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Abstract—Nonnegative matrix factorization (NMF) is widely
used in unmixing issue in recent years, because it can simul-
taneously estimate the endmembers and abundances. However,
most existing NMF-based methods only consider single matrix
constraints and the other one is ignored. In fact, due to the in-
fluence of various noise, the regularization effectiveness based on
the single matrix constraint method may be limited. In addition,
hyperspectral images contain a variety of prior information, while
many approaches usually only consider one of the priors, and the
synergistic effect of multiple priors unions and two matrix joint
constraints is neglected. In this article, to overcome this limitation,
we propose a new blind unmixing scheme, called multiple-priors en-
semble constrained NMF. The article first analyses the HSI intrinsic
feature priors from both geometric and statistical aspects, and
three important priors learners are defined. Then, three learners
are jointly introduced into the NMF model and work together for
the first time to impose constraints on both the endmember and
the abundance matrix. In order to effectively solve the proposed
model, Barzilai–Borwein stepsize strategy accelerates optimization
algorithm is developed by using the variable splitting and aug-
mented Lagrangian framework. The effectiveness and superiority
of the proposed method are demonstrated by comparing with other
advanced approaches on both synthetic and real world datasets.

Index Terms—Barzilai–Borwein stepsize, hyperspectral
unmixing, multiple-priors, nonnegative matrix factorization
(NMF), variable splitting and augmented Lagrangian.

I. INTRODUCTION

W ITH the rapid development of hyperspectral imaging
technology, the analysis and processing of hyperspectral

remote sensing imagery (HSI) have attracted great attention,
such as classification [1], subpixel mapping [2], target detection,
and recognition [3], etc. Due to the complexity of the topography
and the limitation of the spatial resolution of the sensors, a single
pixel in HSI inevitably contains several kinds of materials [4].
Mixed pixels hinder the in-depth analysis and application of
HSI and cause hyperspectral unmixing (HU) issues. Therefore,
the task of HU is to decompose mixed pixels into a collection
of spectral signatures (or endmembers) and their corresponding
fractional abundances [5].
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For HU problem, a mass of approaches have been proposed
based on linear mixing model (LMM) [5], which can be roughly
divided into geometrical, statistical, sparse regression, and deep
learning (DL) based methods. Specifically, the geometrical-
based approaches assume that the vertices of a simplex formed
by data points in the feature space correspond to endmembers,
which mainly include the subspace projection methods [6],
the maximum simplex [7], and the minimum simplex [8], [9]
methods. Generally, the accuracy of abundance inversion of
geometrical methods depends heavily on the quality of end-
members extraction. The DL approaches can capture the hier-
archical structure of hidden information in hyperspectral data,
which overcomes the limitations of single-layer information and
further mine deep knowledge in the scene [10].

In the statistical framework, HU is formulated as a statisti-
cally independent or uncorrelated Bayesian inference problem,
and well-known algorithms such as nonnegative matrix factor-
ization (NMF) [11]. NMF has attracted a lot of attention in
HU, as it can simultaneously estimate endmembers and their
corresponding adundances without pure pixel assumption [12]–
[15]. Unfortunately, there are a large number of local minima
due to the nonconvexity of the NMF model. Therefore, addi-
tional constraints need to be incorporated to shrink the solution
space.

In the last decades, various priors have been imposed on the
endmember or abundance matrices by incorporating spectral,
spatial, or joint spectral-spatial information into the NMF model.
For the endmember matrix, the minimum simplex volume [12],
the endmember minimum dispersion [16], and the endmember
dissimilarity [17] are the common constraints. In [12], Miao and
Qi first introduced the minimum volume regularization into the
NMF framework and proposed a geometrical-statistical hybrid
method. In addition, spectral variability is also introduced into
the unmixing scenario as knowledge, and has received more
attention in recent years [18]–[21]. In terms of abundance matrix,
sparsity and smoothness are the two most important priors.
Driven by this semantics, the L1/2 regularizer [22] is introduced
to enforce sparsity of abundance and Qian et al. [13] proposed
a sparsity constraint NMF. The L1/2 regularizer is explicitly
compatible with the full additivity constraint of abundances.
With the aim of exploring the latent manifold structure of the
HSI, Lu et al. [14] proposed graph-regularized sparse NMF,
which used the nearest neighbor graph to model the local infor-
mation of high-dimensional space so that neighboring pixels can
share similar abundances. Similarly, approaches include graph
Laplacian [23] and hypergraph learning [24].
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Total variation (TV) regularization is another popular spatial
smoothing model in recent years, because the TV can preserve
the image edge information and promote the piecewise smooth-
ness of the abundance maps [15], [25]–[28]. In [15], a HTV
(band-by-band TV) was embedded into a weighted L1-norm
sparse framework, and He et al. proposed a TV regularized
reweighted sparse NMF. The TV was also introduced into non-
negative tensor factorization (NTF) [25] and deep multilayer
NMF [10].

Despite the commendable success, all of the aforementioned
methods in HU issue, there is still room to further improve the
unmixing performance: 1) The LMM can be described either
from convex-geometric perspective or from statistical point of
view. Therefore, hyperspectral data not only reflects the prior
information of convex-geometric, but also contains statistical
prior knowledge, which characterize the intrinsic properties of
the hyperspectral data from different aspects. In order to model
the unmixing issue more effectively, the above priors should be
utilized at the same time. How to make full use of HSI various
priors in the unified unmixing model lacks further research; 2)
The NMF-based unmixing model includes two equally impor-
tant matrix factors, i.e., endmember and abundance. However,
most of the existing NMF-based methods only consider one
matrix constraint and the other one is ignored. In addition,
the observed hyperspectral data are inevitably destroyed by
various noise due to the complicated transmission environment.
Therefore, in the NMF-based unmixing model, the effectiveness
of regularization based on the single matrix constraint method
is limited. To further improve the accuracy of the unmixing,
constraints should be imposed on both the endmember and the
abundance matrix to more effectively regularize the nonconvex
model and shrink the solution space.

In this article, to overcome this limitation, we propose a
new blind unmixing method, called multiple-priors ensemble
constrained NMF (MPEC-NMF). In hyperspectral geometric
priors, simplex minimum volume (MV) is the most important
prior. In statistical priors, abundance sparsity and abundance
smoothness also received attention from a large number of re-
searchers. However, the MV, sparsity and smoothness, which are
important priors information, have not been deeply studied in the
same unmixing model. The purpose of this method is to explore
a new scheme, that is, by combining multiple prior information
and imposing constraints on two matrices in the NMF model.
The ensemble means the union of geometric and statistical
priors and double matrix constraints. The experimental results
demonstrate the effectiveness and superiority of the proposed
method. This article is the continuation of the conference paper
in [29].

The main contributions of this article are summarized as
follows.

1) A new exploration scheme is proposed for the unmixing
task, that is, by unifying geometric priors and statistical
priors into the same unmixing model and imposing con-
straints on the endmember and the abundance matrix in the
NMF model simultaneously, which overcomes the limita-
tions of the traditional single matrix constraint method.

2) The minimum simplex, abundance sparsity, and abun-
dance smoothness work together in the same model for
the first time. Specifically, in our proposed model, the
minimum simplex prior adopts the MV constraint, and
the abundance sparsity and abundance smoothness prior
adopt the reweightedL1/2 and TV operators, respectively.
The contribution of each prior regularizer to the proposed
model is analyzed and discussed by experiments.

3) We developed an optimization algorithm to solve the
model by using the variable splitting and augmented
Lagrangian. In order to improve the efficiency of the
approach, the preconditioned conjugate gradient (PCG)
method and the Barzilai–Borwein (BB) gradient method
are used to embed the MPEC-NMF to accelerate the
convergence of the algorithm, and the computational com-
plexity of the algorithm is briefly analyzed.

The remainder of this article is organized as follows. Section II
presents the LMM and basic NMF model. The proposed model
and its corresponding optimization method are presented in
Sections III and IV, respectively. In Section V, both synthetic
data and real hyperspectral data experiments are described and
analyzed, and the conclusions are drawn in Section VI.

II. BACKGROUND

A. Linear Mixing Model

Based on the LMM, the HSI dataset can be expressed as

Y = EA+G (1)

where Y ∈ �L×N
+ refers to the observation HSI matrix, with

L bands and N pixels. E ∈ �L×d
+ consists of the spectral

signatures with d endmembers,A ∈ �d×N
+ represents the abun-

dance matrix for all endmembers, andG ∈ �L×N represents the
additive noise matrix.

Two important constraints are usually adopted, namely abun-
dance nonnegative constraint (ANC) and abundance sum-to-one
constraint (ASC) as follows:

A � 0,1T
dA = 1T

N

where 1T
d and 1T

N represent all-one vectors with size d and
size N , respectively. The symbol � denotes componentwise
inequality.

B. Nonnegative Matrix Factorization

NMF can approximate a large nonnegative matrix into two
low-rank nonnegative matrix factors [11]. Precisely, given an
observation HSI data Y ∈ �L×N and a positive number d <
min(L,N). The purpose of NMF is to find two nonnegative ma-
trices E ∈ �L×d and A ∈ �d×N by minimizing the following
objective function:

min
E,A

1

2
‖Y −EA‖2F

s.t. E � 0,A � 0,1T
dA = 1T

N (2)

where the operator ‖ · ‖F denotes the Frobenius norm.
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Fig. 1. Exhibits an illustration of the unmixing procedures for proposed
method.

Fig. 2. Simplex illustrations: Three endmembers in 2-D space.

III. PROPOSED MODEL

In this section, we present a new unmixing model, which
unifies both geometric and statistical prior knowledge into the
NMF framework, as shown in Fig. 1. Next, we first analyze the
priors of HSI data, and then describe our proposed MPEC-NMF
unmixing model in detail.

A. Geometrical-Based Prior Learner: Minimum Simplex

From the perspective of convex-geometry, the simplex volume
defined by endmembers is the minimum of all the simplexes
formed by the data cloud. The volume constraint cannot be only
compact the simplex size, provide vertices that better approxi-
mate a given dataset, but also effectively cope with the effects
of noisy pixels, and has a strong global constraint. As presented
in Fig. 2, it can be seen that the observation data are contained
in the simplex and the noise is excluded. Therefore, we imposed
the MV constraint on the endmember matrix to improve the

Fig. 3. Two priors of the abundance: The sparsity from column perspective
and the piecewise smoothness from row perspective.

spectral signatures identification capability. The calculation of
the volume of simplex benefited from Miao and Qi’s outstanding
work [12], which was presented as follows:

φvol(E) ∝ det2(C +BUT (E −ψ1T
d ))/(d− 1)! (3)

whereU ∈ �L×(d−1) is a projection matrix defined as the d− 1
most significant principal components of the observed data Y
through the principal component analysis. The column vectorψ
denotes the data mean,C = [1T

d ; Ǒ] andB = [0T
d−1; Ǐ],1 and0

are vectors of all-ones and -zeros, respectively, Ǒ is (d− 1)× d
all-zero matrix, and Ǐ is a (d− 1)× (d− 1) identity matrix.

B. Statistical-Based Prior Learner: Sparsity and Smoothness

From a statistical perspective, the pixels in HSI are commonly
a linear accumulation of a few signatures in the scene, and the
column vectors of the abundance matrix should be sparse [13],
as shown in Fig. 3. In addition, since the changes of ground ma-
terials distribution are generally slow and abrupt changes rarely
appear, thus the abundance of two adjacent pixels corresponding
to the same endmember should be similar, and abrupt changes
occur only at the edge of the surface, hence the abundance maps
should be piecewise smooth. Sparsity and smoothness reveal
that the distribution characteristics and local affinity properties
of earth’s surface, which is an important prior knowledge of the
hyperspectral data.

In recent years, compressed sensing [30] and regularizer
theory [22], [31], [32] have shown that the L1/2 operator has
unbiasedness and Oracle properties. The solution of the L1/2

operator is sparser than that of the L1 regularizer, while solv-
ing the L1/2 operator is much simpler than solving the L0

regularizer. Therefore, the L1/2 quasi-norm is a very popular
sparsity-induced regularizer. In this article, the abundance spar-
sity prior-learner is defined by

φspa(A) = ‖A‖1/2 (4)

where

‖A‖1/2 =

d,N∑

i,j=1

A
1/2
ij .

The L1/2 regularization, however, leads to a nonconvex, non-
smooth, and non-Lipschitz optimization problem that is difficult
to solve [22]. In order to solve the L1/2 optimization problem
efficiently, which inspired by [33], a weighted method is used to
convert L1/2 nonconvex problem into L1 convex optimization
problem using a reweighted iterative strategy, and (4) becomes
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the following form:

φspa(A) = ‖W �A‖1 (5)

where W is the weighted matrix with nonnegative elements,
and operator � means elementwise multiplication. The weight
matrix W used for the next iteration is computed from the
abundance matrix of the current solution

W k+1
i,j := 1/

(√
|Ak

i,j |+ ε

)
(6)

whereAk
i,j represents the abundance matrix of the kth iteration

and ε is any fixed positive real number.
In order to promote the piecewise smoothness of the abun-

dance and preserve the spatial edge information, TV operator
are adopted, which is defined as follows:

Let∇h : �m×n → �m×n denote a linear operator computing
the horizontal differences, i.e.,∇hA = [q1, q2, . . ., qn], where
qi = ai − aih , with i and ih denoting a pixel and its horizontal
neighbor. Let∇v : �m×n → �m×n be defined in a similar way
for the vertical differences, i.e.,∇vA = [v1,v2, . . .,vm], where
vi = ai − aiv , with i and iv denoting a pixel and its vertical
neighbor. With these two difference operators, we define the TV

∇AT =

(∇hA

∇vA

)

where∇ =
(∇h

∇v

)
denotes TV operator. The symbol∇ is applied

onAT since each abundance map is along rows of the abundance
matrix. The abundance smoothness prior-learner is defined as
follows:

φTV(A) = ‖∇AT ‖1. (7)

C. MPEC-NMF Model

By incorporating formulas (3), (5), and (7) into (2), the
objective function of the MPEC-NMF model was obtained as
follows:

min
E,A

1

2
‖Y −EA‖2F + λφvol(E) + αφTV(A) + βφspa(A)

s.t. E � 0,A � 0,1T
dA = 1T

N (8)

where the first term is the fidelity, and the second to the fourth
terms are three prior-learners. The parametersλ,α, andβ control
the contribution of the corresponding priors, respectively, which
balance the accuracy of the reconstruction error.

In model (8), by synthesizing geometric and statistical priors,
achieving multiple priors ensemble constraints on the endmem-
ber and the abundance matrices. Fig. 1 exhibits an illustration of
the HU procedures. We use a variable splitting and augmented
Lagrangian method [34] to solve the optimization model (8).
Next, we will give detailed solving steps and algorithm flow.

IV. OPTIMIZATION ALGORITHM

Clearly, the model (8) is a nonsmooth optimization with
constraints, and we convert it to the following unconstrained

equivalence problem:

min
E,A

1

2
‖Y −EA‖2F + λφvol(E) + α‖∇AT ‖1

+ β‖W �A‖1 + lR+(E) + lR+(A) + l{1}(A) (9)

where lR+(·) and l{1}(·) represents the ANC and ASC, respec-
tively, and can be computed as

lR+(A) =

{
0 min(Ai) ≥ 0, i = 1, 2, . . ., N

+∞ min(Ai) < 0, i = 1, 2, . . ., N
(10)

l{1}(A) =

{
0

∑
Ai = 1, i = 1, 2, . . ., N

+∞ ∑
Ai �= 1, i = 1, 2, . . ., N.

(11)

A. Variable Splitting and Augmented Lagrangian Approach

In order to effectively solve (9), we introduce the auxiliary
variables V 1, V 2, V 3, V 4, and convert (9) into the following
constraint forms:

min
V ,E,A

1

2
‖Y −EA‖2F + λφvol(E) + α‖V 1‖1

+ β‖W � V 2‖1 + lR+(E) + lR+(V 3)

+ l{1}(V 4)

s.t. V 1 = ∇AT ,V 2 = A,V 3 = A,V 4 = A. (12)

Equation (12) is a typical equality constraint optimization,
and its augmented Lagrangian function can be formulated as
follows:

Lμ(V ,E,A) =
1

2
‖Y −EA‖2F + λφvol(E) + lR+(E)

+ α‖V 1‖1 + β‖W � V 2‖1 + lR+(V 3)

+ l{1}(V 4) +
μ

2
‖V 1 −∇AT −D1‖2F

+
μ

2
‖V 2 −A−D2‖2F

+
μ

2
‖V 3 −A−D3‖2F

+
μ

2
‖V 4 −A−D4‖2F (13)

whereD1,D2,D3, andD4 are the scaled Lagrange multipliers,
and μ > 0 is a penalty parameter. We choose to minimize the
augmented Lagrangian function with respect to each block vari-
able V 1, . . ., V 4,A, andE one at a time while fixing the other
five blocks at their latest values, and then update the Lagrange
multiplier. In specific, we optimize (13) by iteratively solving
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the following unconstrained subproblems:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

V k+1
1 = argminV 1∈�N×d Lμ

(V 1,V
k
2 ,V

k
3 ,V

k
4 ,E

k,Ak), (14a)

V 2
k+1 = argminV 2∈�d×N Lμ

(V k+1
1 ,V 2,V

k
3 ,V

k
4 ,E

k,Ak) (14b)

V k+1
3 = argminV 3∈�d×N Lμ

(V k+1
1 ,V k+1

2 ,V 3,V
k
4 ,E

k,Ak) (14c)

V k+1
4 = argminV 4∈�d×N Lμ

(V k+1
1 ,V k+1

2 ,V k+1
3 ,V 4, E

k, Ak) (14d)

Ak+1 = argminA∈�d×N Lμ

(V k+1
1 ,V k+1

2 ,V k+1
3 ,V k+1

4 ,A,Ek) (14e)

Ek+1 = argminE∈�L×d Lμ

(V k+1
1 ,V k+1

2 ,V k+1
3 ,V k+1

4 ,Ak+1,E) (14f)

Dk+1
1 =Dk

1 +∇A(k+1)T − V k+1
1 (14g)

Dk+1
i =Dk

i +Ak+1 − V k+1
i , i = 2, . . . , 4. (14h)

B. Subproblems Solver

The V 1 and V 2 subproblem can be effectively solved by the
well-known soft-thresholding approach [35], which is defined
as

softTh(x, τ) = sign(x)max{0, |x| − τ}, and τ > 0.

Then, we can get the following update rules:

V k+1
1 ← softTh

(
∇A(k)T +Dk

1 ,
α

μ

)
(15)

V k+1
2 ← softTh

(
Ak +Dk

2 ,
β

μ
W k

)
(16)

whereW is the weighted matrix defined by (6).
In V 3 subproblem, the role of the lR+ term is to project the

solution onto the nonnegative orthant and the value of V 3 is
given by

V k+1
3 ← max

(
Ak +Dk

3 , 0
)
. (17)

TheV 4 subproblem, according to the definition of (11), it can
be solved by

V k+1
4 ← (

Ak +Dk
4

)
+ (1d ⊗M) (18)

where 1d = ones(d, 1) and M = 1
d [ones(1, N)−∑N

j=1

(Ak +Dk
4)] and the ⊗ is denoted as the Kronecker product.

The A subproblem is a least squares (LS) problem, then the
solution can be obtained by setting the partial derivative Ψ(A)
as zero, i.e.,

Ψ(A) =
1

2
‖Y −EA‖2F +

μ

2
‖V 1 −∇AT −D1‖2F

+
μ

2
‖V 2 −A−D2‖2F +

μ

2
‖V 3 −A−D3‖2F

+
μ

2
‖V 4 −A−D4‖2F

∂AΨ(A) = ETEA+ μA∇T∇+ 3μA− RHS = 0

⇒ ETEA+ μA∇T∇+ 3μA = RHS (19)

where

RHS = ETY + μ
[
(V 1 −D1)

T∇+ (V 2 −D2)

+ (V 3 −D3) + (V 4 −D4)
]
.

This equation can be rewritten as

[
vec(IN ⊗ETE) + μ ∗ vec(∇T∇⊗ Id) + 3μ

]
vec(A)

= vec1(RHS) (20)

and can be efficiently solved by the PCG [36] or LSQR [37].
The E subproblem is defined as

J(E) = min
E
Lμ(V

k+1
i ,Ak+1,E), i = 1, 2, . . . , 4

=
1

2
‖Y −EA‖2F + λφvol(E) + lR+(E)

where φvol(E) is given by (3). Obviously, J(E) is a smooth
convex optimization with nonnegative constraints. Intuitively,
the projection gradient (PG) [36] learning scheme can be used
to solve it. Thus, the update rule is expressed as

Ek+1 ← P
(
Ek − ρk∇J(Ek)

)
(21)

where ρk is stepsize and the operator P (·) projects all the
negative entries to zero. To avoid inefficient line searches, we
use the Barzilai–Borwein (BB) gradient method [38] based on
two-point steps to select ρ as shown below

ρk =
〈ΔE ,ΔE〉
〈ΔE ,Δg〉 or ρk =

〈ΔE ,Δg〉
〈Δg,Δg〉 (22)

where ΔE = Ek −Ek−1, Δg = ∇J(Ek)−∇J(Ek−1), 〈·, ·〉
is inner product.

C. Overall Algorithm for MPEC-NMF

By incorporating the several steps described above, we can
now present the entire procedure of solving the proposed model,
as summarized in Algorithm 1.

D. Implementation Details

Due to the global nonconvexity of the proposed MPEC-NMF
model, some implementation details of the method, such as
initialization and parameter values, need to be specified.

The first issue concerns the initialization of theE,A,W and
V 1, . . . ,V 4, since an inappropriate initialization may cause the
algorithm to be stuck in local minima. For the matrix E, there
are usually two initialization strategies: random initialization
or selection from the original data points. Random initialization
means randomly assigning a value between 0 and 1 as an element
of the E. The latter typically uses an unsupervised endmember
extraction algorithm result as an input to E, such as vertex

1The operation vec(.) represents vectorization operation on matrix with
columns stack.
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Algorithm 1: MPEC-NMF Algorithm.

Input: Y ∈ �L×N , d, λ, α, β, μ and MaxIter.
Output:E ∈ �L×d,A ∈ �d×N

Initialization: Set k = 0, choose μ > 0, E0 ∈ �L×d,
A0 ∈ �d×N ,W 0

i,j = 1/(|A0
i,j |1/2 + ε),

V 0
1 = ∇A0T ,V 0

2 = A0, V 0
3 = A0,

V 0
4 = A0,D0

1 = zeros(size(AT )),D0
2 =D0

3 =
D0

4 = zeros(size(A)).
1: repeat:
2: V k+1

1 ← softTh(∇A(k)T +Dk
1 ,

α
μ ).

3: V k+1
2 ← softTh(Ak +Dk

2 ,
β
μW

k).

4: V k+1
3 ← max(Ak +Dk

3 , 0).
5: V k+1

4 ← (Ak +Dk
4) + (1d ⊗M), where

1d = ones(d, 1) and
M = 1/d

[
ones(1, N)−∑N

j=1(A
k +Dk

4)
]
.

6: Ak+1 ← Solved by PCG from (20).
7: Ek+1 ← P

(
Ek − ρk∇J(Ek)

)
, where J(E) =

1/2‖Y −EA‖2F + λφvol(E) + lR+(E).
8: Update multipliers:
9: Dk+1

1 ←Dk
1 +∇A(k+1)T − V k+1

1 ,
10: Dk+1

i ←Dk
i +Ak+1 − V k+1

i , i = 2, . . . , 4.
11: Update weight matrix:

12: W k+1
i,j ← 1/

(√|Ak
i,j |+ ε

)
.

13: Update iteration:
14: k← k+1.
15: until some stopping criterion is satisfied.
16: return results

component analysis (VCA) or spectral information divergence
(SID). With this initialization, we then use the fully constrained
least squares (FCLS) [39] to generate the abundance A. The
weighted matrix is initialized as W 0

i,j = 1/(|A0
i,j |1/2 + ε) for

the first iteration. As for the auxiliary variables, we have ex-
perimentally found that simply takingV 0

1 = ∇A0T ,V 0
2 = A0,

V 0
3 = A0, V 0

4 = A0 is an effective choice.
The second issue is about the model parameters: λ, α, and β.

Three parameters control the tradeoff between the reconstruction
error term and the three prior-learners. λ controls the strength
of the volume constraint. Increasing λ can make the data cloud
in the simplex more compact and weaken noise interference.
Therefore, λ value should increase or decrease as the magnitude
of the noise level changes. The parameter α controls the TV
regularization, which forces abundance piecewise smooth. It is
empirical and the selection is dependent on the specific image.
The value of β relies on the sparsity levels of the material
abundance. Since the abundance cannot be known in advance,
we use a possible estimator based on the sparse coding [40] as
a reference, given by

β =
1√
L

∑

l

√
N − ‖yl‖1/‖yl‖2√

N − 1
(23)

where yl represents the given hyperspectral data at band l. It is
important to note that adaptive selection of optimal values for

all these parameters is still an open question. In the next section,
we analyze the effects of these parameters through experiments.

The μ is a penalty parameter of the augmented Lagrangian,
and its setting has a strong influence on the convergence speed
of the algorithm. Here, we use an adaptive strategy [41]. Specif-
ically, μ is updated by keeping the ratio between the ADMM
primal residual norm and dual residual norm within a given
positive interval, since they both converge to zero. We use the
following primal residual norm and dual residual norm definition
to measure the degree of iteration satisfaction of Algorithm 1:

rk =
∥∥[V k

1 ;V
k
2 ;V

k
3 ;V

k
4

]∥∥2
F

− ∥∥[(∇AT )k;Ak;Ak;Ak
]∥∥2

F
(24)

dk =
∥∥[V k

1 ;V
k
2 ;V

k
3 ;V

k
4

]∥∥2
F

− ∥∥[V k−1
1 ;V k−1

2 ;V k−1
3 ;V k−1

4

]∥∥2
F
. (25)

In experiment, the primal residual rk and the dual residual dk

were set to 1e−3. In addition to the termination criteria above,
we also set a maximum number of iterations. The optimization
procedure stops as long as either of the two criteria is met. We
have empirically found that the combination of the above two
strategies performs very well in our case.

The last issue concerns the estimation of the endmember
number. Even though this is important for unmixing task, it is
another independent topic that is not covered in this work. In fact,
two well-known methods such as VD [42] and HySime [43]
could be adopted to estimate the number of endmembers. In
the synthetic data experiment, we manually set the number
values, and in the real data, we refer to the results of previous
hyperspectral community studies.

E. Complexity Analysis

Here, we briefly analyze the computational complexity of
the proposed MPEC-NMF algorithm. The most costly steps of
the proposed method are to solve A and E subproblem (i.e.,
steps 6 and 7 in Algorithm 1), while the others computational
complexity is O(N) [44].

The A subproblem is a LS problem, and its computational
complexity mainly consists of calculating ∂AΨ(A) and exe-
cuting the PCG algorithm. The ∂AΨ(A) part has a complexity
of O(dN2) because it contains TV operations. The PCG is an
improved variant of the CG method [36]. The time complexity
of the CG approach is O(mk1/2) [45], where m and k are
the number of nonzero elements and the condition number of
the LS coefficient matrix, respectively. In our algorithm, since
the partial derivative equation for A contains a TV operation,
the coefficient matrix size of A is dN × dN , which is a large
sparse matrix, thus, m� d2 N2 and is a small constant. Taking
all operations into account, the computational complexity order
for solving theA subproblem isO(dN2 +mk1/2) per iteration.

TheE subproblem is a smooth convex optimization with non-
negative constraints. In step 7, the projected Barzilai–Borwein
(PBB) gradient method [46], [47] is adopted. The Barzilai–
Borwein (BB) gradient method [38] has a R-linear convergence
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Fig. 4. Synthetic hyperspectral data. (a) Reference endmembers. (b) Simulated image. (c)–(f) Ground-truth fractional abundances of corresponding endmembers.

rate [48], [49] and is competitive with the CG method. In the
PBB method, the most costly steps include calculating∇J(Ek),
simplex volume, Barzilai–Borwein stepsize ρ, and nonnegative
elements projection operations. Among them, except that the
computational complexity of∇J(Ek) is O(dLN), the remain-
ing complexity isO(dL). Taking all the operations into consider-
ation, the computational complexity order of theE subproblem
is O(dLN + 3dL) per iteration.

Based on the above analysis, the computational complexity of
the proposed MPEC-NMF algorithm is O(dN2 +mk1/2), and
the most time-consuming operation is to solveA subproblem.

V. EXPERIMENTAL RESULTS

In this section, the experiments on synthetic and real dataset
are conducted to verify the effectiveness of the proposed method.
The state-of-the-arts method including VCA-FCLS [6],2 [39],
MVC-NMF [12],3 L1/2-NMF [13], GLNMF [14], TV-
RSNMF [15],4 MVNTF-TV [25], and DLNMF-TV [10] are
utilized as comparison methods. All the experiments are carried
out on a Windows 7 system with 3.4-GHz Intel Core i7 CPU
and 16-GB RAM using MATLAB2016b.

A. Performance Metrics

The results were evaluated using the Spectral Angle Distance
(SAD) and Root Mean Square Error (RMSE). They are defined
as follows:

SADk = arccos

(
eTk êk

‖ek‖ · ‖êk‖
)

(26)

RMSEk =

(
1

N
‖ak − âk‖22

)1/2

(27)

where ek and ak denote the ground-truth of endmember signa-
ture and abundance vector, respectively, êk and âk denote the
corresponding estimated results and N represents the number
of pixels in HSI.

B. Experiment on Synthetic Dataset

In this section, we randomly selected four spectra from the
U.S. Geological Survey (USGS) digital spectral library,5 as
shown in Fig. 4(a), for the following experiments. The synthetic
data are shown in Fig. 4(b), which was generated using the

2http://www.lx.it.pt/\;bioucas/code.htm
3https://github.com/aicip/MVCNMF
4https://sites.google.com/site/rshewei/home
5http://speclab.cr.usgs.gov/spectral.lib06

method provided in [50]. This simulated image has 48 × 48
pixels with 188 bands were generated using four spectral signa-
tures according to LMM, and applied ASC to the pixels. There
are not only pure pixel regions in the image, but also mixed
regions constructed using mixtures ranging two and four end-
members. Background pixels are also constructed by mixtures of
the same four endmembers, and their corresponding fractional
abundances are fixed at 0.1870, 0.2023, 0.2036, and 0.4071,
respectively. In addition, the true fractional abundances of the
corresponding endmembers have been shown in Fig. 4(c)–(f).

In order to evaluate the sensitivity of the method to noise, we
add zero-mean Gaussian noise to the synthetic data to simulate
possible errors and noise interference. Here, the SNR is defined
as follows:

SNRdb = 10 log10
E[yTy]

E[gTg]
(28)

where y and g represent the observation and noise of pixel,
respectively, and E[·] denotes the expectation operator.

In order to guarantee a fair comparison of all methods,
unless otherwise stated, the initial endmember matrix of all
NMF-based methods is initialized with the SID, and the initial
abundance is randomly generated and normalized by the randn
function using the following code: “A = abs(randn(d,N)); A =
A./repmat(sum(A,1),d,1);”

All experimental results in this article are average values
obtained from 20 randomized tests. In addition, all parameters
of the comparison algorithm are consistent with the original
references.

Experiment 1 (Parameter Analysis): In this experiment,
three critical parameters λ, α, and β in model (8) are considered
when SNR = 20 dB. In order to eliminate the influence of
random initialization, the initial E and A values were kept
fixed throughout the experiment, and the initial augmented
Lagrangian penalty parameter μ = 1, the maximum number of
iterations were 350, and the error tolerance was 1e−3.

First, we analyze the parameter λ while fixing α and β values.
As shown in Fig. 5, when λ changes from 0.02 to 0.04, the SAD
and RMSE values are relatively stable in this interval. When λ is
below 0.02, both SAD and RMSE values rise clearly. Therefore,
by weighing the best SAD and RMSE results, we choose the
best parameter λ = 0.025 for subsequent experiments.

Next, we evaluated the effects of different α and β values on
performance. In this experiment, the values of parameter α are
set to a finite set {1e−3, 5e−3, 1e−2, 1.5e−2, 2e−2, 2.5e−2,
3e−2, 4e−2} according to the comprehensive analysis of the
existing research results. For parameter β, we set it as {1e−4,
1e−3, 2e−3, 3e−3, 4e−3, 5e−3, 6e−3, 7e−3}, which is the

http://www.lx.it.pt/LY1	extbackslash ;bioucas/code.htm
https://github.com/aicip/MVCNMF
https://sites.google.com/site/rshewei/home
http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 5. Performance analysis of the proposed method with respect to param-
eters λ in terms of (a) SAD and (b) RMSE.

Fig. 6. Performance analysis of the proposed method with respect to param-
eters α and β in terms of (a) SAD and (b) RMSE.

result of fine-tuning under the guidance of sparse estimator (23).
During the experiment, λ value was fixed, and all possible
combinations of values of α and β were considered.

Fig. 6(a) shows the SAD obtained by the proposed method
whenα andβ parameters are changed atλ = 0.025, and Fig. 6(b)
shows the RMSE results. It can be clearly observed that when
the α value exceeds 0.02, the SAD and RMSE values have a
clear increasing trend. Similarly, when α value is below 0.01,
the RMSE value also rises rapidly. In contrast, the two metrics
achieved the lowest SAD and RMSE values atα = 0.015. At the
same time, when β exceeds 0.002 and is lower than 0.004, the
SAD and RMSE values are stable and robust. For other values,
whether larger or smaller, the values of both metrics show a
rising tendency. Therefore, the optimal value of β should be in
[0.002, 0.004]. Based on the above analysis, we set β = 0.003
and α = 0.015 in the rest of the experiments.

Experiment 2 (Performance Comparisons): The main goal
of this experiment is to evaluate the robustness of the proposed
method at different noise levels, i.e., SNR = 10, 20, 30, and
40 dB. It should be noted that all the methods use the same ini-
tialization conditions. Specifically, the initial endmember matrix
of all NMF-based methods is initialized with the SID, and the
abundance matrix is initialized in a random manner to better
assess the ability of each algorithm to estimate abundance. The
experimental results are shown in Fig. 7.

Obviously, with the increase of SNR, the SAD and RMSE
values obtained by all methods show a rapid decline trend, which
indicates that the performance of all algorithms is increasing,
and it also implies the importance of noise reduction in the
unmixing scenarios. It can be observed from Fig. 7(a) and (b)

Fig. 7. Comparison of the algorithms at different noise levels in terms of (a)
SAD and (b) RMSE.

TABLE I
AVERAGE PROCESSING TIME (IN SECONDS) OF EACH COMPETING

METHOD ON SIMULATED DATASETS

that, due to the existence of pure pixels in the simulated data,
the VCA method based on subspace projection can also obtain
better unmixing results than most algorithms in clean images, but
its performance shows rapid degradation as the noise intensity
increases, and it gets the worst results when SNR = 10 dB.
In contrast, under the random initialization of the abundance
matrix, all NMF-type methods show similar estimation capa-
bilities with changes in noise levels, and it can be seen from
two measurement curves of SAD and RMSE that they have
stronger stability than geometric-class methods. However, these
approaches only consider geometric and statistical priors in iso-
lation, and only impose constraints on endmember or abundance
in a single aspect, ignoring the effects of multiple priors joint
and cooperation constraints of two matrix factors.

Interestingly, as shown in Fig. 7(a) and (b), regardless of
the noise intensity, our proposed approach achieves the lowest
SAD and RMSE metrics than other methods, showing better
stability and robustness. Therefore, it further proves our pre-
vious hypothesis, namely, by fusing geometric and statistical
prior information, ensemble multiple priors regularizer imposes
constraints on the endmember and the abundance matrix, which
can shrink the solution space more effectively.

For illustrative purposes, Fig. 8 presents the estimated abun-
dance maps for randomly selected first endmember. It can be
clearly seen that no matter the noise level, our proposed method
can always obtain smoother and clearer abundance due to con-
sidering multiple prior constraints, and whether the background
or foreground is more consistent with the real abundance map,
showing its superiority and advancedness. Specifically, at low
SNR, our method is significantly better than other competing
methods, as shown in the first two lines of Fig. 8. In the case of
high SNR, all methods have similar behavior and visual effects,
but our method yields smoother textures and edges that closely
match the true abundance.

In addition, we also give the average time cost of each algo-
rithm to evaluate its time efficiency. As shown in Table I, it is not
surprising that the VCA method has the fastest running speed be-
cause it extracts endmembers based on spatial projection without



QU AND BAO: MULTIPLE-PRIORS ENSEMBLE CONSTRAINED NONNEGATIVE MATRIX FACTORIZATION FOR SPECTRAL UNMIXING 971

Fig. 8. Abundance maps of the first endmember obtained by different methods in the synthetic data experiment.

Fig. 9. Effects of different priors on performance in the proposed model under
different initialization conditions. (a) Random. (b) LS.

the need to perform iterative optimization algorithms. Compar-
ing with other NMF-class methods, the proposed approach has
less time consumption. Because our proposed method adopts
multiple priors ensemble constraints, and applies both geometric
and statistical priors to the endmember and abundance matrices,
thereby effectively compressing the objective solution space
and improving the algorithm time efficiency. Moreover, the
algorithm proposed in this article is based on an efficient ADMM
framework combined with the BB gradient strategy, which also
further accelerates the convergence rate.

Experiment 3 (Contributions of different priors): In this ex-
periment, we explore the effects of different prior regularizers
on the results of the algorithm. In order to further evaluate the
characteristics of the proposed method, the abundance matrix
A is initialized in two ways, namely random method and LS
method. In order to examine the contribution of each prior and
its combination on the unmixing model, we invalidate the other
priors when evaluating one of them.

Obviously, in Fig. 9(a), the first three group histograms
showed that any single matrix constraint does not achieve the de-
sired result, but the performance of the MV constraint is clearly
better than the other two. By contrast, the SAD and RMSE values
of the latter three groups are obviously lower than any of the
previous groups. Moreover, the joint MV, weightedL1/2, and TV
regularization scheme (MV+wL1/2+TV) proposed in this article
achieved lowest values. In order to comprehensively compare the
contributions and influences of the priors, we present the test

Fig. 10. Convergence curves. (a) Objective values, reconstruction, and primal-
dual residuals. (b) Estimate the residuals of Ê and Â.

results using the LS to initialize A, as shown in Fig. 9(b). As
can be seen, good initial points can improve the accuracy of all
test groups. However, the results of the MV+wL1/2+TV scheme
are still better than the others. From the comparative analysis of
Fig. 9(a) and (b), it can be seen that the MV prior in the model
has a larger influence and contribution. The weighted L1/2

sparsity (wL1/2) contribution to the model is second only to the
MV. The TV regularization mainly contributes to the abundance
extraction, which is consistent with its theory. The values of the
two metrics obtained by the three priors ensemble constraints
(MV+wL1/2+TV) are superior to any other groups, which exert
the ensemble effectiveness of multiple-priors learning, and has
strong robustness.

Experiment 4 (Convergence analysis): Our proposed algo-
rithm 1 use (24) and (25) as the stopping criterion, and its
convergence can be analyzed and proved in a similar way to [41]
and [34]. Here, we did it in an alternative way by plotting the
convergence curve of the proposed algorithm. In Fig. 10(a),
the objective function values, reconstruction residual, primal
residual norm, and dual residual norm values were drawn. It
can be seen that the objective value and reconstruction residual
drop rapidly after the first few iterations and converges to the
stationary value after about 100 iterations. The primal residual
and the dual residual also converge to zero after about 150
iterations, which quite comply with our expected effect.

Meanwhile, we also give the iterative residual curves of the
estimated matrices Ê and Â, as shown in Fig. 10(b). It can be
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TABLE II
SAD VALUES OF THE DIFFERENT ALGORITHMS WITH THE HYDICE URBAN DATASET

Fig. 11. Two real hyperspectral datasets. (a) HYDICE Urban scene (R: 69,
G: 50, B: 36). (b) AVIRIS Cuprite scene (R: 28, G: 19, B: 11).

seen from the figure that after 300 iterations, the residuals of the
two matrices tend to be stable and close to zero.

C. Experiment on Real Dataset

Here, two real world HSI datasets were used to further eval-
uate the performance of the proposed method: the Hyperspec-
tral Digital Image Acquisition Experiment (HYDICE) Urban
Dataset6 and the Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) Cuprite dataset,7 as shown in Fig. 11. The first
scene was collected in October 1995 in an urban area at Copperas
Cove, TX, USA. The second scene was collected in June 1997 in
Las Vegas, NV, USA. In the experiment, we used a SID-based
method to select pixels as the initial endmember matrix, all
NMF-based methods have the same initialization conditions,
and the experiment was repeated ten times to ensure a reliable
comparison.

1) HYDICE Urban Dataset: This image has 307× 307 pixels
and each pixel contains 210 bands, which cover the wavelength
range of 0.4–2.4 μm. By removing the noise and water vapor ab-
sorption bands (including bands 1–4, 76, 87, 101–111, 136–153,
and 198–210), only 162 bands remain. According to previous
research works [15], this scene consists of six materials, namely
asphalt-road, roof#1, roof#2, grass, tree, and concrete-road.

Table II shows the mean SAD obtained by different methods.
From this table, we can see that most of the material signatures
extracted by proposed method have the best accuracy and the
lowest SAD mean values. Another interesting finding is that the
proposed method has better performance than any other meth-
ods, which imposed geometric or statistical prior constraints
on a single matrix. Fig. 12 shows the estimated endmember

6http://www.agc.army.mil/
7http://aviris.jpl.nasa.gov/data/free_data.html

Fig. 12. Comparison of the reference spectra with the endmember signatures
extracted by the proposed method on the Urban dataset. (a) Asphalt-road.
(b) Grass. (c) Tree. (d) Roof#1. (e) Roof#2. (f) Concrete-road.

signatures and their references. It can be seen that the output
of the proposed method is closely matched with the references
signatures. Fig. 13(a)–(f) shows the abundance ground-truth of
six endmembers compared to the estimated abundance maps in
Fig. 13(g)–(l), which are grayscale image, where a dark pixel
denotes a low abundance of the corresponding endmember. It
can be seen that these results are quite reasonable comparing
with references.

2) AVIRIS Cuprite Dataset: The Cuprite dataset contains
224 bands, which cover the wavelength range of 0.4–2.5 μm
with subimage size 250× 191. The noisy bands (1 and 2 and
221–224) and water absorption bands (104–113 and 148–167)
were removed, and a total of 188 bands remained. The refer-
ence endmember signatures in the experiment were selected
from the USGS digital spectral library, which was also uti-
lized in [15] and [13]. According to the existing analysis
in [15] and [26], there are mainly 12 types minerals:“#1
Alunite GDS82 Na82,” “#2 Andradite WS487,” “#3 Bud-
dingtonite GDS85 D-206,” “#4 Chalcedony CU91-6 A,” “#5
Dumortierite HS190.3B,” “#6 Kaolin/Smect H89-FR-5 30 K,”
“#7 Kaolin/Smect KLF508 85%K,” “#8 Montmorillonite + Illi
CM37,” “#9 Muscovite GDS108,” “#10 Nontronite NG-1.a,”
“#11 Pyrope WS474,” and “#12 Sphene HS189.3B.”

Fig. 14 illustrates the grayscale abundance maps obtained
by our proposed method, where the brighter pixels represent
the higher abundance of the corresponding endmembers. Mean-
while, Fig. 15 presents the endmember signatures extracted by
proposed method and the reference signatures obtained from

http://www.agc.army.mil/
http://aviris.jpl.nasa.gov/data/free_data.html
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Fig. 13. Abundance maps of the different endmembers obtained using MPEC-NMF on the HYDICE Urban dataset. (a)–(f) Ground-truth. (g)–(l) Estimated.
From left to right are: Asphalt-road, Grass, Tree, Roof#1, Roof#2, Concrete-road, respectively.

Fig. 14. Abundance maps of the different endmembers obtained using MPEC-NMF on the AVIRIS Cuprite dataset. (a) Alunite GDS82 Na82. (b) Andradite
WS487. (c) Buddingtonite GDS85 D-206. (d) Chalcedony CU91-6 A. (e) Dumortierite HS190.3B. (f) Kaolin/Smect H89-FR-5 30 K. (g) Kaolin/Smect KLF508
85%K. (h) Montmorillonite + Illi CM37. (i) Muscovite GDS108. (j) Nontronite NG-1.a. (k) Pyrope WS474. (l) Sphene HS189.3B.

TABLE III
SAD VALUES OF THE DIFFERENT ALGORITHMS WITH THE AVIRIS CUPRITE DATASET
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Fig. 15. Comparison of the USGS library spectra with the endmember sig-
natures extracted by MPEC-NMF on the AVIRIS Cuprite dataset. (a) Alunite
GDS82 Na82. (b) Andradite WS487. (c) Buddingtonite GDS85 D-206. (d)
Chalcedony CU91-6 A. (e) Dumortierite HS190.3B. (f) Kaolin/Smect H89-FR-5
30 K. (g) Kaolin/Smect KLF508 85%K. (h) Montmorillonite + Illi CM37.
(i) Muscovite GDS108. (j) Nontronite NG-1.a. (k) Pyrope WS474. (l) Sphene
HS189.3B.

the USGS library. It can be obviously seen that the signatures
extracted by proposed method have a high spatial similarity with
the reference signatures, indicating that the method is efficient.
The corresponding SAD values obtained for the different un-
mixing approaches are given in Table III. It can be observed in
the table that most of the minerals estimated by the proposed
method achieve the best performance and have a lower mean
SAD value than other methods.

VI. CONCLUSION AND FUTURE WORK

In this article, we attempted to unify the geometric prior and
statistical prior of HSI into the same NMF unmixing model
and impose constraints on both the endmember and the abun-
dance matrix. A new unmixing scheme is proposed, namely
multiple-priors ensemble constrained NMF (MPEC-NMF). The
important priors of HSI: the endmember simplex volume, abun-
dance sparsity, and abundance smoothness work together in
the same model for the first time. The union of geometric-
statistical priors and dual-matrix constraints effectively over-
comes the limitations of the traditional single-matrix constraints
method and improves the accuracy of the results. We propose

an efficient optimization algorithm for solving the proposed
model by using variable splitting and augmented Lagrangian
frameworks. Moreover, the experimental results on the synthetic
and real-world datasets to demonstrate the effectiveness of the
proposed method and achieved better performance than other
state-of-the-art methods.

In future work, we will continue to explore the application
of multiple priors ensemble constraints in HU issue, and the
strategies and rules of multiple priors ensemble will be further
attempted. In addition, we will continue to improve the perfor-
mance of the algorithm, introducing a fast method instead of
time-consuming operations.
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