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Abstract—Global navigation satellite system reflectometry
(GNSS-R) is a group of techniques that uses satellite navigation
signals as signals of opportunity for remote sensing applications.
In GNSS-R, large amounts of data are acquired and have to be
processed. Computation time is typically the bottleneck for ground
and airborne experiments. This article presents an efficient solution
for off-line GNSS-R processing data taking advantage of graphics
processing units (GPUs). After comparing to the typically used CPU
languages, such as MATLAB and C-++-, the advantage of using
parallel processing on the GPU is clear. GPU-based computation
can reduce the processing time by as much as 95% of the acqui-
sition time of the data. An implementation taking advantage of a
home-use GPU is proposed for the data processing units. Thanks
to its efficiency, even real-time processing experiments are feasible.

Index Terms—Compute unified device architecture (CUDA),
global navigation satellite system reflectometry (GNSS-R),
graphics processing unit (GPU) processing, parallel computing,
real-time processing.

I. INTRODUCTION

RAPHICS processing units (GPUs) were initially de-
G signed to accelerate graphics computing. However, more
recently, they have also been used to accelerate computation
times of large amounts of data. In global navigation satellite sys-
tem reflectometry (GNSS-R), large amounts of data have to be
processed either in real-time or offline, and the computation time
is a bottleneck. Common programming languages in academia,
such as MATLAB [1], are too slow to process large amounts of
data. GPU processing has already been applied to some GNSS
receiver experiments [2], [3], and it has been used in GNSS-R for
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specific experiments and specific constellations [4], [5]. The goal
of this article is to take advantage of GPUs to develop an efficient
generic GNSS-R processor and present efficiency results. A full
software tool has been developed to process real GNSS-R data,
and has been validated with data collected by the microwave
interferometric reflectometer (MIR) airborne campaign [6], [7].

The MIR instrument is a multibeam dual-band GNSS-R with
real-time beam-steering capabilities to compensate the aircraft
attitude so as to point to the desired GNSS (GPS or Galileo)
satellites and reflection points. The up-looking array points
directly to the GNSS satellites, while the down-looking one
points to the corresponding specular reflection points on the
earth’s surface. The instrument can track up to four different
satellites, and their corresponding specular reflection points at
L1/E1 (1575.42 MHz) with a bandwith of 20 MHz and L5/ESa
(1176.45 MHz) with a bandwith of 34 MHz [6]. During the MIR
maiden flight experiments, the signals were down-converted to
baseband and sampled at 32.736 MSps at 1 b for both the I
and Q components, and then stored in a computer for off-line
processing. In the future, it is foreseen to keep the multibit
sampling and real-time data processing.

During that campaign, MIR recorded about 2 TB of data
that had to be processed in a time and cost-effective man-
ner. This involves processing from the different constellations
and bands and extracting all possible observables—waveforms
(WF), delay-Doppler Map (DDM), and signal-to-noise ratio
(SNR) of the signal, for conventional (cGNSS-R) or interfer-
ometric (IGNSS-R) techniques at different coherent/incoherent
integration times [8]. WF are the time cross-correlations between
the received reflected signal and either the direct one (iGNSS-R)
or a locally generated replica of the transmitted signal (cGNSS-
R) [8]. The DDMs are multiple WF computed for different
Doppler frequencies. The SNR is defined as the ratio between
the peak of the DDM minus the noise, divided by the noise. The
noise is the average power computed for the delays well before
the correlation peak.

This article proposes a GPU-based software approach to
implement a GNSS-R data processing unit. Section II describes
the proposed implementation. Section III presents results and
analysis of time elapsed to process experimental data. Section IV
presents the validation of the processed data, and Section V
summarizes the main conclusions.

II. IMPLEMENTATION

The first step in any implementation is the algorithmic and
hardware tradeoff. Dealing with large amounts of data to be pro-
cessed efficiently is the main bottleneck in this implementation.
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Fig. 1. Comparison of CPU and GPU hardware. GPU includes more ALUs
for data processing (from [10]).

Luckily, the kind of operations needed for this processing are
highly parallelizable. A software program taking advantage of
a GPU can benefit from speed improvements, thanks to parallel
computing. One of the objectives of this implementation is to
use home-use GPUs to efficiently process the GNSS-R data. In
almost all PCs, there is a GPU able to support parallel computing.
In this way, getting new and specific hardware can be avoided.

An alternative would be running the software on the cen-
tral processing unit (CPU), which also does not require extra
hardware, but it offers limited computation resources as com-
pared to the GPU, as it will be shown later. Likewise, to use
a field-programmable gate array (FPGA)-based approach nor-
mally has much lower latency and lower clock frequency, but it
has less power to compute and less parallelization efficiency [9].
Moreover, an expensive FPGA is required, while almost every
computer has a GPU.

A generic computer program is a set of instructions to be
executed, generally in a sequential order and interpreted by a
CPU, one at a time (one thread). Nonetheless, some calculations
or processes can be computed simultaneously with multiple
threads (parallel computing). This technique allows to divide
large problems or large amounts of data to be processed in
parallel threads that can be executed independently at the same
time, increasing the processing speed. An average home PC
is able to parallelize tasks either in the CPU or in the GPU.
The speed improvement depends on the number and power of
the cores. Current CPUs have more than one core (e.g., four
or eight), while GPUs usually have hundreds of them, since
they are designed for video signal processing. In addition, GPUs
include special vector instructions that support implementation
of massive parallelism [3], and are able to process both graphic
and general data.

Generally speaking, a CPU has fewer, but more powerful
arithmetic logic units (ALUs) than a GPU, and a larger cache.
On the other hand, a GPU has more, but simpler ALUs with a
smaller cache (see Fig. 1). An operation or a function, such as
a multiplication, an accumulation, or a fast Fourier transform
(FFT), would be done faster in the CPU, as it is more powerful
and saves the time to move all the data to the GPU. However,
instead of a single operation, thousands of them have to be
computed at a time, the extra ALUs in the GPU make the
difference by parallelizing the workload.

The most general open source language for GPU paralleliza-
tion is Open Computing Language (OpenCL) [11], which is
supported by most GPU vendors. Compute unified device archi-
tecture (CUDA) language is another freeware parallel computing
language developed for NVIDIA graphic cards [10]. One key
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point of the CUDA language is that it includes optimized signal
processing libraries, called NPP, and an efficient implementation
of the FFT, called cuFFT. Comparing OpenCL and CUDA, the
latter offers a simpler programming language, and a better per-
formance, although it can only be run in NVIDIA graphic cards.
OpenCL is better if the application has to be a cross-platform
program, to be distributed in many different devices with
different graphic cards [11]. Looking for the best performance
and friendly environment, the presented GPU implementation
is done in CUDA.

The implementation design is based on a circular cross corre-
lation based on FFTs. The algorithms to compute the Fourier
transforms are so efficient that in most of the cases, when
implementing a correlation, the best procedure to implement it
is with FFTs rather than a linear correlation for each delay [12].
The procedure is simplified to operations that can be easily
parallelized like the FFTs of the two signals, point-to-point
multiplication in the frequency domain, the inverse FFT (IFFT)
of the result, and finding the maximum. These operations can
take advantage of the libraries cuFFT and NPP which have
efficient implementations of the operations to be parallelized
in the GPU. The correlation implemented is shown as

Y (7, f4) = |IFFT(FFT(y, * e/*™4) x conj(FFT(y4)))| (1)

where y,. corresponds to the reflected signal in the time domain.
In the case of using interferometric GNSS-R (iGNSS-R) tech-
nique, y,4 is the direct signal from the satellite. If the technique
used is conventional GNSS-R case (cGNSS-R), y4 is the locally
generated PRN code replica. The e/7 /4 is a complex sinusoidal,
where f; is the Doppler frequency. Y (7, f4) is the correlation,
where 7 is the time, and f; the Doppler frequency. If there is
only one fg, the result is a waveform, while if there are more, is
a DDM.

Fig. 2 shows a schematic of the implemented processing for
c¢GNSS-R technique, following the (1). The reflected signal is
divided in chunks, in this example 3 of 1 ms worth of data,
and each chunk is multiplied by a complex sine with the cor-
responding Doppler frequency after they are multiplied by the
complex conjugate of the Fourier transform of the clean replica.
If it was using iGNSS-R technique instead of the clean replica, it
would be the corresponding chunks of the direct signal from the
satellite. Then, the IFFT is computed. Each group of M chunks
(defined by the user, 3 in the example) are added to perform
incoherent additions and find the peak, this is specially needed
if the signal is very noisy. Finally, after incoherent averaging in
each of the IFFTs, the zone where the maximum peak has been
found is saved. In this way, only the region of interest is saved,
reducing a lot of the data. The length of this zone around the
peak is user-defined.

In this implementation, the parallelization is done simultane-
ously for all the samples of all the processed chunks. Fig. 3 shows
a block diagram of the processing. After the initial preparation,
the program enters in a loop, and N chunks of data will be
processed. Once it has finished with the processing, it starts
again with the next N chunks. In Fig. 3, the purple operations
are the ones parallelized in the GPU. The parallelization is done
at a sample level, except for the already defined functions FFT,



1160

< Multiplication with
< complex sine at
g f_doppler

N chunks of signal

——{FFT !

Replica

Fig. 2.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Find peak zone
in incoherent addition

Incoherent

Mol on o

IFFT

additions of M

Compute SNR

Position

Use location of the peak zone
to save coherent waveforms
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of chunks processed simultaneously, but the signal can be longer by repeating the process (see Fig. 3). M is the number of chunks used for each incoherent addition,
which has to be a divisor of N. In order to generate DDM, the same architecture is replied as many times as Doppler frequencies for the same data, to generate all
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IFFT (in cuFFT), and the incoherent summation (in NPP) that
are using their own methods.

The operations previously explained correspond to one chunk
of data (see Fig. 2). By replicating this architecture for the same
data as many times as Doppler frequencies, this implementation
is capable of computing any number of Doppler bins of the same
signal to create DDMs with variable resolution.

With this implementation, it is possible to process data from
different constellations, bands, modulations, and code lengths.
Latter in the article, for example, results of this implementation
for GPS L1 C/A which is a BPSK(1) with a code length of 1 ms,
and from Galileo E10S which is a CBOC(6,1,1/11) with a code
length of 4 ms will be presented. It was a requirement to be able
to process different types of data, as the MIR captures different
constellations (Galileo and GPS), different bands (L1/E1 and
L5/E5a), using different modulations and code lengths. Other
constellations and bands not mentioned are also configurable.
It is independent of the modulation used, and it can process
with any code lengths, even if they are not multiple of the basic
PRN code length (i.e., processing 2.5 ms of GPS L1 C/A). In
summary, the implementation achieves the processing of WF
and DDM for both cGNSS-R or iGNSS-R techniques.

III. TIME RESULTS OF PROCESSING EXPERIMENTS

The objective of this implementation is to process GNSS-R
data time efficiently. Important operations for GNSS-R (shown
in (1), are the FFT and its inverse (IFFT), the complex conjugate,
the point-to-point complex multiplication, the point-to-point
complex summation, and the maximum search of a signal. To test
the performance of this implementation, these functions have
been implemented in the following:

1) MATLAB R2018b as an interpreted language, and be-

cause it is widely used in research and academia;

2) C++ as areference compiled procedural language using

the FFTW library version 3.3.5 [13];

3) CUDA 10 with the cuFFT and NPP included libraries.

Tests have been performed in two different hardware plat-
forms, both designed for home use. The first one is a low
end—2013 Laptop Intel i7 (4th gen) at 2.20 GHz, 16 GB RAM,
NVIDIA GeForce GT 750 M (384 cores at 967 MHz with 4 GB
of dedicated memory), 64-b Windows 8. The second one is a
high-end 2019 Tower Intel i7 (8th gen) at 3.20 GHz. 32 GB
RAM, NVIDIA RTX 2080 (2944 cores at 1472 MHz with 8 GB
of dedicated memory), 64-b Windows 10.

Fig. 4(a) shows the elapsed time performing each operation
for 1000 chunks of 32 736 complex float samples of data, which
is the equivalent to 1 s of the MIR GPS L1 C/A data. CUDA
outstands in performance in every function, and it is considerably
faster than C++ or MATLAB.

The performance of CUDA is equally remarkable considering
the whole final implementation, not just some of the functions.
Fig. 5(a) shows the elapsed time involved in the whole pro-
cessing for different amounts of chunks of data of size 32 736
samples using cGNSS-R and iGNSS-R techniques. Comparing
both methods, processing for iGNSS-R technique is always a bit
slower because it is computing the FFTs of the whole reflected
signal and the same for the direct signal from the up-looking
antenna to correlate. For cGNSS-R, it is almost half the FFTs
needed, as it only computes the FFT of the reflected signal and
one time one FFT for the local replica PRN to correlate with.

Looking at the results, processing 5 s of data (5000 chunks
of data) using cGNSS-R technique takes 0.262 s, and using
iGNSS-R technique takes 0.336 s. In comparison to the acquisi-
tion time of the data (5 s), the process takes around 5.2%—6.7%
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Fig. 4. Comparison of elapsed times of different functions implemented in
different programming languages. (a) With NVIDIA RTX 2080 and Intel i7
(8G) at 3.20 GHz. (b) With NVIDIA GT 750 M and Intel i7 (4G) at 2.20 GHz.

(see Table I) of the time, respectively. This is a reduction of time
of 93.3%-94.8% of the acquisition time of the data.

The results mentioned until now are from a PC with a NVIDIA
RTX 2080, though being a GPU designed for home computers
it is a powerful, and high-end one. To contrast results, this
implementation has also been tested with a less powerful and
low-end hardware (NVIDIA GT 750 M).

Fig. 4(b) shows the comparison between CUDA, MATLAB,
and C++, this time with the GT 750 M. Times are slower
in general for the three languages and for all the functions.
Nonetheless, the pattern of results is maintained and CUDA
outperforms the other languages. Comparing the CUDA results
from a home lower-end PC [see Fig. 4(b)] with MATLAB and
C++ from ahome high-end PC [see Fig. 4(a)], CUDA with aless
powerful hardware is faster. Parallelization of these operations
is essential to gain time efficiency.

Fig. 5(b) shows the elapsed time of the whole processing for
different amounts of chunks of data for the GT 750 M, as Fig. 5(a)
for RTX 2080. The slope values indicate the increase in time for
each extra chunk of data. The value for GT 750 M is around 7
times larger in comparison to the RTX 2080. GT 750 M takes
more time to process the 5 s of data, 1.9 s for processing using
c¢GNSS-R technique, and 2.6 s for processing using iGNSS-R
technique (see Table I). Nevertheless, GT 750 M still processes
faster than the acquisition time of the data.
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chunks of data with the whole final implementation. In this case, GPS L1 C/A
data which correspond a chunk size of 3 2736 samples. For cGNSS-R and
iGNSS-R techniques. (a) With NVIDIA RTX 2080 and Intel i7 (8th gen) at
3.20 GHz. (b) With NVIDIA GT 750 M and Intel i7 (4th gen) at 2.20 GHz.

TABLE I
RESULTS OF THE ELAPSED TIME PROCESSING 5000 CHUNKS OF DATA WITH
THE TWO DIFFERENT GPUS, AND COMPARING CGNSS-R AND IGNSS-R

RTX 2080 RTX 2080 GT 750M GT 750M
c¢GNSS-R iGNSS-R cGNSS-R iGNSS-R
Chunks[#] 5000 5000 5000 5000
Acquisition time[ms] 5000 5000 5000 5000
Mean Proc. time[ms] 262 336 1948 2609
Conlf. Interv.[ms] 26245 336+2 1948+19 2609+22
Std. deviation[ms] 18 7 69 76
Mean/Acq. time [%] 5.25 6.72 38,97 52.18
Conf. Int./Acq. t.[%] 5.2540.10 | 6.724+0.04 | 38.97+£0.40 | 52.18+0.44

Confidence interval computed using a student’s t distribution and significance level alpha
=0.05.

The results for the RTX 2080 were a factor of 14.9x—19.1x
faster respect the acquisition time. It is noticeable that GT
750 M is much less powerful than the RTX 2080, although its
results validate the efficiency of the implementation in lower
end hardware with an increment of 1.9x-2.6x faster than the
acquisition time. For both GPUs, the data is always processed
fast enough so as to enable real-time processing with this
implementation.
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C/A and (b) 4 ms coherent Galileo E1. The reflected signal is stronger because
of an additional amplifier installed in the down-looking antenna.

IV. VALIDATION

The MIR instrument already flew in an airborne campaign
conducted in Australia from April-June 2018 [7]. The raw data
acquired during the flights are useful to validate the proper
functioning and the achievement of the requirements of the
implementation presented.

The configuration parameters of the program include the
adjustable integration times (coherent and incoherent). Fig. 6
shows two different coherent integration times. The first one,
I ms tested for a PRN code of GPS L1 C/A, whose length is
1 ms and a BPSK modulation. The second one, 4 ms tested on a
Galileo E1 PRN code, whose length is 4 ms and CBOC modula-
tion. The reflected signal is stronger than the direct one because
of an additional amplifier inserted in the down-looking antenna
and not compensated in these results. Altimetric applications are
computed with the delay between the direct and reflected signals.
Fig. 7 shows the tracking of the delay of a satellite direct signal
and the reflected on the earth’s surface over time.

Incoherent integration time is a key factor in GNSS-R appli-
cations. Lower values of incoherent integration time results in
more frequent sampling of the reflections, but also lead to higher
noise. On the other hand, higher values of incoherent integration
time results in less temporal/spatial resolution of the reflections
but less noisy data. Thanks to GPU processing, it is possible
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to compute different incoherent integration times in an efficient
manner.

Fig. 8 is an example of a coherent DDM computed with this
implementation. For a chunk of data corresponding to 1 ms of
GPS L1 C/A, it has been processed 31 times, in this case, with
different Doppler frequencies in order to create a DDM. In this
implementation, it is possible to change the number of Doppler
bins and the resolution in Hz between them.

V. CONCLUSION

This article has presented an approach to efficiently process
GNSS-R signals, and has analyzed its efficiency. The key point
of this implementation is to take advantage of GPUs designed for
home use. In a comparison made using different CPU and GPU
languages (see Fig. 4), the time involved is around the same, or
higher, than the acquisition time in the CPU languages. In the
test, only five of the required functions for GNSS-R processing
have been implemented, which means the whole implementation
would take even more time. With GPU processing the advantage
is clear, the whole implementation processes data in around 5%
of the acquisition time of the same data, as it can be seen in
Table I, 5000 ms of data are being processed in less than 300 ms.
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This time efficiency is achieved by taking advantage of parallel
processing. In addition, a home lower-end GPU has been tested
to contrast the time results of processing experiments and its
results have special relevance as they had also demonstrated the
capability of processing faster than the acquisition time.

The proper functioning of this implementation has been val-
idated with real data from the maiden airborne campaign of the
MIR. Different observables that can be computed have been
shown, for different constellations (GPS and Galileo), time
lengths, and modulations.

This software approach demonstrates the improvement when
using GPU-based computing for GNSS-R off-line processing.
From now on, GPU-based implementations will be a valuable
option to take into account in future designs of GNSS-R pro-
cessing units not only for off-line data processing units, but also
for real-time processing ones.
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