. Section II
presents the problem formulation and the proposed pixel-based
and cube-based DCAEs. In Section III, a series of experiments
are carried out on a synthetic and two real HSI, and the suggested
DCAEs are compared with contemporary methods. Finally,
Section IV concludes the article.

II. PROPOSED METHOD

In this section, we present the two proposed methods that es-
timate abundances given the endmembers in HSIs using DCAE
networks.

A. Problem Formulation

This section defines the used mixture model and nota-
tion. Let X = [x1,x2, . . . ,xN ] ∈ �L×N be the HSI possessing
N = r × c pixels with ith column denoting ith pixel (xi =
[xi,1, xi,2, . . . , xi,L]

T ∈ �L×1) with L spectral bands, where
r and c are, respectively, the number of rows and columns
of the HSI in the spatial domain and i = 1, . . . , N ; M =
[m1,m2, . . . ,mp] ∈ �L×p represents the endmember matrix
with each column denoting one of the p pure spectra; and A =
[a1,a2, . . . ,aN ] ∈ �p×N is the corresponding abundance maps
with ith column indicating the abundance vector for ith pixel
(ai = [ai,1, ai,2, . . . , ai,p]

T ∈ �p×1). According to the LMM,
the data model in the ith pixel can be expressed as

xi =

p∑

j=1

ai,jmj + ni = Mai + ni (1)

in which ni is the additive white Gaussian noise vector. This
formula can be expanded for the HSI, as

X = MA+N. (2)

The abundance maps in this model are required to be subjected
to abundance nonnegativity constraint (ANC), i.e., ai,j ≥ 0,
and abundance sum-to-one constraint (ASC),

∑p
j=1 ai,j = 1,

which are two physical constraints. The former demonstrates
all elements of abundance maps must be nonnegative, and the
latter requires that the sum of abundances in each pixel equals
one. In this article, given the pure spectra (M) and the HSI (X),
estimating the corresponding abundance maps (A) with a DCAE
is of concern. It should be mentioned that in order to overcome
the spectral variability, the pure spectra are manually selected
form the HSI by visual judgment and by examining the spectral
signatures.
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Fig. 1. Graphical representation of HSU using AEs in a supervised scenario.

B. DCAEs

In order to estimate abundances in such a scenario, two
DCAEs are constructed. An autoencoder (AE) network is a typi-
cal neural network whose aim is to learn compress representation
of input data in an unsupervised manner. As shown in Fig. 1, it is
usually composed of an encoder that extracts the representation
and represents it via a code, i.e., A = f(X), and a decoder that
reconstructs the data from the code, i.e., X̂ = g(A). It simply
learns to minimize the loss function, L(X, g(f(X))). For fully
connected autoencoders (FCAEs),

f(X) = σe(WeX), g(A) = σd(WdA), (3)

and for convolutional AEs (CAEs),

f(X) = σe(X ∗We), g(A) = σd(A ∗Wd), (4)

in which σe and σd are, respectively, the element-wise activation
functions of the encoder and the decoder, such as rectified linear
unit (ReLU) and softmax. Furthermore, ∗ denotes the convolu-
tion operator, and We and Wd are the weights of the encoder
and that of the decoder, respectively. Remark that to facilitate
reading the bias term were removed in the above equations.

Regarding the convolutional layers, the convolutional opera-
tion of a 1-D convolutional layer can be expressed as

vzlf = σ

(
∑

m

Dk−1∑

d=0

wd
lfmvz+d

(l−1)m + blf

)
(5)

where vzlf is the value of a neuron at position z on the f th feature
map on the lth layer; m indexes the sets of the feature map in
the preceding (l − 1) layer; Dk denotes the depth of the kernel;
wd

lfm stands for the weight at position d connected to the f th
feature map; and b and σ are the bias and the activation function,
respectively. Moreover, the convolutional operation of a 3-D
convolutional layer is

vxyzlf = σ

(
∑

m

Hk−1∑

h=0

Wk−1∑

w=0

Dk−1∑

d=0

whwd
lfmv

(x+h)(y+w)(z+d)
(l−1)m

)
+ blf

(6)

in which vxyzlf is the value of a neuron at position (x, y, z) on
the f th feature map in the lth layer; Hk, Wk, and Dk denote the
height, the width, and the depth of the kernel, respectively.

Typically, in a deep CNN, after each convolutional layer, a
pooling layer is used. It helps to decrease the number of network

parameters and computation, leading to having a less tendency
toward overfitting. In this article, we utilize the max-pooling,
being the most popular pooling layer, in designing the pixel-
based DCAE that operates independently over each feature map
and yields the maximum value in the specific neighborhood.

To prohibit overfitting, it is essential to employ the dropout
technique [28] in layers with too many parameters, as utilized in
designing the cube-based DCAE. The dropout technique refers
to randomly selecting and removing a portion with rate α of
neurons during the training process. As a result, the network
tends to be less sensitive to particular weights and its general-
ization capability increases while having a less probability of
overfitting.

C. Proposed DCAE Networks

1) Pixel-Based DCAE for HSU: The proposed pixel-based
DCAE framework is an end-to-end model that follows the un-
supervised learning approach. In other words, the network takes
each pixel vector as an input and tries to reconstruct the original
input from the abstracted code, which is its abundance vector.
The encoder has the task of extracting hierarchical features of
different depth of the data through 1-D convolution operators
and estimating the corresponding abundance vector (the code)
via these features. The abstracted code is then decoded in the
original input in the decoder part with the LMM represented
in (1). Thus, it is allowed for the encoder part to possess one
or more either FC or convolutional layers. The decoder part,
however, has to perform as a single FC layer with p input neurons
and L output neurons. It acts as the mixture model in (1) where
the decoder weights are set equal to the endmember matrix, and
consequently, there are no parameters to be adjusted in this layer.

The presented 1-D network, as shown in Fig. 2, is composed of
twelve layers in the encoder part and a single layer in the decoder
part. Concerning the encoder, it consists of one input layer (I1),
five 1-D convolutional layers (C2, C4, C6, C8, C10), four pool-
ing layers (P3, P5, P7, P9), and two FC layers (F11, F12). The
input of this encoder is a spectrum of each pixels, and it outputs
its corresponding abstracted code. Consequently, each pixel
vector of size (1× 1× L) is sent to the encoder and after passing
the designed architecture, the corresponding abundance vector is
obtained. In more detail, the deep spectral features are extracted
via the pixel vector with several very small convolutional kernels
of size 1× 3. The pooling layers after each convolutional layer
have the benefits of reducing the resolution of feature maps
which often prevents overfitting. In order to set the number of
kernels in each convolutional layer, we adopt the frequent ratio
used in the literature ([21], [29]–[31]), which is the number of
kernels in each convolutional layer is twice that of the previous
convolutional layers.

With regard to the decoder, it possesses a single FC layer
(O11) with no trainable parameter. The code is entered as its
input and according to (1) the original input is constructed. By
doing so, the network learns to generate the best corresponding
abundance vector for each pixel spectrum and expresses it in the
code. Table I tabulates the detailed architecture of the proposed
pixel-based DCAE.



570 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 2. Architecture of the proposed pixel-based DCAE.

TABLE I
THE ARCHITECTURE OF THE PROPOSED PIXEL-BASED DCAE

AND CUBE-BASED DCAE

2) Cube-Based DCAE for HSU: The proposed pixel-based
DCAE employs the spectral features of each pixel spectrum
and estimates the corresponding abundance vector. HSIs possess
local spatial information in addition to spectral information, and
in this section, we develop the cube-based DCAE that utilizes
a 3-D CNN in order to incorporate spectral-spatial information
and achieve better unmixing performance. In this way, we adopt
a hyperspectral cube of size (S × S × L), where S denotes the
spatial window size and L is the number of spectral bands,
around each pixel in order to estimate its corresponding abun-
dance vector. Therefore, the HSI is, first, split into overlapping
3-D patches. Then, each patch is entered into the encoder of
the cube-based DCAE and its spectral–spatial information is
extracted via 3-D convolution operators, and its code is obtained.
In the further step, the code must be used to reconstruct the
original central pixel spectrum in the decoder and consequently
the same decoder as the pixel-based DCAE, (1), is employed. It
should be mentioned that we replicate the pixels near the borders
to be able to form the patches for the border pixels.

As the pixel-based DCAE, the framework of the proposed
cube-based DCAE is an end-to-end model that adopts the
unsupervised learning approach. It is composed of one input
layer (I1), four 3-D convolutional layers (C2, C3, C4, C5), and

two FC layer (F6, F7) regarding the encoder and an single
FC layer (O8) in the decoder, which is identical to the pixel-
based DCAE decoder. As depicted in Fig. 3, once the patches
are extracted, they are entered the first convolutional layer of
the encoder that includes kc2 kernels of lc2 × lc2 × qc2 and
a stride of 1 and no padding. This layer produces kc2 data
cube of size (S − lc2 + 1)× (S − lc2 + 1)× (L− qc2 + 1),
which are sent to the second convolutional layer with kc3

kernels of lc3 × lc3 × qc3 and the same stride and padding as
the first convolutional layer. The resulting output volume is
kc3 data cubes with size (S − lc2 − lc3 + 2)× (S − lc2 − lc3 +
2)× (L− qc2 − qc3 + 2) and they are sent to the third convo-
lutional layers possessing kc4 kernels of lc4 × lc4 × qc4. Again,
the generated output volumes are sent to the last convolutional
layer with kc5 kernels of size lc5 × lc5 × qc5. These extracted
spectral–spatial features are sent to two FC layers (F6, F7) after
being flattened. The abstracted code, which is the abundance
vector of the central pixel, is obtained from the output of the
second FC layer and it is entered into the decoder to restore
the original central pixel spectrum. In order to impose the ANC
and ASC on the abundance vector of each pixel spectrum, the
ReLU and softmax functions are, respectively, applied on the
output of F7 layer. In the proposed cube-based DCAE, since
the input hyperspectral cube empirically is of size 5 × 5 × L,
we perform two convolutional kernels with a spatial size of
3 × 3 which decreases the spatial size of features to 1× 1.
After that, two other convolutional kernels of size 1× 1× 3 are
performed in order to achieve deeper spectral-spatial features.
Using the ReLU function in CNNs gives better performances in
numerous applications. By using both ReLU and dropout in the
cube-based DCAE, the outputs of many neurons are 0, which
helps us to design a deeper network based on sparse regulariza-
tion and meets the overfitting issue in hyperspectral images.
The more detailed configuration of this network is reported
in Table I.

D. Kernel Size

It has been proven in VGG team’s paper [29] that using
small and fixed convolution kernels (3 × 3) in all layers for
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Fig. 3. Architecture of the proposed cube-based DCAE.

2-D CNNs while increasing the CNN depth produces substan-
tial improvements in image recognition. Moreover, the authors
in [30] have empirically found that (3 × 3 × 3) convolution
kernels are more convenient for 3-D CNNs in video analysis
task. Inspired by these papers, we utilize only the convolution
kernels of (1× 3) in the case of the pixel-based DCAE and
(3 × 3 × 3) or (1× 1× 3) in the case of the cube-based DCAE.

E. Network Parameters

Having established the network, mini-batch gradient descent
strategy by backpropagation algorithm with Adam optimizer
[32] is employed to minimize the loss function. Adam is preva-
lent among deep learning researchers thanks to being based on
classical stochastic gradient descent and having both advantages
of AdaGrad and RMSProp optimizers. Moreover, we utilized
spectral information divergence (SID), introduced in [27], as
the loss function, which is

L(x, x̂) = D(x||x̂) +D(x̂||x)

D(x||x̂) = 1

m

m∑

k=1

p∑

j=1

pj,k log
(pj,k
qj,k

)

D(x̂||x) = 1

m

m∑

k=1

p∑

j=1

qj,k log
( qj,k
pj,k

)

pj,k =
x
(k)
j

∑m
k=1 x

(k)
j

, qj,k =
x̂
(k)
j

∑m
k=1 x̂

(k)
j

(7)

in which m indexes the mini-batch size and superscript (k)
indicates kth mini-batch. This measure, which has been derived
from the concept of divergence in information theory, expresses
each pixel spectrum as a random variable and enforces minimum
dissimilarity between the predicted and true spectra.

III. EXPERIMENTAL RESULTS

In this section, we prove the performance of the presented
architectures on a synthetic dataset (presented in [33]) and two
widely used real hyperspectral datasets, namely Jasper Ridge,

and Urban. In order to have a fair comparison, we make a com-
parison between the proposed frameworks and some classical
and state-of-the-art methods that deal with the mixed pixels in
the supervised scenario. They are FCLS, SUnSAL-TV [13],
K-Hype [34], Spatial K-Hype [35], ALMM [15], GBM-
HNN [22], and FCAE. Besides, in order to highlight the effect
of our convolutional approach over deep unmixing approaches
in the literature, the results are also compared with DAEN [11].

The K-Hype proposes a novel nonlinear kernel-based mixture
model, called K-Hype, and corresponding algorithms to esti-
mate abundances considering only spectral information. Spatial
K-Hype is an extension of the K-Hype algorithm that tries to
utilize both spectral and spatial information. It integrates spatial
information into the nonlinear HSU issue using L1 regulariza-
tion technique. FCAE is an AE network we designed whose
encoder part is composed of FC layers and its decoder part is
identical to the proposed frameworks. In more detail, each pixel
spectrum is encoded to an abstract code via two identical FC
layers with p neurons followed by ReLU and softmax layers,
respectively.

A. Data Description

1) Synthetic Data: In order to simulate a synthetic data of
size 64 × 64 × 224 we followed the procedure in [33]. Thus,
five pure spectra were randomly selected from USGS (splib06)
spectral library [36]. The data was split into 8 × 8 blocks,
and each block was filled up with one of the pure spectra at
random. Then, a spatial low-pass filter with size 9 × 9 was
applied to the data to mix the spectra with LMM. In order to
simulate a data with more mixed pixels, the pixels possessing
abundances greater than 0.8 were removed and replaced with
a mixture of all endmembers with equal abundance fractions
1/p. Lastly, zero-mean white Gaussian noise was added to each
pixel. The synthetic HSI and the selected spectra are shown
in Fig. 4.

2) First Real Data (Jasper Ridge): The Jasper Ridge dataset
originally possess 512 × 614 pixels and 224 electromagnetic
bands in the range of 380 to 2500 nm. Some of these bands
are removed (1 − 3, 108 − 112, 154 − 166, 220 − 224) due to
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Fig. 4. Synthetic data image (band 100) and the selected endmembers taken
from USGS spectral library. (a) Synthetic data. (b) Selected endmembers.

atmospheric effects and being noisy, and 198 bands remain.
We utilized a subimage involving 100× 100 pixels from
(\text{195,209})th to (\text{294,108})th pixel in the original.
There are four endmembers in this scene, namely, “#1 Tree,”
“#2 Water,” “#3 Dirt,” and “#4 Road”.

3) Second Real Data (Urban): The Urban data set is
a widely used HSI for HSU research. It contains 307 ×
307 pixels and 210 spectral bands ranging from 400 to
2500 nm. This data also possesses badly degraded bands
(1–4, 78, 87, 101–111, 136–153, 198–210) and after removing
them, 162 bands remain. There are four endmembers for this
data: “#1 Asphalt,” “#2 Grass,” “#3 Tree,” and “#4 Roof”.
The more detailed description of these real datasets is found
in [37].

B. Parameter Setting

The hyperparameters in the proposed architectures that are
required to be set are as follows: The number of layers and the
number of neurons that are determined empirically; the Adam
optimizer with default parameters, except for the learning rate,
produces the best results; the learning rate was set 0.001 for
the pixel-based DCAE and 0.0005 for the cube-based DCAE;
the batch size was tuned to 100; the dropout rate was chosen
20%; the maximum number of epochs was selected 100; and
the spatial window size (S × S) for the cube-based DCAE was
set (5 × 5). Regarding the FCAE, the Adam optimizer with a
learning rate of 0.001 was utilized to optimize the problem; the
mini-batch size was set as 100; and the training part lasted 100
epochs.

Considering the fact that the performance of the state-of-the-
art approaches depend on their regularization parameters, we
empirically found out that the following parameters give the best
results: The regularization parameter λ of SUnSAL-TV was set
to 0.001 and the regularization parameter of the isotropic TV
was 0.003; the parameter μ of K-Hype and spatial correlation
η of Spatial K-Hype were set to be 0.002 and 0.5, respectively;
K-Hype was run with polynomial kernel; and the parameters α,
β, γ, η, and the number of basis vectors L in ALMM were set
to be 0.002, 0.002, 0.005, 0.005, and 100.

C. Quantitative and Visual Assessment

The estimated abundances are compared quantitatively and
visually with several state-of-the-art methods in the litera-
ture. For quantitative assessment, we used abundance overall

SID (aSID) as a metric and three criteria (introduced in [15],
namely abundance overall root mean square error (aRMSE),
reconstruction overall root mean square error (rRMSE), and
average spectral angle mapper (aSAM). Once the groundtruth
of abundance maps is given, the aSID and aRMSE can be
utilized. The rest can be used in case there is no groundtruth
of abundance maps and quantifying the performance from
data reconstruction perspective is of concern. They are
defined by

aRMSE =
1

N

N∑

i=1

√
1

p

∑p

j=1
(ai,j − âi,j)2 (8)

rRMSE =
1

N

N∑

i=1

√
1

L

∑L

l=1
(xi,l − x̂i,l)2 (9)

aSAM =
1

N

N∑

i=1

arccos

(
xT
i x̂i

‖xi‖ ‖x̂i‖
)
. (10)

1) Results on Synthetic Dataset: In order to validate the
robustness of the proposed frameworks, the performances
(aRMSE, rRMSE, aSAM, aSID) of each method on synthetic
data with different signal-to-noise ratio (SNR) values from 10
to 40 dB were investigated. As illustrated in Fig. 5, the proposed
frameworks are more robust to noise with the various SNRs in
comparison with the other methods. With regards to aRMSE,
the cube-based DCAE achieves by far the better performance,
and the pixel-based DCAE obtains the sufficiently lower er-
ror. According to rRMSE there is not a significant difference
between the proposed architectures and the competitors, but
the results of our methods are more promising in terms of
aSAM criterion. In aSAM, all of the state-of-the-art methods
excluding ALMM DAEN perform approximately the same, and
the proposed architectures are superior to the others especially
in a scene with a high SNR value. Besides, according to aRMSE
and aSID the estimation error of abundances in DAEN is high,
but it has an acceptable performance in reconstructing the pixel
spectrum.

2) Results on Real Datasets: With respect to the real datasets,
given the fact that there is no groundtruth of abundance maps
rRMSE and aSAM were employed to assess the simulation
results quantitatively. The results are tabulated in Tables II
and III where the first and the second best results have been
stressed respectively in bold and underline. In addition, in order
to make a qualification assessment, the absolute error between
the estimated abundance maps and the groundtruth established
in [37] achieved by proposed DCAEs and the best of the others
as determined visually, as are shown in Figs. 6 and 7. This
groundtruth has been utilized in many papers such as [11], [23],
[24], and [38] to evaluate the qualitative abundance estimation.

For Jasper Ridge dataset, the quantitative results that show
the proposed cube-based DCAE achieves the best performance
to the rest of the other methods. It attends the rRMSE value of
1.11 × 10-2 and aSAM value of 4.93 × 10−2. For this dataset,
SUnSAL-TV obtains the second best results based on all criteria
and quantitative results of the proposed pixel-based DCAE are
somewhat good. The visual inspection of the pixel-based DCAE,
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Fig. 5. Robustness evaluation of the synthetic dataset with different SNR values. (a) aRMSE. (b) rRMSE. (c) aSAM. (d) aSID.

TABLE II
SIMULATION RESULTS FOR JASPER DATASET WITH ENDMEMBERS MANUALLY SELECTED (×10−2)

TABLE III
SIMULATION RESULTS FOR URBAN DATASET WITH ENDMEMBERS MANUALLY SELECTED (×10−2)

however, indicates that it performs better than the competitors in
estimating abundance maps. The major difference of proposed
DCAEs that is noticed is the edge problem with Dirt mate-
rial, where incorporating spatial information in the cube-based
DCAE leads to a less edge error. It is worth pointing out that
DAEN estimates the Water abundance accurately, but it has a
disappointing performance in identifying the other materials. It
has the rRMSE value of 11.76 × 10−2 and the aSAM value of
10.76 × 10−2.

Regarding the Urban dataset, once again, the cube-based
DCAE leads to the lower reconstruction error according to
rRMSE and aSAM metrics with the values of 2.23 × 10−2

and 4.98 × 10−2, respectively. It also provides the more akin
abundance maps to the groundtruth. The aSAM value of the
pixel-based DCAE makes it the second-best result with the value
of 6.91 × 10−2, and it attends the rRMSE value of 4.33 × 10−2

which is quite low enough. Among the state-of-the-art meth-
ods, the major differences occur in estimating the Asphalt and
Roof abundances, where ALMM is the only method gives an
acceptable performance. In addition, although the quantitative
results of ALMM do not highlight its superior performance, its
estimated abundance maps do. It is worth mentioning that DAEN
does not have a good performance in terms of abundance estima-
tion on Urban data, but it has the rRMSE value of 5.03 × 10−2

and the aSAM value of 10.89 × 10−2. It is clearly observed that
exploiting the enriched spatial information beside the spectral
one results in more accurate abundance maps.

As described above, the results in Tables II and III were
obtained using endmembers manually selected form the HSI.
In order to provide a fair comparison, VCA was employed to

extract the endmembers from each real data, and the evaluation
was carried out with these new endmembers. Tables IV and V
report the results, where the first and the second best results have
been stressed in bold and underline, respectively. As illustrated,
there has been a decline in the performance of each method.
Nevertheless, the cube-based DCAE still outperforms the others,
and the pixel-based DCAE gives the rather great performance. In
this case, SUnSAL-TV and ALMM are the two state-of-the-art
methods that obtain the best quantitative results.

D. Computation Time

Since having low computational complexity makes a method
practically useful, we study the computation time of proposed
DCAEs and the other methods on each dataset. As tabulated
in Table VI, using the benefits of AEs for spectral unmixing
requires too much computation time. However, owing to the
neural network architecture of the proposed DCAEs, they have
the capability to parallelize on graphical processing units which
certainly leads to less computation time.

E. Effects of Parameters

In this section, the robustness of the proposed DCAEs with
respect to the learning rate and the spatial window size that
mainly influenced the performance are investigated. Regarding
the learning rate, when it was between 0.0005 and 0.005, the
pixel-based DCAE had a more accurate abundance maps, but
its optimal value was found to be 0.001. In the same way, the
optimal value of learning in the cube-based DCAE was tuned
to 0.0005.
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TABLE IV
SIMULATION RESULTS FOR JASPER DATASET WITH ENDMEMBERS GENERATED BY VCA (×10−2)

TABLE V
SIMULATION RESULTS FOR URBAN DATASET WITH ENDMEMBERS GENERATED BY VCA (×10−2)

Fig. 6. Groundtruth map (GTM) and the absolute differences with the esti-
mated abundances for Jasper Ridge dataset by different methods.

TABLE VI
THE AVERAGE COMPUTATION TIME FOR EACH DATASET

Fig. 7. Groundtruth map (GTM) and the absolute differences with the
estimated abundances for Urban dataset by different methods.

In order to find out the optimal size of the spatial window
size (S × S), the proposed cube-based DCAE was evaluated
with different input sizes: 3 × 3, 5 × 5, 7 × 7, 9 × 9. Fig. 8
reports the RMSE results for each dataset in the different input
sizes. As can be seen, the best estimation was obtained with
a size of 5 × 5, and thus we set the input size to 5 × 5 for all
datasets. Overall, using the spatial information of neighboring
pixels could improve the performance, but increasing the spatial
input size may have an adverse effect. In other words, the number
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Fig. 8. Robustness evaluation of the proposed cube-based DCAE with the
spatial window size. (a) Jasper. (b) Urban.

of the network parameters rises, inducing the overfitting and it
may present extra noise especially for the pixels on the borders.

IV. CONCLUSION

In this article, a pixel-based DCAE and a cube-based DCAE
with the aim of abundance estimation in hyperspectral imagery
given the endmembers were presented. The proposed pixel-
based DCAE utilized a 1-D CNN model to estimate abundances
with the assistance of only spectral feature, while the cube-based
DCAE employed a 3-D CNN model to integrate the spatial
information into the HSU. In addition, inspired by VGG-Net,
small and fixed kernels of size 3 were utilized in all layers of
the proposed networks. Both quantitative and visual assessments
validated the superiority of the proposed networks over several
state-of-the-art methods on both synthetic and real datasets.
Moreover, the quantitative evaluation and visual inspection
proved that exploiting spectral–spatial information leads to a
more accurate abundance estimation results.
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