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Deep-Learning and Depth-Map Based Approach for
Detection and 3-D Localization of Small Traffic Signs

Lirong Liu , Xinming Tang, Junfeng Xie , Xiaoming Gao, Wenji Zhao, Fan Mo , and Gang Zhang

Abstract—The three-dimensional (3-D) geographic locations of
street furniture, such as traffic signs, comprise the basic content of
3-D city construction, and such information is indispensable for pe-
riodic statistics for road management and maintenance. This article
presents a novel solution for acquiring 3-D information on small
traffic signs based on mobile mapping system (MMS) data. First, a
lightweight backbone network called VGG-L under an optimized
faster region-based convolutional neural network detection frame-
work is proposed for the detection of small traffic signs. An urban
traffic sign detection (UTSD) dataset is created based on panoramic
images obtained from test areas. Detection results from the UTSD
dataset show that VGG-L outperforms other popular networks and
achieves a mean average precision of 75.4%, which is 4.2%–14.8%
higher than those of VGG16, MobileNet, ResNet, and YOLOv3.
Second, a novel depth-map-based 3-D spatial geolocation method is
proposed for obtaining the 3-D geographic locations of the objects.
Then, a center-based method is proposed to automatically extract
the final 3-D vector of the target. Experimental results illustrate
that the proposed method performs 3-D positioning and vector-
ization of the milestones and circular and triangular traffic signs,
accurately and effectively, achieving greater than 86% recall and
precision for the three types of targets in the test areas. The exper-
iments demonstrate that the overall 3-D information acquisition
scheme is feasible and has great application potential.

Index Terms—Convolution neural network (CNN), depth map,
mobile mapping, three-dimensional (3-D) localization, traffic sign
detection.

I. INTRODUCTION

H IGH precision three-dimensional (3-D) information on
street furniture plays an important role in road safety

inspection, road facility management, maintenance, and 3-D city
modeling [1]–[4]. As an important component of road facilities,

Manuscript received August 27, 2019; revised December 23, 2019; accepted
January 10, 2020. Date of publication April 27, 2020; date of current version
May 26, 2020. This work was supported in part by the National Key Re-
search and Development Program under Grant 2017YFB0503004 and Grant
2017YFB0504201, in part by Active and passive composite mapping and appli-
cation technology with visible, infrared and laser sensors under Grant D040106,
in part by the National Natural Science Foundation of China under Grant
41971426 and Grant 41971425, and in part by the China Postdoctoral Science
Foundation Funded Project under Grant 2019M650601. (Corresponding author:
Junfeng Xie.)

Lirong Liu, Xinming Tang, Junfeng Xie, Xiaoming Gao, and Fan Mo
are with the Land Satellite Remote Sensing Application Center, Ministry
of Natural Resources, Beijing 100048, China (e-mail: liulirong1125@163.
com; tangxinming99@qq.com; junfeng_xie@163.com; gaoxm@sasmac.cn;
surveymofan@163.com).

Wenji Zhao is with the College of Resource Environment and Tourism, Capital
Normal University, Beijing 100048, China (e-mail: zhwenji1215@163.com).

Gang Zhang is with the Chinese Academy of Surveying and Mapping, Beijing
100830, China (e-mail: 43131904@qq.com).

Digital Object Identifier 10.1109/JSTARS.2020.2966543

traffic signs occur in multiple types of differing size and shape.
Traditional methods based on manual statistics for collecting
3-D information on traffic signs are time consuming and labor
intensive. Therefore, developing technology for automatic ac-
quisition of 3-D information on traffic signs in order to meet the
needs of regular monitoring and maintenance tasks is critical.

A mobile mapping system (MMS) is a multisensor system
that integrates laser scanners, cameras, and a navigation system
mounted on a vehicle. Such systems can acquire synchronized
3-D laser point clouds, images, and navigation data. An MMS
can continuously and reliably scan the road surface and objects
on both sides of a road, thus providing detailed elements of the
urban model, such as building facades, road surfaces, and facili-
ties [5]–[8]. Thus, an MMS is an effective tool for capturing 3-D
road scene data for the automatic 3-D information acquisition
of traffic signs.

Extensive studies regarding automatic object extraction from
3-D laser point cloud data of an MMS in order to identify
road surfaces, curbs, street lamps, poles, trees, or buildings
are currently on-going [9]–[14]. The 3-D extraction of large
traffic signs based on laser point cloud data is possible, and
some studies have achieved good results in terms of identi-
fying such signs [15]–[20]. However, it remains challenging
to automatically extract relatively small traffic signs, such as
milestones and prohibitory and mandatory signs, based on the
point cloud, due to the relative scarcity of point data on these
small targets. Nevertheless, these small traffic signs are relatively
easy to identify from the high-resolution panoramic images
acquired simultaneously by the MMS. It is therefore possible
to make full use of the images, point clouds, navigation data,
and other multisource data acquired by an MMS, to explore a
feasible solution for automatic extraction of small traffic signs.
Therefore, we can adopt a two-step approach for obtaining 3-D
information on small signs. The first step is to capture the targets’
2-D positions using image-based detection, and the second step
is 3-D localization using auxiliary MMS data.

The most common task in traffic sign recognition consists
of two main stages: detection and recognition [21]. This study
focuses on the detection methods. Traffic sign detection is
currently a well-studied and broad field of research. A number
of approaches have been proposed for detecting traffic signs
from images, which can be briefly divided into three categories
according to [22]: color-based, shape-based, and CNN-based
methods. Color-based methods often use a threshold to separate
traffic signs from backgrounds [23]. Research works in [24]
and [25] extracted color information of traffic signs using the
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HSV color model. Some researchers use HSI color space or
Eigen color space, based on Karhunen–Loève rather than RGB
for better performance of traffic sign detection [26], [27]. Gao
et al. [28] proposed a traffic sign detection method based on
the extraction of red and blue color regions in the CIECAM97
color model. Yang et al. [29] proposed a convolutional pose
machines model to detect signs followed by a support vector
machine to filter out the background. Because of diverse natural
lighting conditions, many heuristics have been applied to the
treatment of color [30], [31]. The main disadvantage of these
color-based methods is that it is difficult to set the threshold
value, because of the complexity of the real-world environment.
With different lighting conditions, the color information also
changes, thus color-based methods have limited ability in deal-
ing with variations in illumination.

Many shape-based methods, such as Hough transform [32],
[33], corner detection, or radial symmetry voting [34]–[36],
have also been widely used. For circular signs, a method using
smoothness and Laplacian filters was proposed in [37]. For trian-
gular signs, a method using gradient and orientation information
was designed in [38]. Hoferlin and Zimmermann[39] introduced
the Hough transform for detecting traffic signs. Generalized
Hough transform can be used to detect circle, triangle, or rect-
angle shapes. Loy and Barnes [34] proposed a method that uses
local radial symmetry to highlight the place of interest in each
image, thereby detecting octagonal, square, and triangular traffic
signs. Hough-like and Viola-Jones-like methods are the two
paradigms of shape-based methods, and the Viola-Jones-like
detectors compute a number of fast and robust features and try
to identify trained patterns by different classifiers [40]. Most
shape-based methods rely on gradient information, which is very
sensitive to noise. Some studies combine both color and shape
features for traffic sign detection. Fleyeh and Dougherty [41]
used color segmentation to roughly locate the signs and then
rule out false candidates using shape information. Greenhalgh
and Mirmehdi [42] proposed a traffic sign detection algorithm
using a novel application of maximally stable extremal regions
(MSERs), and demonstrated that the MSERs are robust to varia-
tions in both lighting and contrast. However, these methods still
have limited ability to deal with rotation, illumination, and scale
variations.

Recently, deep learning methods have shown superior perfor-
mance for many tasks, such as image classification, detection,
and recognition. Since the introduction of the R-CNN by Gir-
shick et al. [43] in 2014, the application of deep learning to
object detection has attracted considerable interest. By various
visual recognition challenges based on public datasets, such as
ImageNet [44], [45], PASCAL VOC [46], or COCO [47], a num-
ber of high-precision and high-efficiency object detection algo-
rithms have been proposed, such as faster R-CNN [48], single
shot detector (SSD) [49], and the “You only look once” (YOLO)
[50]–[52] series. The detection of small objects remains an open
challenge in computer vision, due to the influences of image
resolution, change in scale, and the context. Several advanced
object-detection algorithms have been optimized to detect small
objects. Faster R-CNN [48] introduces anchors of different
scales and ratios as region proposals to accommodate multiscale

detection. SSD [49] proposes a network working on feature
maps of different layers to obtain a range of resolutions, but the
bottom features of high resolution that are useful for detecting
small objects were abandoned. The feature pyramid network
[53], which combines multiple feature layers, is integrated into
YOLOv3 [50] for better performance with small objects. With
their strong robustness and increasing speed and accuracy, deep
learning-based approaches have also been applied in traffic sign
detection tasks. Aghdam et al. [54] proposed a lightweight and
accurate ConvNet with a sliding window detector to detect traffic
signs on German Traffic Sign Detection Benchmark (GTSDB).
There are also some studies [55]–[60] focused on Chinese traffic
sign detection based on CNN directly. Zhang et al. [61] provided
an end-to-end method to detect Chinese traffic signs inspired by
YOLOv2, which can be applied to a real-time system.

Panoramic images, such as those used in the present study, suf-
fer greatly from object distortion, viewpoint variations, motion-
blur, and illumination variations; in addition, the targets are very
small. Although the abovementioned algorithms have yielded
excellent performance in public competitions, these exiting
models still require adjustments for practical applications, such
as successfully identifying small traffic signs from panoramic
images. Thus, this study makes appropriate adjustments to faster
R-CNN and proposes a simple CNN, termed VGG-L, as the
backbone network for improved detection of small traffic signs
from panoramic images.

A considerable amount of research work has been devoted
to benchmarking datasets of traffic signs, such as the German
Traffic Sign Recognition Benchmark (GTSRB) [62], GTSDB
[63], and Tsinghua-Tencent 100K benchmark [57]. Wang et al.
[64] presented a traffic sign detection method that uses the his-
togram of oriented gradient (HOG) and a coarse-to-fine sliding
window scheme, which achieved outstanding results in GTSDB
competition. Wu et al. [22] proposed an approach based on the
combination of color transformation and CNN, and achieved
competitive results in GTSDB. The Boolean convolutional neu-
ral networks (BCNN) [65] also employed the HOG features
to detect traffic signs on GTSDB. Zhu et al. [57] created the
Tsinghua-Tencent 100K benchmark and proposed a CNN for
simultaneously detecting and classifying traffic signs. However,
the objects in images from these public datasets are relatively
large, and are, therefore, not suitable for direct use as training
data in detecting small traffic signs in the present study.

Many recent studies have focused on the detection and recog-
nition of traffic signs, but few have addressed their accurate
3-D localization. Timofte et al. [66] proposed a multiview
scheme, combining 2-D and 3-D analyses, for traffic sign de-
tection and recognition, employing minimum description length
(MDL) optimization for 3-D localization of traffic signs. Balali
et al. [67], [68] proposed an automated computer-vision-based
method that detects, classifies, and localizes traffic signs via
street-level image-based 3-D point cloud models. An improved
structure-from-motion procedure was developed to create a
3-D point cloud for the street level imagery, and 3-D points
corresponding to the traffic sign in question were labeled and
visualized in 3-D by using camera pose information. Wen
et al. [69] developed a registration algorithm that projects those
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Fig. 1. Flowchart of small traffic signs detection and 3-D Localization.

traffic sign board points onto an image plane based on coordinate
transformation for 3-D localization of traffic signs. Krylov and
Dahyot [70] proposed an automatic object geolocation technique
by an MRF information fusion approach defined over irregular
grid, which is capable of fusing information from street level
imagery and LiDAR data. However, these methods are either
not suitable for the application of real complex scenarios or not
highly automated. More effective solutions for automatic 3-D
information acquisition of small traffic signs still need to be
developed.

This article focuses on the detection and 3-D positioning of
small traffic signs represented in panoramic images and point
cloud data acquired by the Shou Shi Si Wei (SSW) MMS. The
contributions of this article are as follows.

1) This article develops a deep-learning and depth-map based
framework for object detection and 3-D localization based
on MMS data, which provides a novel solution for auto-
matic collection of 3-D information on small traffic signs.

2) The faster R-CNN model is finely adjusted. A lightweight
network, called VGG-L, is proposed as the new backbone
network and several parameters are optimized for a better
performance of the deep model on detecting small traffic
signs from large panorama images.

3) A new concept of the depth-map-based precise 3-D spatial
geolocation of small urban targets is proposed. It is the
first attempt to use a depth map as an intermediary for
automatic 3-D positioning of small traffic signs. A practi-
cal method, termed center-diagonal-distance vectorization
(CDDV), is proposed for obtaining the final vectors in the
3-D space.

II. METHOD

This article presents the overall workflow for small traffic sign
detection and 3-D positioning based on MMS data. The main
steps are as follows (see Fig. 1).

1) MMS data collection and preprocessing. The point cloud,
panoramic images, and corresponding attitude data are
acquired for method validation.

2) Small traffic signs detection in panoramic images via the
CNN-based deep learning method. Using the deep learn-
ing algorithm, faster R-CNN, YOLOv3, etc., for object
detection; comparing the detection accuracy of different
CNN models; finally a simplified VGG network, called
VGG-L, is proposed to extract small traffic signs from
panoramic images.

3) 3-D localization and vectorization of small traffic signs.
A depth map corresponding to the panoramic image is
generated based on the attitude of the panoramic image
exposure moment and the synchronously acquired point
cloud data. The depth map is taken as an intermediary to
convert the (x, y) pixel coordinates of the detected target
on the panoramic image to 3-D geodetic coordinates (X,
Y, Z). Then, a center-based method is used to automati-
cally extract the 3-D vector of the target. These steps are
described in detail in the following sections.

A. Fine Adjustment of Faster R-CNN

Our method follows the deep learning framework of faster
R-CNN, which was shown to be an advanced object detection
network for generic object detection [10]. Essentially, it consists
of two modules: first, a fully convolutional region proposal
network (RPN) that proposes a list of candidate regions likely
to contain objects of interest; and second, a downstream fast
R-CNN [71] classifier that uses the proposed regions for clas-
sifying, refining the boundaries of those regions. Many popular
CNNs, such as VGG, ResNet, or MobileNet, can be used as
the backbone network under the faster R-CNN framework.
Both modules share a common set of convolutional layers of
the backbone network and convolutional features of the whole
image.

For better performance of faster R-CNN on the detection of
small traffic signs, a lightweight VGG network, called VGG-L, is
proposed in this article as the backbone network. In the literature
[72], it was demonstrated that deeper layers are beneficial for
large-scale image classification, while the error rate of the VGG
architecture saturates when the depth reaches 19 layers. There-
fore, the data volume should be fully considered when designing
a CNN model, rather than simply pursuing a deeper network.
With increasing number of CNN layers, deeper networks tend
to be more robust and the semantic features output by higher
network layers will be richer. However, this also results in the
loss of high-resolution details in the bottom layers, which are
very important for the detection of small targets. As the traffic
signs to be detected in this study are very small, and the training
dataset is not large, we assumed that if the amount of data
is small, then the use of fewer network layers will be helpful
for improving small-target detection. We therefore designed a
lightweight feature extraction CNN (VGG-L), which follows
the VGG architecture and consists of six convolutional layers
combined with three maxpool layers.

The network structure is shown in Fig. 2, where “conv3-k”
represents the convolution kernel size (3 × 3) and the number
of convolution kernels is k.

As shown in Fig. 2, compared with VGG16, VGG-L keeps
the front 5 convolutional layers and reduced 7 convolution layers
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Fig. 2. Network structures of VGG16 and VGG-L.

with more channels (256/512) in deeper positions. The pooling
layers have also been reduced from 4 to 3. The number of
parameters is decreased accordingly [72]. These modifications
consider that the traffic signs to be detected from panoramic im-
ages are very small. The use of fewer convolutional and pooling
layers can result in less information loss on small objects.

In addition, the parameters affecting the detection of small
targets in the faster R-CNN model include anchors, normalized
input size of images, ROIs for training, proposal threshold,
strides, etc. These parameters are optimized in faster R-CNN
for detection of small traffic signs. The specific meaning of each
parameter and the adjustments are as follows.

1) Anchors: At each sliding-window location of the output
feature map, an RPN simultaneously predicts k region pro-
posals, which are parameterized and called anchors. Each
anchor is centered at the corresponding sliding window,
and is assigned a scale and aspect ratio. In the original
implementation of faster R-CNN [48], when scales = [8,
16, 32] and ratios = [0.5, 1, 2], the proposal regions on the
corresponding input images are [1282, 2562, 5122] pixels.
Thus, we simply set scales = [2, 4, 8] with region size of
[322, 642, 1282] pixels for better performance in detecting
small traffic signs.

2) The normalized input size of the images represents the uni-
formly scaled input image size of the model. The larger the
size, the larger the GPU memory required by the detection
model. The normalized input size and the anchors jointly
determine the actual candidate region of the target to be
detected. Therefore, for the large panoramic images (4096
× 8192 pixels) and relatively small traffic signs acquired
by SSW in our experiment, original images have been
divided into blocks (e.g., 512 × 512 pixels) for training
and detection, to avoid the loss of small object details
caused by scaling.

3) ROIs for training denote the number of regions sampled
for training the region classifier. As gradient accumulation
across multiple batches is slow, following the improve-
ment of faster R-CNN in [50], we use 256 ROIs sampled
from an image as a minibatch of the stochastic gradient
descent in the training stage rather than 128 ROIs from
two images. Proposal threshold contains both the size
threshold and confidence value threshold of the propos-
als. The original faster R-CNN removes small proposals
(<16 pixels in original scale) at the detection stage and
those proposal regions with low confidence values (<0.05)
prior to the nonmaximum suppression stage. Redmon and
Farhadi [50] demonstrated that those steps hindered the
performance of small objects in both precision and recall

Fig. 3. Relationship of three coordinate systems.

to some degree. Thus, we retain small proposals and set
the confidence threshold to 0 (instead of 0.05) for our
detection process.

4) Strides refers to the ratio of the input image size to the
output feature map of a given layer. The value of strides
is related to the number of pooling layers in the backbone
network. For the same input image, smaller strides leads to
a larger feature map and denser anchor boxes. The strides
for layer conv5_3 of VGG16 is 16, whereas the value for
the last layer of VGG-L is 8, which denotes that one pixel
on the output feature map corresponding to an 8× 8 region
on the original image rather than 16 × 16 as in VGG16.

For detecting small traffic signs from panoramic images, the
above details, which seem to affect the performance of faster
R-CNN, have been fully considered in order to facilitate the
detection of small objects to some extent.

B. Depth Map Generation

The processing of panoramic images involves three types of
coordinate systems: image, spherical, and 3-D space.

The relationship between the three coordinate systems is
shown in Fig. 3. Here, (x, y) denotes the image coordinates of the
panoramic image, and (X, Y, Z) denotes the sphere-centered 3-D
space coordinates. In the spherical coordinate system (SCS), a
point is specified by the triplet (r, θ, ϕ), where r is the point’s
distance from the origin (the radius), θ is the angle of rotation
from the positive direction of the Y-axis, and ϕ is the angle from
the positive direction of the Z-axis. According to the field of
view (FOV) of the panoramic image, θ ranges from 0° to 360°
and ϕ ranges from 0° to 180°. The aspect ratio of the panoramic
image is 2:1 and the width a of the image is 2πr.

The conversion between the image, spherical, and 3-D space
coordinate systems of the panoramic image is shown in follow-
ing equations:

θ = x
r

ϕ = y
r

a = 2πr

⎫
⎪⎪⎬

⎪⎪⎭

(1)

X = r · sinθ · sinϕ
Y = r · cos θ · sinϕ

Z = r · cos θ

⎫
⎬

⎭
. (2)

A depth map (also known as range image) is an image that
contains information about the distance between the surfaces of
objects from a given viewpoint. A depth map can be created
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Fig. 4. Depth map generated from point cloud.

from stereo images or generated from the 3-D point cloud with
necessary ancillary information. Based on the inertial measure-
ment unit (IMU)/global position system (GPS) data and camera
exposure information obtained by the MMS, we can obtain
the corresponding external orientation (EO) of each panoramic
image, including exposure position (x, y, z) and attitude angles
(ϕ, ω, k). Thus, we can generate the corresponding depth map
based on the EO of the image and the laser point cloud that were
acquired synchronously.

As shown in Fig. 4, the rays emitted from the origin of
the SCS of a panoramic image intersect with the laser point
cloud, and the 3-D spatial coordinates of the intersection points
(P1, P2, . . . , P3) can be obtained. The distance dn (3) between
the origin and the intersection point is called depth, and we
then obtain the depth map by calculating the depth values
corresponding to all pixels of the panoramic image. Therefore,
each pixel on the depth map has a corresponding depth value
given as

dn =
√

X2
n + Y 2

n + Z2
n. (3)

C. 3-D Localization and Vectorization of Small Traffic Signs

Since this article employs deep learning methods to detect
small traffic signs on panoramic images and to obtain the real
geographic coordinates or world coordinates of these targets, a
depth-map-based method is proposed for the 3-D positioning of
detected targets. As shown in Fig. 5, the 2-D coordinates of the
targets detected in the panoramic images are converted to 3-D
world coordinates using the depth map as an intermediary.

First, the bounding boxes of the traffic signs on the panoramic
images are detected by the proposed VGG-L model under Faster
R-CNN framework. The depth maps are generated from the
laser point cloud corresponding to the EOs of the panoramic
images. Then the position (x, y) on the panoramic image can
be mapped to the corresponding depth map with coordinates
(xd, yd, depth), which will be further converted to the SCS
and the spherical centered 3-D coordinate system (SC3S) ac-
cording to (1) and (2). Finally we obtain the world coordi-
nates (Xw, Yw, Zw)of the detected object by a transforma-
tion matrix R from SC3S to the world coordinate system
(WCS).

According to the abovementioned process, we can calculate
the world coordinates of each pixel in the bounding boxes of
the target, while the extracted traffic signs need to be vectorized
in the form of points, lines, or polygons for further application.
As this study focuses on the extraction and 3-D localization of
objects, a simple yet effective approach for vectorizing in the 3-D
space is introduced. We propose a CDDV method to connect the
diagonals of the bounding boxes of the objects based on their
world coordinates.

As illustrated in Fig. 6, CDDV is mainly used to convert the
2-D bounding boxes into 3-D vector lines in the WCS.

In Fig. 6(a), the four corners of the detected bounding box are
outside the panel of the traffic sign and the world coordinates of
the corners may differ greatly; thus, the choice of the two end-
points of the final vector line is very critical. The vectorization
steps are as follows.

1) Take the center pixel of the bounding box, and calculate
its corresponding world coordinates P0(X0, Y0, Z0).

2) Determine the two endpoints of the vector. As shown
in Fig. 6(b), we draw the diagonal of a rectangular box
from the left top (LT) corner to the right bottom (RB)
corner. Then, we take one point every k pixels along the
diagonal from both ends, and each point is calculated in 4).
The points PLT(Xi, Yi, Zi) and PRB(Xj , Yj , Zj), which
satisfy (4), are finally taken as the two endpoints of the
vector line.

3) The two endpoints PLT and PRB are connected to form a
3-D vector line in the WCS

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(Xi −X0) < dthresh and (Yi − Y0) < dthresh

and (Zi − Z0) < dthresh

(Xj −X0) < dthresh and (Yj − Y0) < dthresh

and (Zj − Z0) < dthresh.

(4)

Here, dthreshdenotes the threshold value of the coordinate dif-
ference between a given point (Xn, Yn, Zn) along the diagonal
and the center point (X0, Y0, Z0). The value of dthresh is related
to the actual size of the traffic signs. dthresh= 1 m is found
appropriate in our experiments.

III. EXPERIMENTAL DATA AND SETUP

A. SSW Data Collection and Preprocessing

In order to evaluate the feasibility and performance of the
proposed deep-learning-based detection and 3-D spatial geo-
location method, experimental data were collected by the SSW
MMS. As shown in Fig. 7, the SSW system is integrated with
four microsingle cameras (SONY α7) with automatic exposure
control, an RTW laser scanner, an IMU, a GPS antenna, and
a wheel-mounted odometer. These sensors are all mounted on
the same vehicle. The four cameras (A–D) capture synchronized
images, which are then stitched together to form a panoramic
image that provides a full visual field of 360° × 180° informa-
tion. The RTW laser scanner provides a 360° FOV and scans
at laser pulse repetition rates up to 550 kHz, 200 scan lines per
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Fig. 5. Depth-map-based 3-D spatial geolocation.

Fig. 6. CDDV method. (a) Detected 2-D bounding box. (b) Determine the endpoints of the vector. (c) 3-D vector line.

Fig. 7. SSW-IV data collection system.

second, and the angle between scanning plane and road surface
is 45°.

The test areas are mainly located in the Chinese cities of Shen-
zhen and Ningxia (see Fig. 8), covering hundreds of kilometers
of urban expressways and highways. The data were collected
at a vehicle speed of 55 km/h, the image resolution is less than
5 cm, and the exposure spacing of the cameras is 6–10 m. At the
ground surface near the scanning center, the distance between
adjacent points in the same scan line is 6 mm, and the distance
between scan lines is 7.5 cm (see Fig. 7).

As presented in the workflow (see Fig. 9), before conducting
the experiments in object detection and 3-D localization, SWDY

Fig. 8. Data acquisition trajectory. (a) Part of Shenzhen test area. (b) Ningxia
test area.

supporting software (by SSW) was used to carry out some
preprocessing work including processing the navigation data,
panoramic image stitching, and point cloud processing, etc., as
follows.

1) Navigation data processing: Based on the attitude data
(roll, pitch, yaw)obtained by the IMU and the high-
precision positioning coordinates(x0, y0, z0)acquired by
the GPS, combined with the system calibration procedure,
the six elements of exterior orientation (EO) for each
image can be obtained. The positioning accuracy of the
images is <10 cm in the plane and <5 cm in elevation.

2) Panoramic image stitching: The original images are si-
multaneously recorded by four SONYα7 microsingle
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Fig. 9. Workflow for SSW data preprocessing.

cameras (image size 3936× 2624 pixels) and the cameras’
internal parameters are used to correct image distortion.
The four corrected single images (from cameras A–D) are
then stitched into a whole panoramic image by spherical
projection, image matching, and fusion. The size of the
output differentially rectified panoramic image is 8192 ×
4096 pixels. We also obtain the EO(x, y, z, ϕ, ω, k)of the
panoramic image under the WCS, based on the EOs of the
four corresponding single images.

3) Point cloud processing: Combined with the processing of
navigation data, high-precision 3-D spatial coordinates of
the laser points can be calculated and calibrated according
to the previously established spatial posture relationships
between multiple sensors. The final laser point cloud is
then obtained by coordinate transformation from the local
independent coordinate system to the WCS. The accuracy
of the point cloud can be controlled under 2 cm in elevation
in road surveys.

Depth maps are generated (as described in Section III-A)
based on the preprocessed panoramic images, corresponding
EOs, and point cloud data. The resolution of the depth maps
can be adjusted by setting the angular resolution in both the
horizontal and vertical planes. Considering the large amount of
image data: since the panoramic image has 360° × 180° FOV,
we set the angular resolution in both directions to 0.2° in the
subsequent experiments and set the output depth map size as
1800 × 900 pixels.

B. Dataset Annotation and Statistics

Object detection based on deep learning usually requires
amounts of annotated data for training and validating the pro-
posed model. For the detection experiment, we created a small
urban traffic sign detection (UTSD) dataset containing three
classes: milestones, circular signs, and triangular signs. This
dataset was derived from panoramic images acquired by the

TABLE I
STATISTICS OF UTSD DATASET

SSW system. As this study focuses on comparatively small
traffic signs, the choice of the three classes was made to meet the
needs of both practical application and the current experiments.
Traffic signs can be divided into different categories according
to function, and each category may be further subdivided into
subclasses with different shapes or details [57]. In view of the
numerous types of traffic signs, we classify small traffic signs
according to their shapes. Milestones include hundred-meter
and kilometer piles; circular signs include prohibitory signs and
some mandatory signs; and triangular signs include danger signs
and also some mandatory signs.

Examples of panoramic images and labeled targets are shown
in Fig.10. The images were labeled using the open-source image
annotation tool LabelImg [73] and saved as XML files in the
widely used PASCAL VOC format. Based on the data acquired
in test areas, the labeled images cover some variations in illumi-
nance and weather conditions. More than a quarter of the images
in the UTSD were collected at sunset when the light was low,
or on cloudy days. However, given the complex types of traffic
signs, our labeling process attempts to achieve better detection
performance by excluding any signs that are partially occluded.

Owing to the limited available computer GPU memory, all
the panoramic images of 4096 × 8192 pixels were divided into
smaller sections for further training and testing. One panoramic
image can be divided into 128 tiles, with 100 pixels of overlap
between adjacent small tiles, to avoid the segmentation of a
whole traffic sign while dividing. Thus, the size of image tiles
ranges from 512 × 512 to 612 × 612 pixels. In the following
experiments, the normalized input size is set to 600 pixels in the
faster R-CNN framework as a tradeoff between input resolution
and GPU memory usage.

Statistics for the three types of annotated objects are shown
in Table I. The UTSD dataset contains 1088 mileage piles, 635
circular signs, and 151 triangular signs. To ensure the multiscale
of the targets in the training data, if the same traffic sign appears
on multiple panoramic images, it can be counted several times
in our statistics, except for the ones with extremely small size
(<10 pixels). The ratio of the number of training (Trainval) to
testing (Test_Object) samples was set to 3:1 for all three types
of signs in the experiment. The sizes of the traffic signs in the
images vary between 24 and 165 pixels with regard to the longer
edge, and about 80% are of sizes between 30 and 70 pixels.

In addition, on the expressways or highways of test areas,
panoramic images were acquired by SSW every 6–10 m, which
is very dense. Most of the images contain no objects of interest,
and most of the 128 tiles in a panoramic image were occupied
by the background without traffic signs. Therefore, we added
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Fig. 10. Panoramic images and annotation samples of traffic signs.
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a large number of background images without targets (14632
in Test_Back) to the test process, to evaluate the background
error [false positives (FPs)] of the proposed CNN model. In
Table I, Trainval represents the number of labeled traffic signs for
training and validation; Test_Object and Test_Back denote the
numbers of test images with and without targets, respectively;
Size denotes the statistical size range of the objects on the
panoramic images; and Percentage is the percentage range of
object sizes in the divided image. It is clear that traffic signs
account for less than 6% of the 512 × 512 input images used
in the experiment, and most objects only constituted 1%–3% of
the images.

C. Experimental Setup

The fine adjustments of faster R-CNN were implemented
based on the Tensorflow-based open-source code [74]. The
experiments to detect small traffic signs use the UTSD dataset
to evaluate the performance of the proposed VGG-L model,
as compared with other popular networks, including VGG16,
MobileNet, ResNet, and YOLOv3. The UTSD dataset was
divided into training and testing sets. The experiments were
carried out on a Linux PC with an Intel Xeon E5-1620 CPU,
16 GB of memory, and one NVIDIA Titan Xp GPU with 12 GB
of memory.

To assess the detection experiments, we used the universally-
agreed standard average precision (AP) of each class as the eval-
uation metric. In a binary decision problem, a classifier labels
examples as either positive or negative. The decision made by
the classifier can be represented by four categories [75]: true pos-
itives (TPs), FPs, true negatives (TN), and false negatives (FN).
TP and FP refer to the number of objects detected, respectively,
correctly and falsely in all bounding boxes. TN corresponds to
negatives correctly labeled as negative. FN denotes the number
of positive objects that are not detected. A bounding box can
usually be identified as TP when the intersection over union
(IoU) between the proposed bounding box and the true box is
≥0.5. Conversely, it will be considered an FP when the IoU is
<0.5.

Average precision is a measure that combines recall and
precision for ranked retrieval results, where a higher AP value
reflects better performance in object detection. Precision refers
to the ratio of objects detected correctly relative to the total
number of detected boxes. Recall denotes the ratio of objects
labeled as true targets relative to the real number of true targets.
The definitions of precision, recall, and AP are shown in the
following equations:

Recall =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

AP =
∑

n

(Rn −Rn−1)Pn (7)

where Pn and Rn denote the precision and recall at the nth
threshold.

In addition, for multiclass object detection, we use mean
AP (mAP) as the evaluation metric, which is calculated by
computing the mean of AP values of each category [76]. For
the 3-D localization experiments conducted in Shenzhen and
Ningxia, the small circular and triangular signs were mainly
detected and geolocated based on the data collected on Shenzhen
highways, and the milestones were tested on the data from
Ningxia expressways. The recall and precision indicators were
used for assessing the 3-D localization experiments.

IV. EXPERIMENTAL RESULTS

A. Small Traffic Signs Detection Experiments and Analysis

This experiment adapted the join-training scheme of faster R-
CNN [48], and used VGG-L, VGG16, MobileNet-v1, ResNet-
50, ResNet-101, and ResNet-152 as CNN feature extraction
networks for comparison. We used the same anchor scales [2,
4, 8] and ratios [0.5, 1, 2] as illustrated in Section II-B for all
experiments under the faster R-CNN framework with different
backbone networks. Considering the size of the UTSD dataset
and the number of categories it contains, each network was
trained on 50000 iterations. The learning rate was adjusted
according to the number of iterations. For the first 35000 itera-
tions, the learning rate was initialized to 10–3 (VGG16) or 5 ×
10–4 (VGG-L, MobileNet, and ResNet) according to experience,
whereas for the remaining 15000 iterations, it was set to 10–4.
The other parameters in the proposed detection network were the
same as those in the official faster R-CNN [48]: momentum of
0.9 and weight decay of 10-4 were used, and we only performed
horizontal flipping on the training data as image augmentation.

Using the UTSD dataset, we also compare our detection
framework with the state-of-the-art YOLOv3 deep object de-
tector with the backbone network of Darknet-53 inside. The
experiments used the open-source implementation of YOLOv3
in Keras with the Tensorflow backend [77]. Different from faster
R-CNN, K-means clustering method was adopted in YOLOv3
for calculating anchors, and the number of anchors was set to
9 in our experiment. Due to the dataset size and limited GPU
memory, the normalized input size of images was set to 608 ×
608 pixels, the learning rate was set to 10-4, and the batch size
during training was set to 4. Based on experience, the training
epoch was set to 100 in the Keras implementation of YOLOv3,
and the iteration stopped at the 41st epoch when the total loss met
a given threshold for the UTSD dataset in the actual experiment.

In this experiment, two tests were performed on all the net-
works, one using Test_Object data containing 468 small traffic
sign samples and the other using Test_Object + Test_Back data,
which added 14 632 background images without targets for
testing.

The AP values of each category and mAP of the VGG-L and
other object detection models are presented in Table II. It can
be seen that VGG-L shows the highest accuracy in the detection
experiment based on the faster R-CNN framework. The overall
mAP of the three categories of urban traffics signs reached 97.8%
in Test1, which was 0.9%–9% higher than that of VGG16,
ResNet, and MobileNet. The AP values of milestones differ
only slightly (97.6%–100%) between the models, whereas the
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TABLE II
ACCURACY (%) AND SPEED (FPS) OF DIFFERENT MODELS ON UTSD DATASET

The bold and underlined entities in Table II are the experimental results that require the reader to focus on, which correspond to the experimental analysis in the
following paragraphs of section IV-A.

detection results for circular and triangular signs differ greatly
(81.4%–96.8%). The mAP of VGG-L reached 75.4% on the test
dataset with a large number of background images added (Test2),
which was 14.8% higher than that of the lowest ResNet-152
network. In Test2, the APs of all three types of urban traffics
signs differ greatly.

It is obvious that the overall test result of Test2 was much
lower than that of Test1; that is, after adding a large number of
background tests, the false detection rate is greatly increased,
and the mAP drops by more than 20% for all detection models.
Especially for ResNet series, the detection precision decreased
greatly in Test2, resulting in up to 35.2% decline in mAP values.
As most of the panoramic images are background in the actual
application, the results in Test2 are taken to represent realistic
detection levels for small traffic signs.

In terms of speed, Mobilenet-v1 is slightly faster than VGG-
L, but the mAP is 9% and 8.4% smaller in the two tests. As
seen in Table II, VGG-L also has advantages in accuracy and
speed compared with the advanced YOLOv3 detection method,
especially for the data in Test2.

As shown in Fig. 11, the mAP values of ResNet-50, ResNet-
101, and ResNet-152 show declining trends in Test2. VGG-L
also outperforms VGG16 on the two detection tests of the UTSD
dataset. Thus, we can infer that a deeper network does not
ensure better detection results, especially for a small dataset with
limited samples. Since the proposed VGG-L network performs
better than other existing models, the detection results of VGG-L
under fine-adjusted faster R-CNN in Test2 were used for further
3-D localization experiments in Section IV-B.

Some experimental detection results of the proposed fine
adjusted faster R-CNN method regarding various scenes are
shown in Fig. 12. The most common mistake is that wheels
are easily mistaken as circular traffic signs in complex urban
environments. The bottom group of Fig. 12 presents that the
same milestone has been detected in several consecutive images,
which indicates the robustness of the detection algorithm to scale
changes to some extent, while the repetitive problem of targets
should be considered in subsequent statistical processing.

Fig. 11. Results of detection experiment based on UTSD dataset.

For further comparison, we also tested our detector on the
Tsinghua-Tencent 100K (TT100K) benchmark, which contains
100000 cropped street view images with 30000 traffic-signs
of 45 classes in total. The traffic signs are divided into three
categories according to their size: small (area <322 pixels),
medium (322 < area <962 pixels), and large (area >962 pixels).
The average precision and recall for the different sizes of traffic
signs are given in Table III. The test results on the TT100K
benchmark show that the proposed model, based on adjusted
faster R-CNN with VGG-L backbone, performs obviously better
than the network used in the TT100K [57]. Therefore, the
proposed method is robust and not only applicable in the UTSD
dataset of this article, but also performs well in the open dataset.

B. 3-D Localization Experiments and Analysis

Based on the VGG-L network and finely adjusted faster R-
CNN detector proposed here, using the UTSD dataset for model
training, selected data from the Shenzhen and Ningxia test areas
were chosen for 3-D localization experiments on small urban
traffic signs. According to the target distribution of the test areas,
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Fig. 12. Experimental results regarding various scenes. (a) Challenging scene test results in downtown area or poor lighting environment. (b) Test results in
suburban expressways.

about 25 km of Shenzhen expressway data were selected for the
detection and 3-D spatial geo-location of circular and triangular
signs. More than 10 km of expressway data from the Ningxia
test area were mainly chosen to detect and locate milestones.
The test data used for this experiment were excluded from the
UTSD dataset.

The test process mainly comprises two steps. The first em-
ploys the proposed deep network to detect three types of traf-
fic signs from the panoramic images; the second employs the
proposed depth-map-based 3-D spatial geolocation method to

obtain the real 3-D locations of the targets. The latter includes
3-D localization and vectorization of the detected 2-D bounding
boxes, error elimination (EE) and repetition removal, etc. The
test results were statistically analyzed by the evaluation indica-
tors of recall and precision.

1) Performance of the CDDV Method: According to the
process described in Section III, we can obtain the 3-D world
coordinates of each pixel in the 2-D bounding boxes of the target.
For vectorization of the targets, as shown in Fig. 6(b), we first
directly connected start points 1 and 2 of the bounding box as the
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Fig. 13. Vectorization results of the two methods.

TABLE III
DETECTION RESULTS FOR DIFFERENT SIZES OF TRAFFIC SIGNS

USING TT100K AND OUR APPROACH

TT100K: Method in benchmark of Tsinghua-Tencent 100K.
Proposed: Adjusted faster R-CNN with VGG-L backbone.
AR: average recall. AP: average precision.

TABLE IV
EVALUATION OF THE CDDV METHOD

vector line in the experiment, which is called “direct” method
and produced many errors. We then used the proposed CDDV
approach, in which the dthresh value was set to 1 m.

Fig. 13 compares some results from the two methods: Panel
(a) presents the diagonals of the detected bounding boxes on
the panoramic images, and the error vector results produced by
directly connecting both ends of the boxes are shown in (b). In
most cases, the two endpoints of the bounding box are outside the
plane of the traffic sign, thus the corresponding point coordinates
may differ greatly in 3-D spatial, which may result in a much
longer connecting vector line than the true scale of a traffic sign,
or else an entirely wrong position far from the real target. Panel
(c) presents the correct vectors produced by the CDDV method.

In order to evaluate the accuracy of the proposed CDDV,
as shown in Table IV, “Total Detections” denotes the detected

2-D bounding boxes on images, “Targets” denotes the detected
targets belong to the three categories (IoU ≥ 0.5), “False Vec-
torization” denotes the number of targets that are wrongly 3-D
vectorized by “direct” or “CDDV” methods, and “VER” denotes
vectorization error rate.

The calculation results of the two methods show that, the VER
of the “direct” method is very high (all over 60%), whereas the
“CDDV” method greatly reduced the vectorization error rate;
all the VER value have been controlled under 3%. In addition to
the adopted vectorization method, the calibration error of images
and laser data also has certain impacts on the VER value here.
Inaccurate 2-D image coordinates or 3-D point locations will
cause the objects detected on the panorama images to not be
mapped to the point cloud space correctly, which may lead
to vectorization errors. By further improving the calibration
accuracy, the VER can be reduced to some extent.

2) Error Elimination (EE): Taking the Shenzhen test area as
an example, the CDDV method is used to vectorize the detection
results for the entire test area of 25 km. The superposition results
of the vectors and point cloud are shown in Fig. 14. It can be seen
that there are still some relatively long erroneous vector lines.

Analysis indicates that these errors may be caused by the fol-
lowing issues: The first error type is FPs output in the detection
phase using deep learning methods. These FPs, such as vehicles
wheels that are mistakenly classified as circular signs, may not
be suitable for the center-based CDDV vectorization methods
and are eventually converted into incorrect vectors. Secondly,
the obtained depth maps may contain inaccuracies due to point
cloud noise, which further affects the 3-D positioning accuracy
of detected targets. The third issue is that, due to some existing
shortcomings of the CDDV method, a small number of detected
TPs are still converted to longer vectors.

According to the actual sizes of the three types of small traffic
signs detected in this study, generated vectors longer than 2
meters were simply deleted in order to eliminate most errors.

3) Removal of Repetitive Targets (RRT): Since SSW images
are acquired every 6–10 m, the same object may appear on
multiple panoramic images and be detected. As shown in Fig. 15,
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Fig. 14. Detected vector results in Shenzhen test area. Red = circular signs and blue = triangular signs. The enlarged panel shows an area in greater detail.

Fig. 15. Samples of repetitive targets detected at the same position.

the same traffic sign occurring on both images was detected
and converted into very closely spaced vectors. In view of this
situation, the distance judgment approach was used to remove
repetitive targets. If the distance between the centers of two
vectors is less than a specified threshold d_v in the 3-D WCS,
only one vector will ultimately be preserved. The experiment
shows that d_v value within the range 0.2–0.3 m can effectively
eliminate repeated targets, and the final results of the experi-
ments in this section used a distance threshold of 0.25 m.

4) Result Statistics and Analysis: Samples of the final test
results for the milestones, circular, and triangular traffic signs are
shown in Fig. 16. With the metric of IoU = 0.5, the numbers of
FP, TP, and FN of each category were counted separately, and the
Recall and Precision parameters were calculated for evaluation.
The statistical values of the detection results are derived after
the above process of eliminating errors and removing repetitive
targets. “CDDV + EE + RRT” denotes the statistic is based on
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TABLE V
STATISTICAL SUMMARY OF 3-D LOCALIZATION RESULTS FOR THE THREE TARGET TYPES

Fig. 16. Samples of the final 3-D spatial geolocation results for small traffic
signs.

the CDDV method with eliminating errors (EE) and removing
repetitive targets (RRT) in the 3-D WCS.

The results (see Table V) show that Recall and Precision
for the three types of targets in the test areas exceeded 86%
using the proposed fully automatic detection, 3-D positioning,
and vectorization scheme. There was previously no effective
solution for the automatic 3-D localization of these small traffic
signs. However, the results demonstrate that the overall proposed
scheme is feasible and has great application value in practical
projects.

V. CONCLUSION

This study tackles the problem of automatic extraction of
3-D information for small traffic signs based on MMS data.
The faster R-CNN framework was optimized for improved
performance, including a proposed backbone network called
VGG-L and the optimization of several parameters. Experiments
using the generated UTSD dataset illustrate the superiority of the
proposed model over other existing deep networks, both in terms
of accuracy and speed. Based on the detected 2-D bounding
boxes of the small traffic signs from panoramic images, the
depth-map-based 3-D spatial geolocation method is proposed
to obtain the real 3-D locations of targets, which includes the
processes of depth map generation, coordinate transformation,
and vectorization using the CDDV method, EE, and RRTs.

Quantitative evaluation of the experimental 3-D localization
results indicates that the proposed workflow provides advanta-
geous performance, and the automatic detection and 3-D local-
ization of small traffic signs both is efficient and helpful for the
regular maintenance and management of the target signs. The
proposed method can be used to extract various types of small,
urban street furniture for constructing high-precision 3-D city
representations based on MMS data.

Although extensive experiments and comprehensive evalua-
tions have demonstrated the feasibility and superiority of the
presented method, there is still much room for improvement in
the accuracy of small traffic sign detection and 3-D positioning.
In the future work, we will expand the UTSD dataset and study
more effective CNN detection networks for systematic detection
of traffic signs, and more robust algorithms will be explored to
improve the accuracy of vectorizing various traffic signs.
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