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An Optimized Deep Neural Network Detecting
Small and Narrow Rectangular Objects
in Google Earth Images
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Abstract—Object detection is an important task for rapidly
localizing target objects using high-resolution satellite imagery
(HRSI). Although deep learning has been shown an efficient means
of detection, object detection in HRSI remains problematic due
to variations in object scale and size. In this article, we present
a novel deep neural network (DNN) that combines double-shot
neural network with misplaced localization strategy that adapts
to object detection tasks in satellite images. This novel architecture
optimizes the localization of small and narrow rectangular objects,
which frequently appear in HRSI images, without accuracy loss on
other size and width/height ratio objects. This method outperforms
other state-of-art methods. We evaluated our proposed method on
the NWPU VHR-10 public dataset and a new benchmark dataset
(seven classes of small and narrow rectangular objects, SNRO-7).
The NWPU VHR-10 dataset built a dataset for multiclass object
detection; however, most labels are assigned in normal size and
width/height ratios. SNRO-7 focuses on multiscale and multisize
object detection and includes many small-size and narrow rectan-
gular objects. We also evaluated the accuracy difference on DNN
training and testing between gray scale and RGB datasets. The
results of the experiment on object detection reveal that the mean
average precision (MaP) of our method is 82.6 % in NWPU VHR-10
and 79.3% in SNRO-7, which exceeds the MaPs of other state-
of-the-art object detection neural networks. The model trained
with the RGB dataset can achieve similar accuracy (around 79.0 %
MIoU) testing in both RGB and gray scale datasets. When training
the model by mixing RGB and gray scale datasets in different
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ratios, the accuracy in the RGB channel significantly decreases
with increasing gray scale images, but this does not influence the
accuracy in the gray scale dataset.

Index Terms—Artificial intelligence, object detection, optical
image processing.

I. INTRODUCTION

IGH-RESOLUTION satellite imagery (HRSI) has im-
proved in terms of both its spatial and spectral resolu-
tions. Therefore, the demand for rapidly localizing targets has
increased for applications, such as aircraft detection [ 1]—[3], ship
detection [4]-[6], and vehicle detection [7]-[10], especially Li
et al. [9] revealed a rotatable region-based deep neural network
(DNN) for vehicle detection, which performs well on oriented
vehicle detection in the aerial image. Object detection is a basic
task in HRSI analysis. Two classes of methods are used for
traditional target detection: 1) dividing the objects into patches
based on group relationships among the pixels, and 2) scanning
scenes based on classifiers from manually labeled features.
According to previous reports [11]-[13], the first strategy is sen-
sitive to the complicated backgrounds in HRSI. Methods based
on a scanning window are affected by the quality of both the
human-crafted features and the training data. These limitations
restrict the application of the two classes of detection methods.
Convolutional neural networks (CNNs) use a detector to
directly learn the objects’ features instead of using human
designated features. Existing object detection approaches based
on deep learning have achieved exceptional object detection
accuracy [14]. CNNs self-learn the features through hidden
layer descriptions that provide features that are more appropriate
for machine use. Object detection neural network localizes the
rough position and classifies the objects in the images. Com-
paring with instance segmentation, the object detection neural
network generally occupies quicker speed. In this article, the
training architecture and dataset construction are based on the
rule of object detection. The training and inference times of
object detection DNNGs are fast, and the dataset on labels is easily
acquired. The semantic/instance segmentation is a pixel-level
classification problem that categories each pixel on the image
and have been applied on remote sensing task, such as lane
segmentation by using optimized FCNDensenet [15]. Other-
wise, optimizing the inline relationship through spatial relation
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module for scene understanding in aerial view segmentation
was revealed in [16]. But semantic segmentation is extremely
time-consuming to label the dataset and train the DNN. As
the aim of this study was object detection, we compared the
proposed DNN with the state-of-the-art object detection DNNSs.
The methods related to the segmentation will be discussed in
our future papers.

Two major trends for object detection based on deep learn-
ing neural networks have developed: two-stage and one-stage
detection. Two-stage detection is inspired by the traditional
sliding window strategy, which uses a region of proposal step to
search for candidates and then inputs the candidate regions into
a neural network to obtain a score for each object [17]-[19].
One-stage detection considers detection of a regression task,
which searches for objects using the neural networks and feature
maps [20], [21]

Approaches based on CNNs achieve exceptional accuracy
in object detection [14], much better than traditional detection
methods. The following four-factor challenges remain for object
detection in HRSI.

1) The targets to be detected in HRSI have different scales.

2) The limits of HRSI sizes blur small-scale objects, compli-
cating detection.

3) The shape of some targets in remote sensing imagery is
narrow rectangle, preventing accurate localization.

4) One-channel gray scale images (such as panchromatic
images) and multichannel images (such as multispectral
images) are widely employed in HRSI.

According to these four issues, a successful detector should
have the strength to overcome the challenges of scale, image
quality, overlapping objects, and detection, in both three-channel
RGB and one-channel gray scale HRSI images.

Regarding the state-of-the-art deep learning methods in the
HRSI field, the sliding window plus image classification strategy
[22] is commonly used, but the millions of steps in object
detection restrict HRSI application. Estimating potential regions
through feature maps [10] is also an option, but small-scale
object proposals and the localization of blurry objects remain
problematic. The risk of overlapping may restrict the perfor-
mance of traditional methods. However, DNNs can ideally
classify different objects in overlapping regions. This has been
demonstrated with the PASCAL visual object classes (VOC)
2012 semantic segmentation benchmark [23]. Many reports have
been published on target detection using multispectral images.
However, research work is limited on target detection using
one-channel gray scale images [24]. In this work, we compared
and analyzed the performance loss between detection in three-
channel RGB images and one-channel gray scale images. Vari-
ous DNNs demonstrate that inline connection among the objects
is the key to accurately grouping and classifying the objects.

To address the abovementioned challenges, a novel neural
network was employed to maintain robust and accurate detec-
tion in HRSI. Our neural network uses basenet to transfer the
features by learning the visual geometry group (VGG16) [25].
To adapt the aerial view, an extended version of VGG [26]
were reported trained by using extra aerial view datasets, such
as NWPU-RESISC45 [27]. A multilabel classification DNN is
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also revealed in [28] to adapt aerial view scene understanding.
The improved basenet and dataset allow the DNN to adapt
the features to aerial view. We then combined the double-shot
neural network with the misplaced localization strategy to detect
multiple objects in Google Earth satellite images. This combined
approach provides a novel architecture to improve the detection
of small/blurred objects. The proposed method can also be used
for multiple object detection.

The rest of this article is organized as follows. Section II ad-
dresses the architecture of the components of our neural network
for multiple-class object detection. Section III introduces the
experimental datasets extracted from Google Earth satellite im-
agery and outlines the comprehensive experiment we conducted
to evaluate the performance of the proposed method for both
three-channel RGB images and one-channel gray scale images.
The results are discussed in Section III. Finally, Section IV
concludes this article.

II. PROPOSED METHOD

Faced with challenges in object detection in satellite imagery,
we propose a novel neural network combining double shot with
misplaced strategy to optimize the detection for small/blurred
and narrow rectangle objects.

To improve detection capability in the multiscale context, the
neural network employs a series of 3 x 3 convolutional layers
to decrease the size of the feature map to describe features on
different scales. Our approach employs the double-shot strategy
combined with anchor box technology to enhance detection
capability for small/blurry and narrow rectangular objects. After
each convolutional layer, a convolutional 1 x 1 extra layer with
a misplaced size is used to increase object representation capa-
bility. Unlike other state-of-the-art methods, our neural network
extracts the feature map twice with different remapping sizes.
This provides a more efficient regional proposal step and better
prediction ability for objects (especially in cases where skies are
unclear or target objects are small). Finally, all the convolutional
layers output the multibox layer and then output the results
of object detection using SoftMax. To filter the overlapped
proposals, nonmaximum suppression (NMS) is used to select
the most ideal region for the target object.

Fig. 1 presents the architecture of the components of our
neural network. It consists of three steps: feature extraction from
Basenet, extra feature extraction, and object detection and NMS.
The details of all the components are discussed in the following
sections.

A. Basenet

Initially training a new neural network is a difficult task
because of the required initialization of the original parameters
of the nodes inside the neural network. To solve these issues,
fine-tuning is commonly used in DNNs to achieve sufficient
training quality with a smaller number of training iterations.
Fine-tuning is achieved by employing a pretrained neural net-
work to extract the features and adjust the parameters inside the
feature map layers. This allows the neural network to have an
original parameter set better suited for the target dataset.
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Fig. 1.  Architecture of our proposed DNN.

In our neural network, a VGG and ResNet pretrained by
ImageNet [29] is employed to fine-tune our model to the dataset.
Since the proposed neural network employs a large input size
(600 x 600 pixels) image to extract more detailed features
and describe small objects, the VGG has the most advanced
feature-extracting capabilities. However, its computational costs
are higher than other back nets, such as ZFNet [30]. VGG has
lower computing costs, but just slightly worse feature extraction
than the residual network (Resnet) [31]. However, ResNet per-
forms better in feature extraction. In current DNNs, the ResNet
and VGG are widely used as backbones for the task of object
detection. Therefore, we employed both VGG and ResNet as
the basenet to test the accuracy of our proposed method. In all
detection steps, the images are first input to the basenet to extract
the image features. When using VGG, all the layers before
conv4_3 are set to be unchanged to guarantee feature extraction
strength from the pretraining procedure. When using ResNet,
our proposed method directly utilizes the Pooling 4 as the
inputting features. In the extra layers, the residual convolutional
layer is employed when using the Resnet.

B. Extra Feature Layers

After the feature maps are extracted by the basenet, our neural
network employs a series of convolutional layers to extract the
features of objects in the input HRSI. This is conducted to allow
the neural network to understand the image.

As shown in Fig. 2, our neural network used the double-shot
strategy to extract extra feature layers. After the basenet, the
neural network employs a 3 x 3 convolutional layer (stride 1
and padding 2) to downsize the size of the layers from 19 x 19
to 1 x 1. Our neural network employs a1 x 1 convolutional layer
(stride 0 and padding 1) for every convolutional layer to produce
double shots. The 3 x 3 convolutional layers with stride 1 and
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Fig. 2. Architecture of extra layers of our proposed DNN.

padding 2 ensures that the neural network can gradually extract
features on multiple scales. The other methods [single-shot
multibox detector (SSD), you only look once (Yolo), RetinaNet,
and fast region-based CNN (Faster RCNN)] generally employ a
top-down strategy to extract the features from large scale to small
scale by gradual downsampling. However, these neural networks
are generally used to detect the general view objects. The objects
in the proposals without the misplaced strategy are used by
SSD and Faster RCNN. However, remote sensing imagery is
generally only a small proportion, and the feature context is dif-
ferent from that of the general view objects. Therefore, adapting
the features to the remote sensing objects is essential for the
neural network. To solve this problem, the double-shot strategy
is employed to improve small object description. This strategy
provides a random prediction of the objects’ appearance with
a 1 x 1 convolutional layer to address issues, such as blurring
or partial covering. In addition to improving feature extraction,
the double-shot strategy also collaborates with the misplaced
strategy (see Section II-D) to better suit the detection needs of
the remote sensing community. In the extra feature layers, the
double-shot strategy ensures the strength of multiscale feature
extraction and provides a sufficient description of the objects.

C. Detection

After the features are extracted on multiple scales, the detec-
tion layer is used to estimate the potential positions of the objects.
In our neural network, we designed this step as a regression task
and employed default boxes to estimate the object proposals.
To output the exact position of the objects in the scene, each
proposed box is defined by four parameters: its center (x, y),
weight, and height. For each feature map layer (conv4—conv10),
every cell of the feature map is used as a default feature map
that provides the x and y coordinates of the object on the scene.
It is then multiplied by the scale factor

P, yw, n = [Random (z,y),ar x (w, h)] (1)

where x and y are the coordinates on the image; w and & denote
the proposals’ weight and height, respectively; and the proposal
region P in each extra feature is defined by the random position
proposal (x, y) on the image, which multiplies the weight w and
height h by the anchor box ratio ar.
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Fig. 3. Visualization of localization results on different scales (red, blue, and
green present different scales).

D. Anchor Box

Each cell of the feature map only has a 1:1 ratio. This cannot
accurately describe an object’s shape in HRSI. Therefore, the
anchor box is a technology used to expand the proposals during
detection, which has been widely used in state-of-the-art DNNs
for object detection.

The other methods, e.g., SSD and Faster-RCNN, estimate the
proposals, such as the box without using the misplaced strategy.
This is not sufficiently precise for localization in remote sensing
objects. As shown in Fig. 3, the anchor box adds extra boxes
with different ratios during the estimation of an object’s potential
region. This design can expand the coverage field and reduce the
number of estimations. The ratios of the anchors are generally
1:2 or 1:3.

However, this design cannot be used to accurately estimate
the proposals for the objects in HRSI, such as the bridge shown
in Fig. 4. The width of the bridge occupies the entire image, but
its height is narrow. In this case, the original size of the default
box should be large enough for the 1:3 ratio to cover the entire
bridge (blue box). However, this is not a good representation of
the bridge.

E. Combining Double Shot With Misplaced
Localization Strategy

To solve this problem, we present a misplaced localization
strategy for the default box’s size combined with the double-shot
strategy. Notably, since too many parameters are included in
the convolutional layer, simply adding the ratio for the default
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Fig. 4. Comparison of the visualization quality both with and without the
proposed misplaced localization strategy.

box in each convolutional layer would increase the convergence
difficulty of the neural network. Thus, our neural network uses
the misplaced size of the anchor for the double-shot layers to
provide better object-locating performance.

To detect the feature maps on different scales, a remapping
step is essential for representing the objects in their original
size. This is accomplished by multiplying the scale value by
the feature map size (e.g., a 19 x 19 layer is multiplied by 32 to
represent positions in the 600 x 600 image). As shown in Fig. 2,
for the first shot, each layer remaps the object to the original
image using its previous layer’s size, whereas the second shot
remaps by the original size. conv_9 is multiplied by 300 and
conv_10 is multiplied by 900, not their previous layers’ sizes,
because the final outputs are much larger than the size of the
original image. Based on experience, the width/height ratio for
different classifications vary, i.e., a bridge may cover ratios from
1:3 to 1:8, whereas a ship or aircraft may only range from 1:1 to
1:2.

Objects with a high width/height ratio usually occupy a large
region, and a lower ratio usually indicates objects are smaller.
Due to the second shot having stronger feature extraction, we
used the second shot to localize general objects with the normal
anchor size. The first shot uses the misplaced strategy to localize
distorted objects. Considering the shape of the objects in HRSI,
from our experience, we set ratios of 1:1, 1:2, and 1:3 to the
layers with large sizes (conv6_1 to conv7_1 and conv6_2 to
conv7_2) to ensure that the regions rich in small-scale detail
could be used to rapidly locate objects, such as ships, aircraft,
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playgrounds, or storage tanks. The ratios for small-scale layers
(conv8_1 to convl0_1 and conv8_2 to convl0_2) were set to
1:1 and 1:2 to enable detection of large objects, such as bridges,
ports, or viaducts.

Since the misplaced strategy has already described objects in
the distorted region and the second shot for small-size layers,
it can also detect their approximate sizes. Notably, the conv4_3
and FC6 layers only employ the double-shot strategy, and their
first shots are not used as outputs into the SoftMax layer because
these two layers have large sizes that are used to detect small
objects. Small objects are less distorted than large-scale objects.
Therefore, only the double-shot strategy is employed to improve
feature extraction and assist in the localization of small objects

n { Py w. X sk—1 if s is the first shot )

zyw, h = Py . n % sk if s is the second shot.

The output region Oy, , -, on different scales (n) is defined
by the proposed P, , multiscale ratio s; the scale ratio is
determined by whether it is the first or the second shot. After
processing with the neural network, each detection layer outputs
the objects’ potential proposals. They are then input into the
SoftMax layer to compute the probability and classify each

target.

F. Anchor Box NMS

After all objects’ proposals are estimated, our program deter-
mines the 2000 estimated boxes with the highest confidence rate
for the next step. The threshold is set by the number of proposals
whose confidence rate is higher than 0.01. As shown in Fig. 1,
1586 proposals have a confidence rate higher than 0.01. The
threshold is set to 2000 for two reasons. First, the NMS employs
brute force strategy, which is increasingly time consuming with
increasing number of proposals. Then, the number 2000 can
ensure both efficiency and accuracy [32]. SSD and Faster RCNN
also employ 2000 as the threshold. As shown in Fig. 5, the
box with the highest confidence rate is chosen from overlapping
boxes if the intersection over union (IOU) is >0.7. This filters the
proposals in larger or smaller regions out of the ideal proposal

oz

z,y,w

o V0T |

m
h N Omyy,mh‘

R 3)

z,Y, z,y,w,h

= ‘On
According to (3), each final output result R must meet
the constraint that no output proposal O3, -, overlaps with
O;’fy,w) 5, larger than an IOU of 70%. After NMS, our object
detection neural network is finished, and the ideal results of
objects’ positions are output. To avoid the issue caused by of
overlapping, we only operate NMS for the same classification.
This avoids the filtering of other targets during the procedure.

G. Optimizing the Proposed Approach

In terms of the ground view, our DNN focuses more on the
accurate localization of small objects and the output of more
accurate regions of interest (ROIs) than other state-of-the-art
methods. The width/height ratios of the objects on the ground
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Fig. 5. Visualization of NMS.

view are usually lower than those in the remote sensing com-
munity. Most ground-based neural networks regard the results
as correct detection when the intersection region between the
benchmark and the output is over 50%. The evaluation criteria
can be used in the ground view, but they are different from
the requirements in the remote sensing community. The other
factor is small object detection, to which most state-of-the-art
methods pay little attention because small objects only comprise
a tiny percentage of common benchmarks of the computer
vision community, i.e., PASCAL VOC, and Microsoft common
objects in context (MS COCO) [33]. Thus, a limited number of
optimizations are used for this part. Our DNN focuses on these
drawbacks and provides a new strategy to fix the abovemen-
tioned issues, meeting the requirements for object detection in
the HRSI community.

The major difference between other state-of-the-art methods
(most single-stage and two-stage methods) and the proposed
neural network is shown in Fig. 6. Regarding current state-
of-the-art methods, almost all neural networks estimate the
proposals of the objects on feature maps through a single path,
i.e., extract the extra-feature maps from large to shallow and
localize all objects in different sizes and width/height ratios
through the same chain. Unlike object detection in the ground
view images, many objects are small and narrow rectangular
in shape from the aerial view. The neural network struggles to
obtain the same region proposals as the ground view images
because one feature map cannot describe the objects of all sizes
and proposal anchor may inevitably lead to proposal conflict
if blindly adding the ratios. To solve the abovementioned chal-
lenges, our neural network applies a novel strategy that divides
the network into two paths to split objects in different features
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Fig. 6. Difference between existing methods with our proposed DNN.

to be localized in different paths. The double shot combining
misplaced localization strategy enables the detection of different
types of objects. The first shot collaborating with misplaced
strategy focuses on detecting narrow rectangular objects, which
are hard to accurately localize using the normal anchor ratio.
The second shot with double-shot strategy focuses on detecting
the normal width/height ratio objects on different scales. As the
ratio in anchor is limited and the feature map is further extracted,
the second shot has the ability to detect very small-sized objects
(small-size objects generally detected by the 1:1 ratio anchor).

As shown in Fig. 7, the main idea of our combined approach
is to divide two branches for different size ratio objects to
avoid conflict during proposal estimation and NMS. The first
shot focuses on detecting the narrow rectangle objects, and the
second shot focuses on detecting smaller objects. Combining the
two strategies, sufficient and well-extracted feature proposals
allow the neural network to detect both rectangular objects and
small/blurry remote sensing objects in HRSI imagery.

This is not simple optimization, but an innovative architecture.
The architecture allows the localization to avoid conflicts of ob-
jects in different scales and width/height ratios, which provides a
more reasonable architecture for localizing objects with different
scales and sizes. With this strategy, the proposed architecture can
considerably improve detection accuracy as demonstrated by the
experimental results.

III. EXPERIMENTS

We used experiments to evaluate the proposed neural network.
This section introduces the platform and training procedures,
provides an evaluation of the neural network for the public
NWPU VHR-10 dataset [34], outlines the details of the collected
dataset, describes the evaluation of the accuracy of our neural
network and the comparison with other state-of-the-art methods
in our dataset and in other public datasets, and describes the as-
sessment of the performance of object detection using our neural
network for both three-channel RGB images and one-channel
gray scale images.

A. Platform and Training Procedure

Our neural network was deployed using Caffe on the Ubuntu
operating system 16.04. This provides good compatibility with

Focusing on Normal w/h
ratio objects

Estimate proposals in misplaced
anchor size during the first shot

Estimate proposals in general
anchor size during the second shot

Double Shot

Double Shot

Double Shot

Recognizing All Proposals

Fig. 7. Process of combined misplaced localization strategy and double-shot
neural network.

the graphics processing unit (GPU) platforms. Our desktop uses
an I7 7700 central processing unit with 16 GB of memory and
a GTX 1080 GPU. This allows high-performance computation
for deep learning. To maximize the GPU memory usage and
rapidly reach the convergence point, we set the batch size to
8 (7819 MB in 8 GB). We set the learning rate to 0.005 with
a learning rate decay of 1/10 for every 60 000 iterations. The
dataset had a total of 250 000 interactions and SGD Momentum
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Fig. 8. Training procedures of RGB and gray scale datasets.

optimizers. There were 6000 decay steps and 25 000 iterations in
NWPU VHR-10. We selected a large total training step number
to ensure sufficient and complete training of the neural network
to maximize its performance. The multistep number and decay
rate were set according to our experience. The loss rate of
our neural network stabilized after 60 000 iterations. Additional
training steps required considerable computing time, but with
limited mitigation of loss. The weight decay rate was set to
0.1 because the neural network is stable under the training
of an appropriate learning rate, and the loss is mitigated only
when the learning rate is significantly lower. According to Rude
[35], different optimizers only have limited accuracy offset after
neural networks converge.

The training procedures of the proposed method in the NWPU
VHR-10 and that in SNRO-7' (seven classes if small and narrow
rectangular objects, SNRO-7) [36] for both three-channel RGB
images and one-channel gray scale images are shown in Fig. 8.
The loss rates for our neural network for both three-channel
RGB and one-channel gray scale images drop to about 4.0 at

ISNRO-7 is available: http://dx.doi.org/10.21227/j7nx-2495.
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step 1 (60 000 interactions); they gradually decrease to about
2.0 by the end of training. Although the three-channel RGB
images are equivalent to those in the one-channel gray scale
dataset, the trends of both the three-channel RGB images and
the one-channel gray scale images are similar. This illustrates
that destroying the three-channel RGB images does not influence
the coverage of the neural networks.

B. NWPU VHR-10 Quantitative Evaluation

The NWPU VHR-10 contains 10 classes of geospatial objects,
with a total of 650 labeled images. Because the dataset was not
divided into training and test datasets, we randomly selected 450
of its images as the training dataset; the remainder was used as
the test dataset.

To evaluate our proposed method, we compared our neural
network with three other state-of-art methods. In the comparison
tests, the SSD [21], Faster RCNN [19], and Yolo [20] were
selected due to their generally accepted advances in object de-
tection. We used the mean average precision (MaP) to represent
their accuracy, which is calculated as

MaP — % @)

where the precision rate of each class is defined as ¢ and the
number of classes is defined as N. The MaP can evaluate the
average performance of the model for detecting different objects.
IOU values greater than 0.7 between the results and test dataset
were marked as true positive results.

The results presented in Table I illustrate that our proposed
method was the most accurate with an 84.8% MaP on average.
Double shot combined with the misplaced strategy assisted
our proposed method in the detection of small items, such
as airplanes, ships, and land vehicles, and allowed the neural
network to localize objects with distorted shapes (e.g., bridges)
with higher accuracy than the other methods. For the other gen-
eral objects, the accuracy of our proposed method was similar
to that of the others. However, due to the limited number of
objects and images contained in the NWPU VHR-10 dataset,
the neural network may have suffered from overfitting. Thus, the
dataset does not highlight the overall performance of the neural
networks. Some of the labels were missed in the images, as
shown in Fig. 9. Examples of this include a harbor with unlabeled
ships, mislabeled storage tanks near the boundary of an image, or
mislabeled vehicles on golf courses. This distorts both coverage
during training and accuracy during testing. Apart from our
experiments, the baseline of the NWPU VHR-10 dataset was
reported by Cheng et al. [34]. The accuracies of Faster RCNN
and other methods are relatively lower than reported previously
[34] for three reasons.

1) Cheng et al. [34] extended the dataset but we did not apply

data augmentation in this article.
2) Cheng et al. [34] employed 50% overlapping region as the
true positive but ours was 70%.

3) Cheng et al. [34] used Titan X as the GPU platform, which
has a higher batch size and computing speed comparing
with ours (GTX 1080).
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TABLE I
MAP OF THE OBJECT DETECTION METHODS ON THE NWPU VHR-10 DATASET

TRAINED BY RESNET

Faster Retina

Item SSD YoloV3 RCNN Net Ours
Airplane 0.908 0.806 0.925 0.912 0.930
Ship 0.791 0.825 0.830 0.828 0.845
Storage tank 0.848 0.784 0.810 0.885 0.871
Baseball diamond 0913 0.879 0.898 0.938 0.928
Tennis court 0.790 0.780 0.850 0.830 0.820
Basketball court 0.878 0.753 0.820 0.859 0.890
Ground track field 0.580 0.635 0.930 0.794 0.780
Harbor 0.620 0.601 0.793 0.735 0.760
Bridge 0.500 0.543 0.641 0.788 0.810
Vehicle 0.810 0.790 0.750 0.860 0.845
Mean AP 0.764 0.740 0.825 0.843 0.848
TRAINED BY VGG
Item SSD Faster RCNN Ours
Airplane 0.904 0.920 0.924
Ship 0.802 0.843 0.793
Storage tank 0.865 0.778 0.871
Baseball diamond 0.930 0.892 0.932
Tennis court 0.795 0.835 0.810
Basketball court 0.871 0.810 0.893
Ground track field 0.575 0.920 0.758
Harbor 0.623 0.783 0.725
Bridge 0.500 0.652 0.728
Vehicle 0.803 0.732 0.830
Mean AP 0.766 0.816 0.826
FASTER RCNN IN DIFFERENT ANCHOR SIZE AND RATIO
Item Ground Aerial Max
Airplane 0913 0.920 0.895
Ship 0.835 0.843 0.852
Storage tank 0.781 0.778 0.770
Baseball diamond 0.887 0.892 0.905
Tennis court 0.809 0.835 0.830
Basketball court 0.815 0.810 0.820
Ground track field 0.920 0.920 0.916
Harbor 0.780 0.783 0.768
Bridge 0.659 0.652 0.670
Vehicle 0.743 0.732 0.703
Mean AP 0.814 0.816 0.812

Therefore, the accuracy distribution shown in Table I is
slightly lower than that in [34]. However, our proposed DNN
is more accurate in the same platform and evaluation index
compared with state-of-the-art methods, which could prove the
success of our proposed DNN.

The NWPU VHR-10 dataset contains airplane, ship, stor-
age tank, baseball diamond, tennis court, basketball court,

Baseball diamond Tennis court Basketball court | Ground track field Ship l:l Storage tank l:l Vehicle l:l Bridge

Results of our proposed method in NWPU-VHR-10 and its ground truth.

AR

Harbor

ground track field, harbor, bridge, and vehicle. The dataset con-
tains multiclassification, which is suitable for multiclass object
detection. As the dataset is collected on different scales, some
targets, i.e., airplane, ship, storage tank, baseball diamond, tennis
court, basketball court, ground track field, and harbor, are large-
sized objects. As the faster RCNN were used in many papers as
the baseline, we further compare the results with various anchor
sizes and ratios to evaluate influence of the proposal anchor.
There are three sets of experiments, the ground reveals original
ground view set (size {128, 256, 512} and ratio {0.5:1, 1:0.5,
1:0.5, 1:1 1:2, 2:1}), the aerial means the parameters optimized
aerial view set (size {64, 128, 256, 512} andratio {0.5:1,1:0.5,
1:1, 1:1.5, 1.5:1, 1:2, 2:1}), and the max means the maximized
number of size and ratio set (size{32, 64, 128, 256, 512} and
ratio {0.5:1, 1:0.5, 1:1, 1:1.5, 1.5:1, 1:2, 2:1, 1:3, 3:1}). In the
results, we can find out that the median number of size and
ratio obtained the best results. The results illustrate that blindly
increasing the anchor size and ratio leads to the difficulty on
training coverage, single path feature maps cannot cover sizes
objects, and the parameters for ground view set is not suitable
for the aerial view image objects, which proves the essential
benefit of the double shot with misplaced localization strategy
that opens a new path to localize different sizes and ratios objects
in specific feature divisions. However, due to the limited number
of objects and images contained in the NWPU VHR-10 dataset,
the neural network may suffer from overfitting. Thus, it is hard to
demonstrate the complete performance of the neural networks.
Some of the labels were missed in the images, as shown in
Fig. 9. Examples of this include a harbor with unlabeled ships,
mislabeled storage tanks near the boundary of an image, or
mislabeled vehicles on a golf course. Few narrow rectangular
objects were included, and the number of small objects was not
sufficient, which is why we built the new dataset SNRO-7.

C. SNRO-7 Details

To further evaluate our neural network, we built up a new
dataset (SNRO-7). Some of images collected from an AID image
recognition dataset [37] and others are from Google Earth.
The AID dataset collected from Google Earth history images
contained 30 classes. However, some of the classifications, e.g.,
beach, bare land, and commercial regions, were ill-suited for
object detection. Thus, we selected scenes with ships, aircraft
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TABLE II
PROPERTIES OF OBJECTS IN THE DATASET

Min Max
ftem No. width/height ~ width/height
Ship 20,865 10 x 10 80 x 80

Aircraft 4050 15 %15 100 x 100
Playground 446 20 x 20 120 x 120
Viaduct 422 200 x 200 800 x 800
Port 1444 300 x 300 700 x 700
Storage Tank 6019 10 x 10 100 x 100
Bridge 900 120 x 120 1000 x 1000
TABLE III

DISTRIBUTION OF RESOLUTION FOR OUR DATASET

Image Size (Numbers) Image Resolution (Numbers)

<600 x 600 (1493) <0.5 m (1464)
600 x 600-000 x 1000 (121) 0.5-1 m (841)
>1000 x 1000 (799) >1 m (108)

(from airports), playground, viaducts, ports, storage tanks, or
bridges. Since the AID is an image recognition dataset, we
labeled the selected images manually. The size of the AID dataset
was 600 x 600, but the size of the remote sensing imagery
usually exceeded this ratio. Therefore, we collected more im-
ages (approximately 1000) with a size was larger than 1000 x
1000. The final selection included 2413 images of various sizes
(between 600 x 600 and 1400 x 1400) and 34 146 objects in
7 classes. The scales of the objects widely varied from scene
to scene. To test our neural network by challenging it to detect
one-channel gray scale images, we merged the three-channel
RGB images into one-channel gray scale images to destroy the
color information. The RGB information destroyed by merging
the three channels is unrecoverable; therefore, the converted-
gray scale images can be regarded as one-channel gray scale
images. As the corresponding dataset of the one-channel gray
scale images was represented by three-channel RGB images, this
allowed us to use one of the neural network’s architectures to
evaluate both RGB and one-channel gray scale images without
constructing a new neural network.

The distribution of the dataset is shown in Table II. The dataset
was distributed over seven classes: ships, aircraft, playground,
viaducts, ports, storage tanks, and bridges. In our dataset, the
ports, playground, viaducts, and bridges covered considerably
more space in the images than the other three. Thus, the total
number for these four items was less than the other three. We
balanced the dataset with at least 763 objects that could be used
in the training procedure to guarantee the DNN’s training.

Feature size and image size are two other factors of object
detection in HRSI. In our datasets, we collected 2413 images
that were mostly larger than 600 x 600 to better suit HRSI
detection. The descriptive statistics for the datasets are shown
in Table II. The other important factor, meter/pixel, is shown in
Table III. Most images containing small objects (ships, aircraft,
and storage tanks) were collected from images above level 19
(<0.5 m) in Google Earth. This was conducted to maintain clar-
ity for neural network training. As the other three items generally
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covered large regions on land, thus 0.5 m images composed
about 40% of our dataset. To test the training results, 30% of
the images were randomly selected as test and validation data.
As the focus was small objects and narrow rectangle objects,
we maintained their proportion at around 30% and 20% in the
dataset, respectively. All objects also had different scales and
different sizes. In the number of samples, the dataset did not
require further dataset extension.

D. Evaluation for One-Channel Gray Scale Images

One-channel gray scale images, such as in panchromatic
images, are widely used in the remote sensing community. To
evaluate the performance of object detection neural networks
with one-channel gray scale images, we converted the RGB
dataset to gray scale with the classical three-channel RGB image
formula

G:O.299 x R+0587 x G+0.114 x B 5)
3
where G denotes gray and R, G, and B means red, green, and
blue respectively.

As such, a corresponding one-channel gray scale image
dataset was built. Another issue was the channels for training.
Because most state-of-the-art neural networks for object detec-
tion are based on three channels, training the neural network
with one-channel gray scale images input does not provide a
fair evaluation of their performance. Thus, we simply copied
the value of the one-channel gray scale images to all three
channels to represent the gray scale images with three channels
for the purpose of training the neural networks. As merging the
three-channel RGB images into one-channel gray scale images
causes unrecoverable damage to their information, the corre-
sponding dataset can be used to efficiently and fairly evaluate the
state-of-the-art DNN detectors’ performance with one-channel
gray scale images.

E. Comparative Evaluation

As shown in Table IV, our neural network is the most accurate
for both the three-channel RGB dataset and the one-channel
gray scale dataset. These results show that our neural network
more accurately localizes all seven target classes than the other
methods.

According to the results shown in Fig. 10, our neural network
can consistently locate the correct region and recognize the
correct classification of multiple objects. Even under foggy
conditions, the neural network can ideally localize the target
objects with proper ROIs, as shown in the first column of Fig. 10.
This indicates that our approach can overcome the challenges
presented by blurring. Regarding the experiments based on VGG
and ResNet as backbones, very slight difference can be found
between them. This illustrates that the backbone trained by the
ImageNet can only slightly influence the aerial view object
detection. Furthermore, our neural network detects the small
objects are hardly recognizable by the naked eye. In the selected
targets such as ship, aircraft, viaduct, storage tank, and bridge
are all in multi-scale. The small objects are mainly contained in
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Fig. 10.  Results of our proposed methods in gray and RGB imagery comparing with other state-of-the-art methods.

ship, aircraft and storage tanks. The narrow rectangular objects
are mainly contained in ship and bridge.

However, the number of small-size and narrow rectangular
objects are hard to be clearly defined, but they occupy around
30% and 20% in the dataset. The object detection based on our
proposed method for the abovementioned targets still obtained
very promising accuracy compared with other state-of-the-art

methods, which proved that our proposed method can detect
the objects with scale invariance ability. The major reason is
that our proposed method employs the double-shot strategy,
which opens an extra path for the features during extraction. The
two paths play different roles in localizing and classifying the
objects, and focusing on detecting different size objects through
using misplaced localization strategy and normal size anchor
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TABLE IV
TESTING RESULTS OF RGB AND ONE-CHANNEL DATASET

(BY RESNET)

(a) Training and Testing in Three-Channel RGB Dataset

Faster Retina Yolo
Item SSD RCNN Net V3 Ours
Bridge 0.734 0.757 0.825 0.558 0.836
Aircraft 0.887 0.620 0.800 0.322 0.910
Storage Tank  0.710 0.725 0.855 0.632 0.858
Port 0.265 0.210 0.317 0.209 0.305
Ship 0.650 0.530 0.809 0.604 0.828
Play-ground  0.834 0.838 0.861 0.727 0.914
Viaduct 0.864 0.840 0.893 0.790 0.910
MaP 0.706 0.646 0.766 0.549 0.794
(b) Training and Testing in One-Channel Gray scale Dataset
Faster Retina Yolo
Item SSDh RCNN Net V3 Ours
Bridge 0.730 0.755 0.820 0.606 0.803
Aircraft 0.912 0.583 0.793 0313 0.885
Storage Tank  0.736 0.659 0.882 0.582 0.840
Port 0.240 0.252 0.342 0.143 0.305
Ship 0.621 0.505 0.764 0.621 0.820
Play-ground  0.825 0.815 0.856 0.743 0.892
Viaduct 0.900 0.840 0.895 0.801 0.901
MaP 0.709 0.630 0.765 0.544 0.778
(BY VGG)
(¢) Training and Testing in Three-Channel RGB Dataset

Item SSD Faster CNN Ours

Bridge 0.723 0.758 0.824

Aircraft 0.898 0.620 0.902

Storage Tank 0.735 0.725 0.864

Port 0.224 0.210 0.316

Ship 0.615 0.530 0.814

Play-ground 0.814 0.838 0.903

Viaduct 0.903 0.840 0.918

MaP 0.701 0.646 0.792

(d) Training and Testing in One-Channel Gray scale Dataset

Item SSD Faster CNN Ours
Bridge 0.731 0.746 0.793
Aircraft 0.902 0.576 0.902

Storage Tank 0.725 0.693 0.834
Port 0.268 0.162 0.311
Ship 0.567 0.532 0.814

Play-ground 0.830 0.806 0.890

Viaduct 0.912 0.862 0.890
MaP 0.705 0.625 0.775

localization. Unlike other methods, it effectively avoids the
feature crush in different scales and /4/w size objects in the same
sequence and proved its efficiency in the experiment results. This
illustrates to the community that path division enables to assist
the localization and classification of complicated size objects,
and anchor misplaced localization helps the object detection of
various h/w sizes. One trivial drawback is that the two paths are
without connection, and potential improvement can be expected
to improve the detecting accuracy in the future.

F. Impact of Gray Scale Images Mixed With RGB Images

First, we evaluated the performance of our neural network and
other state-of-the-art methods. We used the networks trained by
the three-channel RGB datasets to test the one-channel gray
scale dataset and networks trained by the gray scale dataset to
test the three-channel RGB model.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE V
TESTING RESULTS OF MODIFYING RGB AND ONE-CHANNEL
GRAY SCALE DATASETS

(BY RESNET)

Training in RGB Dataset, Testing in One-Channel Dataset

Faster Yolo Retina

Item SSD RCNN V3 Net Ours
Bridge 0.748 0.745 0.536 0.865 0.842
Aircraft 0.860 0.612 0.348 0.753 0.927

Storage Tank 0.735 0.730 0.620 0.836 0.848
Port 0.325 0.219 0.153 0.327 0.292
Ship 0.627 0.548 0.613 0.796 0.843

Play-ground 0.822 0.830 0.693 0.841 0.905

Viaduct 0.845 0.842 0.802 0.885 0.902
MaP 0.709 0.647 0.538 0.778 0.794

Training in One Chanel Dataset Testing in RGB Dataset

Faster Yolo Retina
Item SSD RCNN V3 Net Ours
Bridge 0.423 0.532 0.428 0.596 0.619
Aircraft 0.547 0.425 0.283 0.692 0.767
Storage Tank 0.555 0.545 0.468 0.707 0.674
Port 0.128 0.217 0.184 0.240 0.241
Ship 0.357 0.325 0.450 0.593 0.630
Play-ground 0.635 0.578 0.563 0.691 0.761
Viaduct 0.522 0.728 0.620 0.682 0.703
MaP 0.452 0.478 0.428 0.600 0.628

(BY VGG)

Training in RGB Dataset, Testing in One-Channel Dataset

Item SSD Faster CNN Ours
Bridge 0.723 0.762 0.840
Aircraft 0.898 0.591 0.937

Storage Tank 0.736 0.689 0.852
Port 0.256 0.227 0.257
Ship 0.615 0.511 0.765

Play-ground 0.802 0.818 0.895

Viaduct 0.903 0.829 1.000
MaP 0.703 0.632 0.789

Training in One Chanel Dataset Testing in RGB Dataset

Item SSD Faster CNN Ours
Bridge 0.411 0.527 0.611
Aircraft 0.502 0.455 0.759
Storage Tank 0.585 0.500 0.664
Port 0.168 0.180 0.231
Ship 0.367 0.355 0.626
Play-ground 0.530 0.590 0.775
Viaduct 0.512 0.608 0.693
MaP 0.440 0.459 0.622

The results are shown in Table V. Each of the DNNs maintains
accuracy when using the three-channel RGB model to test the
one-channel gray scale datasets. However, the MaP significantly
decreased 15% when using the one-channel gray scale model to
test the three-channel RGB dataset. These results illustrate that
the features learned through training dataset.

As shown in Table V, object detection in the one-channel gray
scale image is as accurate as in the three-channel RGB datasets.
This reveals that destroying the RGB information by merging
three channels to one channel does not significantly influence the
feature extraction strength. The results of training with different
proportions between RGB images and one-channel images does
not significantly influence feature extraction strength. Next, we
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Fig. 11. Detection result of our proposed method detecting with different
proportions of gray and RGB datasets.

evaluated the influence of merging the channels with the three-
channel RGB images corresponding to the features of the one-
channel gray scale images. However, due to the unrecoverable
destruction of information during the merging of the channels,
the one-channel gray scale models cannot detect objects in three-
channel RGB images.

Then, we randomly mixed different percentages of the one-
channel gray scale images into the three-channel RGB images.
The training results, by proportion, for RGB images and one-
channel images in the training dataset indicate the performance
of our neural network in the context of different types of merged
images. As shown in Fig. 11, the MaP for training our DNN
with different percentages of one-channel gray scale images
was 78.9% in tests with one-channel gray scale images. The
testing accuracy in the one-channel gray scale dataset, three-
channel RGB dataset, and 50% mixed dataset decreased as the
percentage of one-channel gray scale images increased. First,
the RGB dataset employs three channels but the gray scale
image only has one channel (i.e., copying the same value to
three channels.). The RGB images contain richer feature in
texture information. According to the architecture of feature
extraction, the low-level features are contained in the early stage
of feature maps, whereas the high-level features contained in the
shallow-level feature maps. As the goal of the object detection
DNN is to localize the rough positions of target objects in VHR
images, the proposals are mostly estimated in the shallow feature
maps after the backbone. The texture information, which mainly
contains the low-level features, of objects inside VHR images
is less complex compared with that ground view images. The
shape, edge, and features (high-level) of the objects remain after
the merging process, which allows the model to be trained by
gray scale imagery to detect objects in the RGB channel dataset.
This proves that the high-level features play a more important
role than the low-level features in the object detection on remote
sensing images. In the experiments, the model trained by the gray
dataset was 62.8% accurate, which is less accurate than for RGB
dataset detection. With increasing RGB image proportion, the
accuracy increases to 76% by including half of the RGB dataset.

These results revealed that different types of images can be
mixed without influencing the detection performance, except
in cases of three-channel RGB images. The poor performance
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when using the model trained in one-channel dataset tested on
three-channel RGB images indicates that the training dataset
must contain enough three-channel RGB images when used to
detect targets using the DNN. Fewer and simpler features are
extracted in one-channel gray scale images than in three-channel
RGB images. Therefore, training and testing the neural network
on one-channel gray scale images can produce reasonable accu-
racy. However, the method does not work with more feature-rich
datasets. Therefore, the MaP for the mixed dataset decreased as
the proportion of one-channel gray scale images increased.

IV. CONCLUSION

This article illustrates a novel DNN that detects multiple
objects in Google Earth satellite images. Its ConvNet archi-
tecture is significantly more accurate than previous iterations.
We compared this approach with existing methods using several
experiments. Several conclusions can be drawn.

1) Our proposed neural network was the most accurate

(79.4% MaP in three-channel RGB datasets and 77.8%
MaP in one-channel gray scale datasets). This is at least
4% higher than other state-of-the-art DNNs.

2) Inevaluation using SNRO-7, the experiments showed that
our proposed neural network was the most accurate for
aircraft (91.0%), storage tank (86.0%), and ships (82.4%)
among other state-of-the-art methods for small object
detection. The high input size and double-shot strategy
allow our neural network to localize small objects, even
when the naked eye can hardly recognize them.

3) Our proposed DNN obtained the highest accuracy for
the narrow rectangle item bridge (83.4%) among the
considered methods. In combination with the misplaced
localization strategy, the neural network obtained a more
precise ROI for narrow rectangle objects.

4) The evaluation for training and testing with the one-
channel gray scale images illustrated that models trained
by a three-channel RGB dataset can detect objects in
gray scale images. However, performance significantly
worsens when models trained by a one-channel gray scale
for object detection on RGB images.

5) The results of training and testing the neural network
by mixing RGB with gray-scale images showed that dif-
ferent types of images can be used together for training
with limited detection performance loss. This can guide
researchers during dataset selection and help minimize
dataset preparation time.
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