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Semisupervised Variational Generative Adversarial
Networks for Hyperspectral Image Classification

Chao Tao , Hao Wang , Ji Qi , and Haifeng Li

Abstract—Although the hyperspectral image (HSI) classification
is extensively investigated, this task remains challenging when the
number of labeled samples is extremely limited. In this article, we
overcome this challenge by using synthetic samples and propos-
ing semisupervised variational generative adversarial networks
(GANs). In contrast to conditional GAN (previously used for the
generation of HSI samples), the proposed approach has two novel
aspects. First, an encoder-decoder network is extended to the
semisupervised context using an ensemble prediction technique.
Through this technique, our deep generative model can be trained
using limited labeled samples (only five samples per class) with a
large number of unlabeled samples. Second, we build a collabora-
tive relationship between the generation network and the classifi-
cation network. This property enables that our model can produce
meaningful samples that can contribute to the final classification.
The experiments on four benchmark HSI datasets demonstrate that
the proposed model can achieve an increase of >10% in overall
classification accuracy compared with the baseline model without
using the generated sample. We also show that the proposed model
can achieve better and more robust performance for HSI classi-
fication than other generative methods as well as semisupervised
methods, especially when the labeled data are limited.

Index Terms—Deep learning, generative adversarial networks
(GAN), hyperspectral image classification, semisupervised
learning, variational auto-encoder (VAE).

I. INTRODUCTION

HYPERSPECTRAL imaging sensors can capture images
with pixels represented as high-dimensional spectral vec-

tors that range from visible spectral to short-wave infrared
bands [1]. These sensors enable hyperspectral image (HSI) to
be a powerful tool for various applications, such as land cover
classification [2], [3], environmental protection [4], [5] and
precision agriculture [6], [7].

Methods used for HSI classification can be roughly divided
into three types according to the ratio of label samples in
all training samples: unsupervised, supervised learning, and
semisupervised. Unsupervised learning algorithms can be easily
applied in the HSI processing area because no labeled samples
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are required. Many methods, such as fuzzy clustering [8] and
fuzzy C-Means [9], have demonstrated impressive results in
HSI classification. However, verifying the relationship between
clusters and classes based on limited priori knowledge is diffi-
cult. Supervised learning classification mainly includes support
vector machine (SVM) [10], [11] and random deep forest [12],
[13]. However, obtaining a large number of labeled samples for
these supervised learning methods is time-consuming and costly
in HSI [14]. Therefore, the semisupervised learning method
has extensively attracted the attention of researchers. Its basic
idea is based on the assumption of data distribution, which
uses a small number of labeled samples and a large number
of unlabeled samples to build a high-performance learner for
image classification. Commonly used semisupervised learning
methods include the generated model [15], the transductive
SVM method [16], the self-learning method [17], [18] [19],
and the graph-based method [20], [21], [22]. However, such
algorithms are less tolerant by unlabeled samples. Moreover, if
the unlabeled samples are not properly selected, they may induce
the classifier to make mistakes.

In this context, we focus on two main challenges for HSI
classification. First, due to the high dimensionality of HSIs,
general optical image classification methods in the computer
vision domain fail to obtain refine classification maps of HSIs.
Second, it is time-consuming and costly to obtain a large
number of labeled samples for HSIs. With the development
of imaging technologies, hyperspectral sensors have provided
fine spatial resolution as well as detailed spectral information.
Convolutional neural networks (CNNs), especially deep CNNs
has proven to be promising in extracting hierarchical features.
A series of end-to-end CNN models have been proposed to ex-
tract features of HSIs and achieved promising results [23]–[26].
These methods are based on the assumption that deep models
require a large number of training data. Nonetheless, these
papers overlook the scarcity of labeled training samples in HSIs.
On the other hand, a large number of unlabeled samples contain
efficient information to exploit. Several semisupervised learning
methods [20], [22] suggest to exploit information contained
in real data samples, included unlabeled samples and limited
labeled samples. Although they achieved good performance,
these results may heavily depend on unlabeled data selection
rather than models. Recently, a generative adversarial network
(GAN) [27] was proposed to capture the data distribution by
playing a Nash equilibrium game between a generative network
G and a discriminative network D. With the help of adversarial
learning, GAN can create an efficient generator to synthesize
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higher quality samples in an unsupervised manner. Such virtual
samples may enrich the dataset and introduce variability. There-
fore, more efficient semisupervised training strategies based on
GANs for HSI classification are valuable to explore.

Due to the advantages of GAN, some approaches tried to
solve the above problem based on GANs. The basic idea is
to apply such deep generative models to generate realistic and
diverse samples and then work for a supervised classification
with a small number of labeled samples and a large number
of newly generated samples. In [28], a 3D-GAN is proposed
to process image classification tasks as well as synthetic data.
However, it requires a certain number of labeled samples (e.g.,
200 samples per class) for adversarial learning, which ignores
to exploit the information contained in unlabeled samples. The
aforementioned methods in [29] and [30] proposed semisuper-
vised GANs for HSI classification based on conditional GANs.
However, conditional GANs model [31], [32] has the problem
of unstable training [33], gradient vanishing [34], and mode
collapse [35]. Although [30] proposes to use conditional random
field to smooth the semisupervised process, the instability of the
training process of conditional GANs may influence the quality
of the generated samples.

In addition to GANs, variational auto-encoder (VAE) [36] can
also generate samples with the smooth training process, while
its imperfect reconstruction loss usually causes the generated
image to be blurry [37]. To improve the quality of the generated
samples, and to make the training of GAN more stable, con-
ditional variational autoencoder generative adversarial network
(CVAEGAN) [38] takes advantage of the combination of VAE
and GAN, and applies feature matching objective for conditional
adversarial learning to synthesize images for a specific identity.
However, CVAEGAN does not clearly build the relationship
between the generative network G and the classification net-
work C in model training stage, which may lead to generate
just realistic but not enough meaningful samples for learning
classifiers. Besides, it is a supervised generative model. When
there are not enough labeled samples for training, the variety
of synthesized samples may be degraded, and thus this property
may greatly restrict the model in limited labeled data condition
such as hyperspectral image classification application.

In this article, we further explore the potential of using GANs
for HSI classification under the extremely limited labeled con-
dition (e.g., five samples per class), and proposed a semisu-
pervised variational GAN to solve the problems mentioned
above. In contrast with CVAEGAN, the proposed framework
is extended to the semisupervised context by using an ensemble
prediction technique [39] to ensure that the deep generative
model can be trained with limited labeled samples. Besides,
we build a collaborative optimization mechanism between the
generative network G and the classification network C in the
process of sample generation. This property enables our model
to produce meaningful samples which can contribute to the
final classification. From the experiments on three widely used
hyperspectral data sets and one Landsat remote sensing image,
we observed that the proposed model can generate diverse but
category-keeping samples using only five labeled samples per
class and a large number of unlabeled samples. Such samples

enable the introduction of more variability and can possibly
enrich the dataset. As a result, the classification performance is
significantly improved compared to the baseline without using
the generated samples.

The rest of this article is organized as follows. Section II
describes the background of CVAEGAN. Then, Section III
presents the proposed semisupervised variational generative
method and the details of using adversarial samples for HSI
classification. The experimental results are shown in Section IV.
Finally, Section V concludes this article.

II. BACKGROUND

CVAEGAN is a generative framework that takes advantage of
the combination of VAE and GAN, and applies feature matching
objective for conditional adversarial learning to synthesize im-
ages for a specific identity. This framework [Fig. 1(a)] contains
four parts: 1) an encoder network E to learn the relationship
between the latent space and the real image space; 2) a generative
network G to synthesize samples; 3) a discriminative network
D to distinguish between real and synthesized samples; 4) a
classification network C to measure class probabilities for real
images.

Mathematically, suppose we have a dataset x, which is
parametrized by latent factors z. The encoder network E maps
inputs to a latent variable space with a specific distribution,
unit Gaussian N (0, 1), and outputs the mean and covariance
of the latent vector in practice, i.e., μ and ε, respectively. The
gap between prior p(z) = N (0, 1) and posterior qφ(z|x) can be
reduced by KL loss

LKL =
1

2
(μTμ+ sum(exp(ε)− ε− 1)). (1)

Then, a mapping from x to latent variables z is obtained by
sampling z = μ+ r ∗ exp(ε), where r ∼ N (0, I). After that,
CVAEGAN reconstructs the latent variables to the original
image space by conditional adversarial learning. The discrimi-
native network D tries to distinguish real data from synthesized
data. The generative network G tries to fool the network D, and
the classification network C tries to introduce specific labeled
information for generating process.

Suppose we have auxiliary information c, here, c could be any
kind of available extra information, e.g., class labels. Classifica-
tion network C takes in x as input and outputs a corresponding
predicted vector. The output can represent the posterior prob-
ability P (c|x) by using softmax function. And the network C
tries to minimize the following loss function

LC0
= −Ex∼Pdata(x)[logP (c|x)]. (2)

Generative network G accepts latent variables z and auxiliary
information c as input to generate new samples G(z, c). Dis-
criminative network D is a binary classifier, which is performed
to maximize log (D(x)) and minimize log(D(G(z, c)))

LD = −Ex∼Pdata(x)[logD(x)]

− Ez∼Pz(z)[log (1−D(G(z, c)))]. (3)
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Fig. 1. Illustration of the structure of CVAEGAN and the proposed SSVGAN. The encoder network E maps the input x to a latent vector z. The generator G
generates fake data x by sampling from a distribution P (x|z), and tries to learn the real data distribution by the gradients given by the discriminator D and the
classifier C. The encoder-decoder framework sets up the relationship between the latent space and real data space. The variability in the synthesized samples can
be obtained by imposing Gaussian noise with the latent vector.

To avoid training instability problem and synthesize sharper
samples [40], CVAEGAN applies feature matching in the im-
plementation of conditional adversarial learning. Concretely, the
network G tries to minimize the following loss function:

LG0
=

1

2

(
‖ x−G(z, c) ‖22 + ‖ fD(x)− fD(G(z, c)) ‖22

+ ‖ fC(x)− fC(G(z, c)) ‖22
)

(4)

where fD and fC are the features of an intermediate layer
of discriminative network D and classification network C,
respectively.

III. METHODOLOGY

CVAEGAN is capable of generating realistic and diverse sam-
ples with fine-grained category labels, such as faces or flowers.

However, it has two shortcomings. First, it needs a lot of training
samples to train the network while the labeled data is usually
limited in HSI application. Second, it just considers how to gen-
erate realistic samples but does not clearly build the relationship
between the generative network G and the classification network
C. Thus, in this article, we propose a semisupervised variational
GAN called semi-supervised variational generative adversarial
network (SSVGAN) [Fig. 1(b)] to solve these problems. The ar-
chitecture of the proposed network SSVGAN (shown in Table I)
is as similar as CVAEGAN which also contains four parts, but
we use different training strategy and optimization mechanism.
In the following sections, we begin by describing the semisuper-
vised training framework of SSVGAN (Section III-A). Then we
proposed a collaborative optimization mechanism between the
generative network G and the classification network C in model
training stage (Section III-B). We finally show how to utilize
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TABLE I
NETWORK OF THE PROPOSED SSVGAN

Fig. 2. Illustration of ensemble predictions.

the proposed generative model for generating HSI samples
(Section III-C) and used them in a traditional classification
workflow (Section III-D).

A. Semisupervised Training Framework of SSVGAN

Labeled data are usually limited in HSI classification appli-
cation. When the number of labeled samples are insufficient
for training, the generalization performance of the deep neural
network may be degraded, and thus this property may greatly
restrict the model in limited labeled data condition. To solve this
problem, we first explore an ensemble prediction technique to
train the classification network C by simultaneously optimizing a
standard supervised classification loss on labeled samples along
with an additional unsupervised consistence loss term imposed
on labeled and unlabeled data (Fig. 2).

Mathematically, suppose we have a limited amount of la-
beled samples DL = {(xi,l, yi)}Nl

i with an abundant amount
of unlabeled samples DU = {(xi,u)}Nu

i , where Nu � Nl. In
the training stage, the network C tries to minimize the following

loss function:

LC = − 1

Nl

∑
xi∈DL

logP (c|xi)

+
1

Nu

∑
xi∈DL∪DU

‖ f(xi)− f(g(xi)) ‖ (5)

where the first term is the standard supervised loss function
evaluated for labeled inputs only. The second term is the added
unsupervised consistence loss term evaluated for labeled and
unlabeled inputs. Here, f(xi) and f(g(xi)) represent the class
probability of xi and g(xi), respectively. g(xi) is a stochastic
input augmentation function used to impose Gaussian noise or
random transformation on the original data xi. The second term
is used to penalize the inconsistent prediction between two re-
alizations of the same input. By using unsupervised consistence
loss term, we can use a large number of unlabeled samples to
better learn the distribution of training samples. Moreover, it can
encourage the decision boundary lie in the low-density regions of
the data distribution which is helpful for classification, because
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small prediction error between two realizations of the same
input can be satisfied only if the decision boundary traverses
a low-density path.

B. Collaborative Optimization Mechanism Between the
Generative Network G and the Classification Network C

Another limitation of CVAEGAN is that it does not clearly
build the relationship between the generative network G and the
classification network C in model training stage, which may lead
to generate just realistic but not enough meaningful samples for
learning classifiers. To solve this problem, we further build a
semisupervised collaborative optimization mechanism between
network G and network C in an end-to-end learning manner.

Specifically, the semisupervised collaborative optimization
mechanism contains two training processes.

In classification network C training stage, we choose both gen-
erated samples and real data as the input of network C, with the
aim of providing diverse information to assist the classification
network training. Therefore, the (5) can be rewritten as

LC = − 1

Nl

∑
xi∈DL

logP (c|xi)

+
λ

Nu

∑
xi∈DL∪DU

‖ f(xi)− f(G(xi)) ‖ .
(6)

Here,G(xi) is the generative function instead of stochastic input
augmentation function on the original data xi. λ is a ramp-up
weight that trades off the semisupervised with classification
accuracy on the labeled data. In the initial training state, since
the generated samples are far away from the real samples in
the data space, λ is set to zero. As the training epoch increases,
λ is ramping up to the max weight (empirically, multiply the
labeled percentage in a dataset by 10) during the first 80 training
epochs. In the generative network G training stage, similar to
CVAEGAN, we also use the feature matching strategy [defined
in (4)] to link the generative network G and the classification
network C. However, different from CVAEGAN using pairwise
feature matching based on pixel-wise loss, we use the global
second-order statistics (covariances) loss in this stage. This is
because that the classification network C can rapidly achieve
convergence if we use semisupervised training mechanism and
pixel-wise loss function simultaneously. In other words, the
whole network is easily overfitting, which makes the generated
samples realistic but lose diversity. Thus, in order to alleviate the
overfitting problem, we choose the global second-order statistics
to measure the global deviations of classified features between
the real x and the generated G(z, c). Therefore, the (4) will be
rewritten as

LG =
1

2

(
‖ x−G(z, c) ‖22 + ‖ fD(x)− fD(G(z, c)) ‖22

+ ‖ Cf (x)− Cf (G(z, c)) ‖22
)

(7)

where Cf is covariance matrices of the features of an interme-
diate layer of classification network C.

Algorithm 1: Optimization Procedure of SSVGAN.
Input: The labeled samples DL, and unlabeled samples DU .
Output: The parameters of whole network,

θ = {θC , θE , θG, θD}
01: while θG not converge do
02: for one epoch do
03: Require: x ∈ DL ∪DU

04: Update θD by minimizing LD in (3)

θD
+←− −∇θD (LD)

05: Update θE by minimizing (LKL + LG) in (1)
and (7)

θE
+←− −∇θE (LKL + LG)

06: Update θG by minimizing LG in (7)

θG
+←− −∇θG(LG)

07: Update θC by minimizing LC in (6)

θC
+←− −∇θC (LC)

08: end for
09: end while

The training of SSVGAN is performed in a semisupervised
way, and the overall parameters θ = {θC , θE , θG, θD} for net-
work C, E, G, and D are optimized by minimizing the following
objective function:

L = LC + LKL + LG + LD (8)

where LC is the semisupervised loss defined in (6), LKL is
the KL loss defined in (1), LD and LG are the conditional
loss defined in (3) and (7). The detailed optimization process
of SSVGAN is shown in Algorithm 1.

C. Generation of HSI Samples Using SSVGAN for
HSI Classification

This section describes the use of the proposed generative net-
work for generating HSI samples. For HSI analysis, researchers
demonstrated that the redundancy from interband correlation is
very high, and the data structure in the spectral dimension can
be reduced without significant loss of the useful information
for subsequent utilizations [1]. Moreover, training our networks
using such high-dimensional samples is difficult. Thus, we apply
principal components analysis (PCA) for dimensionality reduc-
tion, which can reduce the spectral dimensions to a suitable scale
and speed up the convergence of model network training.

Then, spatial sampling is performed for each nonedge pixel,
and the sampling matrix is a size of 32× 32 centered on the pixel.
The samples will be used as the inputs of the proposed model,
and the label of the center pixel in the sampling matrix will be
used as the sample label. Subsequently, we train the proposed
model using limited labeled samples and large quantities of
unlabeled samples.

The proposed network can explicitly learn the relationship
between the real image space and the latent space. When the
network is trained, we can use it to generate samples by simply
modifying the latent vector that corresponds to the samples. The
sample generation procedure consists three steps:
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Fig. 3. False color map for real and generated data on four datasets (have been
processed by PCA), where three PCs are regarded as the red, green, and blue
bands. (a) Real training data. (b) Generated data by SSVGAN.

Step 1: Randomly select one labeled samples x from a cat-
egory c, and then extract the mean and covariance
of the latent vector, i.e., μ and ε using the encoder
network E.

Step 2: Obtain a latent vector z by impose partial Gaussian
noise in sampling: z

′
= z + r ∗ ν, where z = μ+

r ∗ exp(ε), r ∼ N (0, I) and ν is a sparse matrix to
slightly modify the value of one or two dimensions.

Step 3: Generate a fake sample using z
′

and the generative
network G.

We can generate samples from category c as much as you want
by repeating these three steps. (Fig. 3) shows some selected real
and generated samples by SSVGAN on four datasets. Intuitively,
a gap between the fake samples and the real samples is still ob-
served, whereas generated samples have captured some detailed
attributes from the real samples.

D. HSI Classification With Generated Samples

Though the classifier C in the proposed SSVGAN model
can be used for classification, it is a shallow network designed
specifically to enhance the training stability of the proposed
GAN rather than extracting discriminant features. Meanwhile,
achieving satisfactory classification performance under limited
labeled sample conditions is difficult even if the ensemble pre-
diction technique is used for training. Due to this concern, in our
work, we follow the traditional classification workflow, which
first extract hand-craft spectral-spatial feature [41] from both
real and generated samples, and then embedding it into a linear
SVM for final classification. Specifically an input hyperspectral
image I with d principal components (PC) is provided, and
spectral-spatial feature for an arbitrary pixel x0 in I is extracted
as follows:

U = {f0, sort([f1, f2 . . . fN∗N−1])} ∈ Rd×(N∗N+1) (9)

where f0 ∈ Rd∗1 is the reduced spectral vector associated to the
pixels x0, and f1, f2 . . . fN∗N−1 are reduced spectral vectors
associated to the pixels in the N ∗N square neighborhood of
x0. The function Sort () is used to reorder N ∗N − 1 reduced
spectral vectors based on the corresponding value of the first PCs
in ascending order. Here, sort function can make spectral-spatial
features invariant to local image rotation [41].

Fig. 4. University of Pavia. (a) False color image. (b) Ground reference map.

Fig. 5. Pavia Centre. (a) False color image. (b) Ground reference map.

IV. EXPERIMENT RESULTS

A. Data Description

In our experiments, three widely used hyperspectral datasets
and one Landsat remote sensing image are adopted to validate
the proposed method. The following is a detailed description of
these datasets:

University of Pavia: This dataset was acquired by the ROSIS
sensor during a flight campaign over Pavia, Northern Italy. The
number of spectral bands for Pavia University is 103 with a
wavelength range of 0.43−0.86 μm. Pavia University contains
610 × 340 pixels with a spatial resolution of 1.3 m. Image
ground truths differentiate nine classes each. Fig. 4 shows the
false color images and its ground truth, where bands 57, 34, and
3 are regarded as the red, green, and blue bands, respectively.

Pavia Centre: This dataset was acquired by the ROSIS sensor
during a flight campaign over Pavia, Northern Italy, with a size of
1096 × 492 and 102 spectral bands in the wavelength range of
0.43−0.86 μm. The spatial resolution is 1.3 m. The available
ground reference map covers nine classes of interest. Fig. 5
shows the false color images and its ground truth, where bands
57, 34, and 3 are regarded as the red, green, and blue bands,
respectively.



920 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6. DC Mall. (a) False color image. (b) Ground reference map.

DC Mall: This dataset was an airborne hyperspectral data
flightline over the Washington DC Mall provided with the per-
mission of Spectral Information Technology Application Center
of Virginia. The sensor system response in 210 bands in the
0.4–2.4μm region of the visible and infrared spectrum. DC Mall
has 1208× 307 pixels with a spatial resolution of 2 m. Bands in
the 0.9 and 1.4μm region, where the atmosphere is opaque, have
been omitted from the dataset, thereby leaving 191 bands. The
available ground reference map covers seven classes of interest.
Fig. 6 shows the false color images and its ground truth, where
bands 76, 42, and 3 are regarded as the red, green, and blue
bands, respectively.

Jiamusi: This dataset was acquired by the Landsat8/OLI
(Operational Land Imager) sensor over Jiamusi, Western China
with a size of 256 × 256 and 7 spectral bands. The spatial
resolution is 30 m. We manually label the data with four covered
classes of interest. Fig. 7 shows the false color images and its
ground truth, where bands 4, 3, and 2 are regarded as the red,
green, and blue bands, respectively.

In the experiments, five labeled samples per class are used
from the ground truth together with the unlabeled samples from
the input image to train the proposed SSVGAN. Afterward, sev-
eral samples are generated per class using the trained network,
and combine them with the limited truth samples per class for
SVM classifier training.

To evaluate the quality of our approach, we assess the perfor-
mance of classification by computing three common measures:
the overall accuracy (OA), the average accuracy (AA), and the
Kappa coefficient on the available reference data. Five experi-
ments are performed on a PC with 3.7 Hz Core E5-1620 CPU,
GeForce GTX 1080Ti and 24-GB RAM:

Experiment I aims at statistically examine the effect of differ-
ent parameter values on final image classification performance.

Experiment II aims to evaluate the quality of synthesized
samples on HSI classification and explores whether the samples
synthesized from our model SSVGAN can be used for data
augmentation to improve HSI classification model.

Experiment III compares different strategic generative meth-
ods to generate samples for HSI classification and demonstrates
the advantage of the proposed SSVGAN.

Experiment IV compares different semisupervised methods
for HSI classification to validate the quality of classification
results, especially when the number of labeled samples is ex-
tremely limited.

Experiment V tests the effect with a semisupervised, su-
pervised, or without classification network C in the proposed
SSVGAN on the final image classification.

B. Classification Results

1) Parametric Analysis: In our method, there are two main
parameters directly affecting the quality of generated samples.
The first one is the batch size used in training the proposed
generative network. The second one is the number of retained
PCs after PCA.

To assess the impact of batch size, we have analyzed a mini-
batch size of 8 to a larger minibatch size of 128 on four datasets in
Fig 8. As can be seen, we get the highest OA when the batch size
is set to 16 or 32. The accuracy gradually decreases as the batch
size rises. When the batch size is set to 128, the accuracy has
slipped almost 1%. It shows that very large batch size may harm
the generalization ability of the proposed generative model.
In addition, batch size can affect computation time as well as
performance. According to the experiment, we set the batch size
as 32, considering both performance and computation time.

In addition, the PCA-3, PCA-10, PCA-20 and PCA-50 in
Table II means that we preserve 3, 10, 20, and 50 PCs, respec-
tively. Since the Jiamusi contains seven bands, we only compute
PCA-3 on this dataset. As can be seen, when we retained ten
PCs, the dataset PaviaCe and DC Mall can obtain the best
classification accuracy, and PaviaU dataset can obtain the second
best classification accuracy. Moreover, if the number of retained
PCs is not sufficient (e.g., three PCs) or too excessive (e.g., fifty
PCs), the classification results prone to decrease. Thus, we set
the number of retained PCs as ten in the following experiments.

2) Result Analysis: In this experiment, the quality of the syn-
thesized samples on HSI classification is evaluated and explores
whether the samples synthesized from our model SSVGAN
can be used for data augmentation to remarkably train the HSI
classification model. We extract the hand-craft spectral-spatial
feature [41] from limited labeled samples and embedding it into a
linear SVM as the baseline classification. And we use the same
limited labeled samples and amounts of unlabeled samples to
train our model SSVGAN to synthesize samples. Following,
detailed experiments are conducted by adding synthetic sam-
ples for each class. We use both real and synthetic samples to
train another linear SVM for the comparison. All the experi-
ments are repeated ten times, and Tables III–VI show the mean
and standard deviation classification results for these four test
images.

Two observations were made from the result:
In contrast with the baseline, which only used five labeled

samples for each class, the proposed method improves its perfor-
mance by adding synthetic samples for these four datasets. The
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Fig. 7. Jiamusi. (a) False color image. (b) Ground reference map.

Fig. 8. Parameters analysis of the batch size (From left to right: University of Pavia, Pavia Centre, DC Mall, and Jiamusi, respectively).

TABLE II
PARAMETRIC ANALYSIS OF THE NUMBER OF RETAINED PCS

Bold signifies the best accuracy obtained in different conditions of retained principal components.

TABLE III
CLASSIFICATION RESULTS OBTAINED BY PAVIAU WITH FIVE REAL SAMPLES

AND SYNTHETIC SAMPLES BY SSVGAN FOR EACH CLASS

TABLE IV
CLASSIFICATION RESULTS OBTAINED BY PAVIA CENTRE WITH FIVE REAL

SAMPLES AND SYNTHETIC SAMPLES BY SSVGAN FOR EACH CLASS
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TABLE V
CLASSIFICATION RESULTS OBTAINED BY DC MALL WITH FIVE REAL SAMPLES

AND SYNTHETIC SAMPLES BY SSVGAN FOR EACH CLASS

TABLE VI
CLASSIFICATION RESULTS OBTAINED BY JIAMUSI WITH FIVE REAL SAMPLES

AND SYNTHETIC SAMPLES BY SSVGAN FOR EACH CLASS

TABLE VII
COMPARED STRATEGIC CLASSIFICATION RESULTS OBTAINED BY PAVIAU WITH

FIVE REAL SAMPLES AND SYNTHETIC SAMPLES FOR EACH CLASS

TABLE VIII
COMPARED STRATEGIC CLASSIFICATION RESULTS OBTAINED BY PAVIA CENTRE

WITH FIVE REAL SAMPLES AND SYNTHETIC SAMPLES FOR EACH CLASS

TABLE IX
COMPARED STRATEGIC CLASSIFICATION RESULTS OBTAINED BY DC MALL

WITH FIVE REAL SAMPLES AND SYNTHETIC SAMPLES FOR EACH CLASS

TABLE X
COMPARED STRATEGIC CLASSIFICATION RESULTS OBTAINED BY JIAMUSI WITH

FIVE REAL SAMPLES AND SYNTHETIC SAMPLES FOR EACH CLASS

proposed method can achieve approximately 11.38%, 1.78%,
14.7%, and 30.38% improvement in Kappa compared with base-
line. The samples generated by the proposed model introduces
variability, thereby improving the classifier training process.

Another interesting observation is that although the classifica-
tion accuracy of most categories has improved, some categories
still decline. In particular, the classification performance of the
same category significantly differ under various datasets. For
example, the category “Bare Soil” has reduced accuracy after
adding generated samples in the University of Pavia dataset.
However, its classification accuracy is improved to 82.33% in
Pavia Centre. From the perspective of data collection, although
they are under the same label category, significant differences
in the surface features are expressed under different datasets.
The Bare Soil in Pavia Centre is adjacent to the river, but it is
surrounded by buildings in the University of Pavia. Affected
by the surrounding environment, the spectral information of a
marginal Bare Soil pixel in the University of Pavia dataset is
more mixed. Thus, the model is easy to generate mixed Bare Soil
samples which are useless for classification. Another example
of performance difference is under the “shadow” category in
University of Pavia and DC Mall datasets. The resolution of
University of Pavia and DC Mall dataset is 1.3 and 2 m, respec-
tively. This resolution complicates the spectral information of
Shadow category pixels in DC Mall.

3) Comparison Analysis in Generative Methods for HSI
Classification: In this experiment, we compared the proposed
SSVGAN with two state-of-the-art generative methods in lim-
ited labeled condition (e.g., five labeled samples per class).
The first one is auxiliary classifier generative adversarial net-
work (ACGAN) [32], which is a supervised framework with
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Fig. 9. University of Pavia. (a) False color image. (b) Ground truth. (c) ACGAN. (d) CVAEGAN. (e) SSVGAN.

Fig. 10. Pavia Centre. (a) False color image. (b) Ground truth. (c) ACGAN. (d) CVAEGAN. (e) SSVGAN.

Fig. 11. DC Mall. (a) False color image; (b) Ground truth. (c) ACGAN. (d) CVAEGAN. (e) SSVGAN.

a generative network G, a discriminative network D, and a
supervised classification network C. The G network consists
4 convolution layers with 256, 128, 64, and 10 channels. For the
network D network and network C, we use the same network
architecture settings shown in Table I. For training the ACGAN,
we use the Adam solver with the best-fixed learning rate of

2.0 × 10–4 in the training stage. The second one is CVAEGA
N [38], we use the same network architecture settings shown
in Table I. For training the CVAEGAN, we use the Adam
solver with the best-fixed learning rate of 5.0 × 10–5. For
the proposed SSVGAN, we use the Adam solver with a fixed
learning rate of 1.0 × 10–4. We trained each model for 10 000
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Fig. 12. Jiamusi. (a) False color image. (b) Ground truth. (c) ACGAN. (d) CVAEGAN. (e) SSVGAN.

Fig. 13. Classification results obtained by four datasets with 5-10-20-30 labeled samples for each class (From left to right: University of Pavia, Pavia Centre, DC
Mall and Jiamusi, respectively). Each marker in the figure represents the AA.

TABLE XI
COMPARED SEMISUPERVISED CLASSIFICATION RESULTS OBTAINED BY PAVIAU

WITH FIVE REAL SAMPLES FOR EACH CLASS

TABLE XII
COMPARED SEMISUPERVISED CLASSIFICATION RESULTS OBTAINED BY PAVIA

CENTRE WITH FIVE REAL SAMPLES FOR EACH CLASS

iterations with a batch size of 32 until they converge. And the
best retained PCs shown in Table II on four datasets have been
applied.

In the experiments, we use both real and synthetic samples
from different generative methods to train another linear SVM
for the comparison. From compared classification results of gen-
erative methods in Tables VII–X, the SSVGAN shows a better
performance in terms of accuracies. For the DC Mall dataset,
the SSVGAN exhibits the highest OA, AA, and Kappa*100,

TABLE XIII
COMPARED SEMISUPERVISED CLASSIFICATION RESULTS OBTAINED BY DC

MALL WITH FIVE REAL SAMPLES FOR EACH CLASS

TABLE XIV
COMPARED SEMISUPERVISED CLASSIFICATION RESULTS OBTAINED BY

JIAMUSI WITH FIVE REAL SAMPLES FOR EACH CLASS

with an improvement of 3.08%, 2.05%, and 3.68% over AC-
GAN, respectively. On the other hand, our SSVGAN approach
outperforms CVAEGAN by 1.14%, 1.30%, and 1.38% in terms
of OA, AA, and Kappa*100, respectively. For the University
of Pavia, Pavia Centre, and Jiamusi datasets, we can obtain the
similar results. These results indicate that the semisupervised
collaborative optimization mechanism is conduce to generate
meaningful samples compared with other generative methods.
Classification accuracies are also evaluated in a visual perspec-
tive. Figs. 9–12(c)–(e) show the classification maps for ACGAN,
CVAEGAN, and SSVGAN in four datasets.
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TABLE XV
EFFECT WITH A SEMISUPERVISED, SUPERVISED OR WITHOUT CLASSIFICATION NETWORK C IN THE PROPOSED SSVGAN ON FINAL CLASSIFICATION

Moreover, we investigate the behavior of the different gen-
erative methods regarding to the different number of labeled
samples in Fig. 13. We can gain the following observations
from the results: Compared to the other generative methods,
SSVGAN exhibits the highest classification improvement on
four datasets. As labeled samples increases, the classification
gap from different generative methods has been closer. However,
the proposed SSVGAN provides a significant improvement in
the small number of labeled samples conditions. This difference
is due to the fact that unlabeled samples have been exploited
in SSVGAN. In other words, with the help of a semisupervised
classification network C, SSVGAN can learn well to synthesize
meaningful samples for enhancing hyperspectral classification
performance.

4) Comparison Analysis (Semisupervised Methods for HSI
Classification): In the previous section, several generative
methods for HSI classification have been included to give a
comprehensive comparison. It demonstrates that the proposed
model has excellent abilities in image classification. In this
section, we further compared the proposed method with three
well-known semisupervised methods for HSI classification in-
cluding SS-LPSVM [42], BLGL [43], and RLDE [44], where
SS-LPSVM, BLGL are graph-based methods and RLDE is a
cotraining method. For these compared methods, we use the op-
timal parameter settings based on experiments. It is noted these
compared semisupervised methods directly use limited labeled
samples and some unlabeled samples for classification. While
our generative model aims to generate meaningful samples using
labeled and unlabeled real samples, then we use both real labeled
and synthetic samples for classification. For a fair comparison,
we adopt the same ratio of unlabeled samples, approximately
70%, for this comparison experiment. The compared classifica-
tion results are shown in Tables XI−XIV.

For the DC Mall dataset, SSVGAN exhibits the best OA,
AA, and Kappa*100, with improvements of 7.64%, 4.76%, and
9.17% over SS-LPSVM, respectively. Our approach outper-
forms BLGL by 5.25%, 3.03%, and 6.29% in terms of OA, AA,
and Kappa*100, respectively. It also increases 1.23%, 1.14%,
and 1.52% in terms of OA, AA, and kappa*100 compared with
that of RLDE. For the University of Pavia, Pavia Centre and
Jiamusi datasets, we can obtain the similar results. Additional
insights into the effect of SSVGAN on HSI classification chal-
lenge are provided. To expand the labeled training set, SS-
LPSVM reference [42] uses a spatial-spectral graph to propagate
labels from labeled samples to unlabeled samples. By contrast,

SSVGAN can improve the classification performance with the
help of generated samples in the semisupervised context. This
demonstrates that the generated samples from SSVGAN capture
some meaningful details which can contribute to classification.

5) Test on the Effect With a Semisupervised, Supervised or
Without Classification Network C in the Proposed SSVGAN:
As mentioned in previous sections, we use a semisupervised
classification network C in the proposed SSVGAN and build a
collaborative optimization mechanism between the generative
network G and the classification network C in the process
of sample generation, hoping that the generated samples can
contribute to the final classification. Thus, in this section, we
test the effect with a semisupervised, supervised, or without
classification network C in the proposed SSVGAN on the final
image classification. As can be seen in Table XV, if we remove
the classification network C in SSVGAN, the final classification
performance will decrease for all four test images. The classi-
fication OA has been descended by 4.82%, 0.21%, 4.22%, and
8.92% on four datasets, respectively. If we use the supervised
classification network C in SSVGAN, the final classification
performance has decreased by 2.82%, 0.2%, 1.59%, and 3.93%
on four datasets, respectively. This result shows the importance
of the use of the classification network C with semisupervised
training strategy in SSVGAN.

V. CONCLUSION

In this article, a semisupervised variational GAN is proposed
to generate auxiliary data to overcome the challenge task of HSI
classification when the number of labeled samples is extremely
limited. We propose to build a collaboration relationship be-
tween the generative network and the classification network to
generate samples which can contribute to classification. Exper-
iments on four benchmark datasets show that these generated
samples significantly improve classification performance and
can achieve better and more robust performance than other
generative methods, which is recently used to generate HSI
samples. However, the proposed method still has two limitations.
First, as the generation network G and classification network C
are hard to simultaneously achieve convergence, the first con-
vergent network is easily overfitting, which makes the generated
samples lose diversity. Second, it is known that pixels of different
entities may share a similar spectral signature in HSI, which
would lead to poor discriminant using original spectral feature
space for feature matching. To promote our approach for HSI
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classification, we will balance the generation and classification
process and consider apply the metric learning method [45], [46]
in our future work.
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