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Semisupervised Center Loss for Remote Sensing
Image Scene Classification

Jun Zhang , Min Zhang, Bin Pan , and Zhenwei Shi , Member, IEEE

Abstract—High-resolution remote sensing image scene classifi-
cation is a scene-level classification task. Driven by a wide range
of applications, accurate scene annotation has become a hot and
challenging research topic. In recent years, convolutional neural
networks (ConvNets) have achieved promising performance among
a variety of supervised classification methods. However, due to the
lack of clearly labeled remote sensing images, it may be difficult to
further improve the performance of scene classification. To address
this issue, we propose a novel semisupervised center loss for scene
classification. The main innovation of our method is to develop a
cooperative framework of supervised and unsupervised branches
in an end-to-end way. Specifically, we consider the class centers as
guiding factors between the supervised and unsupervised branches.
The supervised branch relies on a small number of labeled samples
to generate class centers, which serve as initialization centers for
the unsupervised branch. Meanwhile, the unsupervised branch
utilizes the easily available remote sensing images to correct the
class centers for enhancing the discriminative power of supervised
ConvNets. Experimental results on three public benchmarks have
indicated that the proposed method is superior to supervised center
loss based methods.

Index Terms—Cooperative framework, convolutional neural
networks (ConvNets), remote sensing scene classification,
semisupervised center loss (SSCL).

I. INTRODUCTION

W ITH the improvement of remote sensing image quality,
remote sensing images have presented great potential

in a lot of significant image interpretation tasks, such as scene
classification, object detection, and semantic segmentation [1]–
[4]. As a basic image understanding work, scene classification
has attracted increasing attention. Different from pixel/object-
level image classification, the main goal of scene classifica-
tion is to automatically assign high-level semantic labels (e.g.,
school, parking lot, and railway station) to local areas of remote
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sensing images for achieving scene-level classification. The
major difficulty lies in obtaining the discriminative features of
high-resolution remote sensing scenes.

During the past decades, existing research works for remote
sensing image scene classification can be roughly divided into
three levels: low-level feature-based methods, mid-level feature-
based methods, and high-level feature-based methods.

Low-level feature-based methods mainly focus on developing
feature descriptors, which represent the primary visual attributes
of remote sensing images such as spectral characteristics, tex-
ture characteristics, and geometric structure characteristics. The
widely used feature descriptors include local binary pattern [5],
color histogram [6], GIST [7], scale invariant feature transform
(SIFT) [8], and so on. By comparing the SIFT and Gabor [9]
texture features, the literature [10] analyzed the effect of image
descriptions based on local measures of saliency on labeling
high-resolution remote sensing images. Xia et al. [11] developed
novel structural feature descriptors based on the topographic
map and shape for interpreting remote sensing images. Consider-
ing the combined advantages of different low-level features, the
literature [12], [13] fused multiple low-level features to describe
remote sensing scenes.

For enhancing the representation power of low-level fea-
tures, mid-level feature-based methods were proposed to mine
the scene semantic information from low-level features. Yang
and Newsam [14] adopted the standard bag of visual words
(BoVW) approach to summarize the SIFT descriptors, and
proposed a spatial extension termed spatial co-occurrence ker-
nel to capture the spatial features. Based on the BoVW, the
researchers [15]–[20] developed the probabilistic topic model
(PTM) such as probabilistic latent semantic analysis (pLSA)
and latent dirichlet allocation (LDA). The PTM reduces the
dimensionality of mid-level features and constructs the seman-
tic relationship between visual words. Nevertheless, mid-level
features are derived from the low-level features, which lead to
some limitations of mid-level features on remote sensing scene
interpretation.

In more recent years, convolutional neural networks (Con-
vNets) have made remarkable achievements in the field of
remote sensing image scene classification [21]–[26]. Unlike
low-level and mid-level features based on artificial design, Con-
vNets generate feature representations of images by learning
a large number of training samples. In addition, due to the
multilayer structure of ConvNets, the obtained deep features are
high-level abstraction of remote sensing scene contents, which
make convolutional networks more suitable for scene-level
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classification. Usually, quite a few researchers adopt the pre-
trained ConvNets [27]–[30] as the basic framework of classi-
fication networks. Penatti et al. [31]–[34] extracted the fully
connected layer features from pretrained ConvNets to obtain the
global information of remote sensing scenes. In order to further
utilize the local information, Li et al. [35] proposed a region-wise
deep feature extraction algorithm based on an improved vector of
locally aggregated descriptors. To overcome the weakness of us-
ing only local or global features, Yuan et al. [36] first rearranged
local features of the last convolutional layer for VGG-19, then
concatenated global features of the last fully connected layer.
Furthermore, a two-stage deep feature fusion model was pro-
posed in [37] for integrating deep features of different pretrained
ConvNets.

The above various algorithms improve the classification per-
formance of remote sensing scenes. Nevertheless, it is worth
noting that these methods mainly depend on feature transfor-
mation. Essentially, the constructed ConvNets may not directly
generate discriminative features. Therefore, Wen et al. [38]
regarded intraclass compactness as the learning goal, and de-
signed the center loss to enhance the discriminative ability of
deep features. Specifically, the center loss learns a center of
each class from training samples and penalizes the distances
between each sample of each class and its class center. Since the
center loss specifically addresses the problem of large intraclass
variations, the center loss and a visual attention mechanism to
force the ConvNets to generate discriminative representations
were introduced [39].

Inspired by the center loss algorithm, in this article, com-
bining the following characteristics of remote sensing images,
we propose a semisupervised center loss (SSCL) algorithm for
remote sensing image scene classification.

1) The aforementioned center loss-based classification algo-
rithms require labeled samples. However, the labeled sam-
ples are scarce seriously, especially for high-resolution
remote sensing images.

2) A large number of unlabeled remote sensing images can
be obtained every day, but the manual annotation for them
is time-consuming.

3) The performance of center loss-based remote sensing
scene classification algorithms may be further improved
by integrating labeled and unlabeled samples.

The overarching goal of the SSCL algorithm is to further
improve the performance of the center loss algorithm in scene
classification task by learning more scene information contained
in labeled and unlabeled samples. In general, SSCL comprises
three key strategies. First of all, an end-to-end semisupervised
framework is developed, which can deal with the labeled and
unlabeled samples simultaneously. Second, we propose an im-
proved clustering algorithm that makes the scene information
learned from unlabeled samples as effective as possible. Finally,
we establish a cooperation mechanism between the center loss
algorithm and the clustering algorithm, which guarantees that
the center loss better supervises the ConvNets to generate dis-
criminative features.

The major contributions of this article can be summarized as
follows.

1) We improve center loss to a semisupervised form, and
construct an end-to-end deep learning model for remote
sensing scene classification.

2) We design a cooperative dual-branch architecture to inte-
grate the labeled and unlabeled samples and optimize our
SSCL-based model.

The rest of this article is organized as follows. In Section II,
we will first outline the proposed SSCL method. Subsequently,
the overall framework, the details of SSCL algorithm, and the
optimization algorithm are elaborated in Section II-B, II-C, and
II-D, respectively. Section III reports the experimental results.
Finally, the conclusion is drawn in Section IV.

II. PROPOSED METHOD

A. Overview of the Proposed Method

The developed SSCL algorithm is illustrated in Fig. 1.
The datasets utilized in our method are composed of labeled
and unlabeled high-resolution remote sensing images. Among
them, different datasets (WHU-RS19 [11], UC-Merced dataset
(UCM) [14], AID [40]) contain different categories, and the
typical scene categories mainly include airport, residential, in-
dustrial, railway station, and storage tanks. Based on the overar-
ching goal, our approach focuses on the problem of within-class
diversity and between-class similarity for remote sensing scene
classification, which can be abstracted as

J = Dw(f(Ii; θ), f(Ij ; θ))−Db(f(Ii; θ), f(Īi; θ)) (1)

where Ii and Ij represent different scene images of the same
class. Ii and Īi represent scene images from different classes.
θ is the parameter to be learned. f(·) represents the features
extracted from the ConvNets. Dw and Db denote within-class
and between-class differences. The task of our algorithm is to
minimize the within-class difference Dw, and maximize the
between-class distance Db as much as possible.

The whole algorithm consists of three components: the overall
framework, the SSCL, and optimization.

B. Overall Framework

Motivated by the superior performance of residual learning,
we construct the SSCL based on the ResNet. Specifically, our
backbone comprises 16 stacked residual blocks, and shortcut
connections are inserted into all residual blocks. The architecture
of each residual block is presented at the bottom right of Fig. 1.

In SSCL, the training data consists of the labeled sample set
Sla = {xi, yi}ni=1 and unlabeled sample set Sun = {x̃j}mj=1,
where xi, yi denotes the ith sample and its label, respectively.
x̃j denotes an unlabeled sample. n is the number of labeled
samples, and m is the number of unlabeled samples. As shown in
Fig. 1, SSCL contains two branches, where the yellow line is the
supervised branch and the red line is the unsupervised branch.
To obtain the discriminative features from supervised ConvNets,
the labeled samples {xi, yi}tlai=1 and unlabeled samples {x̃j}tun

j=1

are simultaneously fed into the backbone. The batch sizes of
labeled samples and unlabeled samples are tla and tun, respec-
tively. Then, the average pooling layer N-dimensional features
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Fig. 1. Overall architecture of the proposed framework with SSCL. The yellow line represents the supervised branch, and the red line is the unsupervised branch.
Details of the residual block are presented in the bottom right corner.

Fig. 2. Two major characteristics of high-resolution remote sensing images:
(a) large intraclass variations, and (b) small interclass dissimilarity. From the
top-left corner to the bottom-right corner, the corresponding categories of remote
sensing images are railway station, square, overpass, freeway, park, and resort.

{fi}tlai=1 and { ˜fj}tun
j=1 are extracted. In the training phase, we first

generate original class centers {Ck}Ck=1 based on the obtained
features {fi}tlai=1 and center loss algorithm. The original class
centers are regarded as the initialization centers for unsupervised
clustering (Fig. 1, yellow line, Step 7 of Algorithm 1). Subse-
quently, clustering algorithm iterates p times based on {fi}tlai=1

and { ˜fj}tun
j=1 to generate correctional class centers { ˜Ck}Ck=1,

which are fed back to supervised branch for updating the original
class centers {Ck}Ck=1 (Fig. 1, red line). Finally, we apply the
updated class centers to calculate the center loss, and SSCL
is optimized by standard stochastic gradient descent (SGD)
algorithm under the joint supervision of softmax loss and center
loss. It is worth noting that the SSCL framework is an end-to-end
semisupervised framework.

C. Semisupervised Center Loss

Generally, scene classification task mainly focuses on high-
resolution remote sensing images with scene information. Nev-
ertheless, due to the high spatial resolution, remote sensing
images present large intraclass variations and small interclass
dissimilarity (see Fig. 2). In order to learn discriminative features
from all available remote sensing images (including labeled
and unlabeled) for reducing intraclass distance and increasing
interclass distance, we improve the center loss. The center loss
function is defined by

LC =
1

2

tla
∑

i=1

‖fi − Cyi
‖22 (2)

where Cyi
∈ RN×1 denotes the yith class center of average

pooling layer features. fi ∈ RN×1 represents the ith labeled
sample features. Obviously, the center loss function [see (2)]
effectively penalizes the intraclass distance. The update equation
of Cyi

is computed as

Ck = Ck − α ·ΔCk (3)

ΔCk =

∑tla
i=1 δ(yi = k) · (Ck − fi)

1 +
∑tla

i=1 δ(yi = k)
. (4)

In (3), Ck represents the kth class center to be updated. α
(α ≤ 1) is a positive parameter to control the update rate of
centers. ΔCk denotes the gradient of Ck. More correctly, δ rep-
resents an indicator function. δ(condition) = 1 if the condition
(yi = k) is satisfied, and δ(condition) = 0 if not. Therefore,
the numerator of ΔCk refers to the difference between the
samples of the kth class and Ck.

∑tla
i=1 δ(yi = k) represents

the number of samples belonging to the kth class. Due to the
possibility of

∑tla
i=1 δ(yi = k) being 0, the center loss improved

∑tla
i=1 δ(yi = k) to 1 +

∑tla
i=1 δ(yi = k).

Although the center loss function can specifically address the
problem of large intraclass distance, it still relies on labeled
samples. In other words, the classic center loss is a supervised
algorithm. In the case of fewer labeled samples, the center loss
algorithm may not perform well.

In order to make the center loss algorithm better applicable
to high-resolution remote sensing image scene classification,
in this article, we develop a novel semisupervised framework.
The general design idea of the framework is to establish a
cooperation mechanism between the supervised branch and the
unsupervised branch, so that the two branches can complement
each other’s strengths. Specifically, in the supervised branch,
we adopt the classical center loss algorithm. However, LC is no
longer dependent on Ck, but is based on the correctional ˜Ck of
unsupervised branch. In the unsupervised branch, we propose an
improved clustering algorithm. Particularly, the cluster centers
are no longer randomly initialized, but are based on the class
centers of supervised branch learning by (3). Since the center
loss algorithm of supervised branch utilizes the correctional
class centers, it can better promote the ConvNets to learn
discriminative features. Similarly, the strategy can also help
the clustering algorithm of unsupervised branches to avoid the
impact of random initialization centers on the clustering results.
Through the cooperation of the two branches, we can obtain
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Fig. 3. Schematic diagram of forward and back propagation for SSCL framework. Among them, the solid line represents forward propagation, and the dotted
line represents back propagation. Only labeled samples participate in the optimization process.

Algorithm 1: Semisupervised Center Loss.
Input:

labeled feature set {fi, yi}tlai=1, unlabeled feature
set { ˜fj}tun

j=1, learning rate of centers α.
Output:

center loss value LC .
1: Initialization:
2: Initialize original class centers {Ck}Ck=1 with zero

matrix ˜O ∈ RN×C .
3: Initialize {f ˜fl}tla+tun

l=1 by {fi}tlai=1

⋃{ ˜fj}tun
j=1.

4: Compute original class centers {Ck}Ck=1:
5: For k = 1 to C

Ck = Ck − α ·
∑tla

i=1 δ(yi=k)·(Ck−fi)
1+

∑tla
i=1 δ(yi=k)

;

6: Correct class centers:
7: Repeat

{
for k =1 to C

Dk = maxyi=Ck
‖fi − Cyi

‖2;
for j = 1 to tun
dj , label( ˜fj) = mink ‖˜fj − Ck‖2;
if dj > Dlabel(f̃j)

then

label( ˜fj) = −1;
for i = 1 to tla

label(fi) = yi;
for k = 1 to C
˜Ck = meanlabel(ff̃l)=Ck

f ˜fl;
for k = 1 to C
Ck ← ˜Ck;

}
8: Compute center loss LC:

9: LC = 1
2

∑tla
i=1 ‖ fi − ˜Cyi

‖22.
10: return LC .

more accurate class centers, then compute an effective intraclass
loss LC . The overall algorithm is summarized in Algorithm 1.

D. Optimization

To maximize the interclass distance, softmax loss and center
loss with correctional centers jointly supervise the proposed
scene classification framework. The optimization schematic of

SSCL is shown in Fig. 3. The joint loss function is expressed as
follows:

LSC = LS + β · LC (5)

LS = −
tla
∑

i=1

log
eW

T
yi

fi+byi

∑C
k=1 e

WT
k fi+bk

(6)

LC =
1

2

tla
∑

i=1

‖fi − ˜Cyi
‖22 (7)

where LSC is the total loss function. LS and LC represent
the softmax loss and the center loss function, respectively.
WT

k ∈ R1×N denotes the kth row of the weight WT ∈ RC×N

in the softmax layer and bk ∈ R1×1 represents the kth term of
the bias b ∈ RC×1. β is weight coefficient for balancing the
two cost functions. ˜Cyi

∈ RN×1 is the yith correctional class
center. Obviously, we can conclude from Fig. 3 and (5) that the
convolutional layer parameters are based on the joint supervision
of softmax loss and center loss, but the softmax layer parameters
are only based on the supervision of softmax loss.

In the training phase, we select the SGD optimization
algorithm, and the optimization process is summarized in
Algorithm 2. Through end-to-end training, all parameters of the
proposed SSCL framework will be determined.

In the testing phase, we feed the test set images into the trained
SSCL model batch by batch. The SSCL model will assign a
predicted label to each image. Comparing the true labels of the
test set with the predicted labels given by SSCL, we can obtain
the classification accuracy of the test set.

III. EXPERIMENTS

In order to evaluate the performance of the proposed algorithm
for high-resolution remote sensing image scene classification,
SSCL was compared with six different scene classification
methods. For all methods, we conducted experiments on public
UCM, WHU-RS19 dataset, and AID dataset.

A. Datasets

1) UCM Dataset: The original images of UCM dataset are
manually extracted from the United States Geological Survey
National Map Urban Area Imagery collection for various urban
areas around the country, such as Birmingham, Boston, Buffalo,
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Fig. 4. Some sample images of the UCM dataset. From the top-left corner to the bottom-right corner, the corresponding categories of images are agricultural,
airplane, baseball diamond, beach, building, chaparral, dense residential, forest, freeway, golf course, harbor, intersection, medium residential, mobile homepark,
overpass, parking lot, river, runway, sparse residential, storage tanks, and tennis court.

Algorithm 2: Optimization.
Input:

labeled sample set {xi, yi}tlai=1, unlabeled sample set
{x̃j}tun

j=1, parameters φS in softmax layer, parameters
φC in convolutional layers, class centers {Ck}Ck=1,

learning rate lr, weight coefficient β and the number of
iteration γ.

Output:
updated parameters φS , φC .

1: while not converge do
2: γ = γ + 1.
3: Compute the total loss value by

Lγ
SC = LS

γ + β · LC
γ .

4: Compute the backpropagation error ∂Lγ
SC

∂xγ
i

of labeled
sample xi.

5: Update class centers {Ck}Ck=1:
6: For k = 1 to C

Cγ+1
k ← ˜Cγ

k ;
7: Update the parameters φS by

φγ+1
S = φγ

S − lr · ∂L
γ
S

∂φγ
S

.

8: Update the parameters φC by φγ+1
C =

φγ
C − lr ·∑tla

i=1

(

∂Lγ
S

∂xγ
i
· ∂xγ

i

∂φγ
C
+ β · ∂L

γ
C

∂xγ
i
· ∂xγ

i

∂φγ
C

)

.

9: end while
10: return φS , φC .

Columbus, and Dallas. The dataset contains 21 classes of land-
use images with a pixel resolution of one foot. Each class consists
of 100 images with a size of 256 × 256 pixels. Some examples
of the UCM dataset are shown in Fig. 4. The UCM dataset holds
a significant semantic overlap between several urban scenes
such as building, dense residential, medium residential, sparse
residential, and mobile home park, which makes the dataset
extremely challenging for classification tasks.

2) WHU-RS19 Dataset: The WHU-RS19 dataset includes
totally 1005 images divided into 19 scene classes, and per
scene class has about 50 images. The size of each image is
600 × 600 pixels. All images are collected from Google Earth
with spatial resolution up to 0.5 m and spectral bands of red,
green, and blue. In comparison, the WHU-RS19 dataset is small
in scale, and the total number of images is less than half of
the UCM dataset. The problem of insufficient labeled data
makes it difficult for supervised classification methods to obtain
high classification accuracy. Some examples of the WHU-RS19
dataset are shown in Fig. 5.

3) AID Dataset: The AID dataset is also downloaded from
Google Earth, which contains 10 000 scene images labeled
into 30 aerial scene types (e.g., airport, school, and railway
station). The image number of each class varies from 220 to
420, and the size of each image is 600× 600 pixels. To increase
intraclass variations, the scene images per class of the AID
dataset are collected from different countries and regions (e.g.,
China, the United States, England) around the world at different
time and seasons under different imaging conditions. To reduce
the interclass dissimilarity, the AID dataset increases the scene
classes to 30, and different scene classes share similar objects
and spatial distributions. The higher intraclass variations and
smaller interclass dissimilarity make the AID dataset closer to
the remote sensing scene images in practical applications. Some
examples of the AID dataset are presented in Fig. 6.

B. Experimental Setup

To verify the effectiveness of the proposed SSCL algorithm
under the condition of less labeled samples, the UCM dataset
is split into 20% for validation, 20% for test, and 60% for
training. Among them, all training samples are further divided
into 10% labeled training data and 50% unlabeled training data.
Considering the imbalance in the number of samples for per
category in the WHU-RS19 dataset, we randomly select 50
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Fig. 5. Some sample images of the WHU-RS19 dataset. From the top-left corner to the bottom right corner, the corresponding categories of images are airport,
beach, bridge, commercial, desert, farmland, football field, forest, industrial, meadow, mountain, park, parking, pond, port, railway station, residential, river, and
viaduct.

Fig. 6. Some sample images of the AID dataset. From the top-left corner to the bottom-right corner, the corresponding categories of images are airport, bare
land, baseball field, beach, bridge, center, church, commercial, dense residential, desert, farmland, forest, industrial, meadow, medium residential, mountain, park,
parking lot, playground, pond, port, railway station, resort, river, school, sparse residential, square, stadium, storage tanks, and viaduct.

images from each category. The new dataset contains a total
of 950 images. For the WHU-RS19 dataset, we set the same
ratio as the UCM dataset. Similarly, for the AID dataset, we
set the ratio of the labeled training data to 10%. The ratio
of validation and test is 20%, respectively, and the rest of
the dataset is used as the unlabeled training set. In the actual
training, all images are resized to 256× 256 pixels with bicubic
interpolation.

All experiments were performed with the tensorflow platform
on the Ubuntu 16.04 operation system with eight Intel Xeon
Silver at 2.10-GHz CPU. In addition, we train our model using
a GPU of NVIDIA GeForce RTX 2080Ti for acceleration.1

1) Evaluation Parameters: In our experiments, the over-
all accuracy (OA), standard deviation (Std), producer’s

1The codes are available at https://github.com/HEBUT-ZM/SSCL
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Fig. 7. Confusion matrices of the proposed SSCL algorithm. (a) UCM dataset with OA = 91.19%. (b) WHU-RS19 dataset with OA = 94.21%.

TABLE I
HYPERPARAMETERS OF THE PROPOSED SSCL FRAMEWORK

accuracy (PA), and average accuracy (AA) are used as evaluation
parameters. OA is defined as the number of correctly classified
samples divided by the total number of samples in the test set. PA
is the number of correctly classified samples for each class di-
vided by the total number of samples for the corresponding class.
AA is the average of the PA for all classes. To test the robustness
of the SSCL framework, we repeat experiments ten times for
each dataset, and Std is reported to indicate the experimental
results.

2) Parameters Setting: In the proposed SSCL framework,
five hyperparameters require to validate, which include the
learning rate lr, the weight coefficient β for balancing the two
cost functions, the learning rate of centers α, the weight decay
rate λ, and moving average decay rate DMA. The λ and DMA

are aimed at the overfitting problem. All hyperparameters are
validated on the validation set. The hyperparameters mentioned
above are determined as Table I.

3) Experimental Design: In this article, we conduct compar-
ative experiments on the UCM, WHU-RS19, and AID datasets.
Specifically, we compare our method with other scene classifi-
cation methods, such as vector of locally aggregated descriptors
(VLAD) [40] and discriminant correlation analysis (DCA) [41].
In particular, the classic center loss algorithm (ResNet-Center
Loss, R-CL) is taken for comparison, which also adopts the
ResNet as the backbone network. To illustrate the effectiveness
of the proposed algorithm with fewer labeled samples, the clas-
sification effects of SSCL based on different data proportions
are analyzed. In addition, we visualize the features generated by

TABLE II
OVERALL CLASSIFICATION ACCURACIES OF DIFFERENT SCENE

CLASSIFICATION METHODS

The best results are in bold.

ResNet, ResNet-Center Loss, and SSCL separately to indicate
that the SSCL algorithm can improve the discrimination of
features for the ConvNets.

C. Experimental Results

1) Experimental Results of the UCM and WHU-RS19
Dataset: Table II has presented the overall classification ac-
curacies of different scene classification methods on the UCM
and WHU-RS19 datasets. The proportion of labeled data for
each dataset is 10%. According to the experimental results
of two datasets, the ConvNets-based classification algorithm
DCA [41], GoogLeNet [28], ResNet [29], ResNet-Center Loss,
and SSCL far outperform the VLAD and IFK approaches based
on artificial designed features. The results have shown that it is
difficult to capture the characteristics of complex remote sensing
scenes using only artificial designed features. For the UCM and
WHU-RS19 datasets, the proposed SSCL framework obtains the
highest classification accuracies with only 10% labeled data. In
addition, compared with the baseline, ResNet, our method im-
proves the classification accuracies of the UCM and WHU-RS19
datasets by 4.29% and 2.63%, respectively. To better evaluate our
algorithm, Fig. 7 shows confusion matrices of the two datasets.
The confusion matrix is the classification result of one of the
experiments.
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TABLE III
OVERALL CLASSIFICATION ACCURACIES OF DIFFERENT SCENE CLASSIFICATION METHODS ON THE AID DATASET (%)

The best results are in bold.

Fig. 8. Overall classification accuracies of different scene classification methods with different proportions of labeled data (%). (a) UCM dataset. (b) WHU-RS19
dataset. (c) AID dataset.
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Fig. 9. Overall classification accuracies of different scene classification methods with different proportions of unlabeled data (%). (a) UCM dataset. (b) WHU-RS19
dataset. (c) AID dataset.

2) Experimental Results of the AID Dataset: In Table III, we
report the classification results of the AID dataset. Compared to
the UCM, WHU-RS19 dataset, the AID dataset contains more
categories (30 categories), so the PA is listed to compare the clas-
sification performances of different algorithms. In terms of PA,
the SSCL algorithm improves the classification accuracies of 17
categories. Moreover, the classification results of 20 categories
exceed the ResNet, and the results of 18 categories are better
than the ResNet-Center Loss. Similarly, SSCL also obtains the
best OA (90.35%) with 10% labeled data. Our method greatly
improves the classification accuracies of the square and railway
station with higher intraclass variations, as well as resort and
park with smaller interclass dissimilarity. The experimental
results of the AID dataset further show that the SSCL algorithm
can utilize the scene information contained in the unlabeled data
to correct the class centers, thereby effectively penalizing the
intraclass distance and increasing the interclass distance.

D. Analysis and Discussions

1) Effect of the Labeled Sample Ratio on Classification Ac-
curacy: Fig. 8(a), (b) and (c) shows the classification results of
different methods on the UCM, WHU-RS19, and AID datasets
with the proportion of labeled data as 5%, 10%, 20%, 30%,

and 40%. To ensure a fair comparison, we only compare with
the methods that are close to our classification results. On the
three datasets, the classification accuracies of GoogLeNet and
DCA are lower than that of other algorithms. In particular,
classification accuracies of the AID dataset are lower than 85%,
in the case of 40% labeled data. On the one hand, the AID
dataset is more difficult to classify scenes because of its multi-
source and multiresolution characteristics. On the other hand, the
performances of backbone networks for GoogLeNet and DCA
are weaker than the ResNet. For the WHU-RS19 dataset, the
classification accuracies of all proportions for GoogLeNet are
lower than the DCA algorithm. This is because the WHU-RS19
dataset contains only 950 images, which cannot meet the deeper
GoogLeNet. It further shows the dependence of ConvNets on
training data. Observing the SSCL results of three datasets in
Fig. 8, it is obvious that our method is more effective with less
annotated data. With the increase of labeled data, the classifica-
tion accuracies of all methods are gradually improved, and the
advantages of the proposed SSCL over other methods gradually
decrease. Therefore, we can draw a conclusion that when labeled
data are sufficient for classification tasks, the introduction of
unlabeled data for classification models will no longer be the
optimal choice.
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Fig. 10. 2-D scatter plots of the average pooling layer features on three datasets via t-sne. The points with different colors denote features of different categories.
(a) UCM. (b) WHU-RS19. (c) AID.

2) Effect of the Unlabeled Sample Ratio on Classification
Accuracy: To further investigate the impact of the number of
unlabeled samples on the proposed algorithm, we only select
one labeled sample from each category to construct the labeled
training set. For the UCM dataset, the number of labeled training
samples is 21. For the WHU-RS19 dataset, the number of labeled
training samples is 19. Similarly, the number of labeled training
samples in the AID dataset is 30. Besides, we randomly choose
2%, 4%, 6%, 8%, and 10% images from per category as the
unlabeled samples. In Fig. 9, we report the experimental results
of three datasets with different proportions of unlabeled data.
In order to highlight the advantages of our method over the
baseline and supervised center loss based method, we only
present the ResNet, ResNet-Center Loss, and SSCL algorithm
in Fig. 9. Among them, the ResNet and ResNet-Center Loss
only rely on the labeled data. As the number of unlabeled
data increases, their classification accuracies remain unchanged.
Since the labeled training data of each dataset contain only
one sample per category, the ResNet-Center Loss algorithm
determines class centers based on one sample per class. In-
accurate class centers make classification accuracies of the
ResNet-Center Loss algorithm on three datasets lower than the
baseline. In general, the classification accuracies of SSCL on
all datasets are progressively improved with the increase of

unlabeled data. The results indicate that in the case of less
labeled data, unlabeled data are of importance for the classi-
fication model. Unfortunately, we discover that the growth rate
of SSCL algorithm gradually decreases. It also shows that the
unlabeled data can only improve the classification accuracy of
ConvNets to a certain extent, and may not ensure its infinite
increase.

3) Visualization Results of Different Methods: To show the
experimental results of SSCL algorithm on the UCM, WHU-
RS19, and AID datasets more clearly, we extract the average
pooling layer features of three test sets from ResNet, ResNet-
Center Loss, and SSCL. The t-sne algorithm is used to reduce
the extracted high-dimensional features to 2-D features. Fig. 10
displays the scatter plots of the 2-D features. In Fig. 10(a), (b),
and (c), the left column is the visualization result of ResNet.
The middle column is the visualization result of ResNet-Center
Loss, and the right column is the visualization result of SSCL.

Comparing the feature distributions of three algorithms, we
can discover that the deep features of the same category gener-
ated by the SSCL framework are more compact and the different
categories are more separated. In the three test sets, the visual-
ization effects of UCM and AID test sets are obvious. Since the
WHU-RS19 test set contains a small number of samples, the
clustering results of different algorithms are similar. Through
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feature visualization analysis, we conclude that the discrimina-
tive power of deep features based on the SSCL algorithm can be
significantly enhanced.

IV. CONCLUSION

This article proposes a semisupervised algorithm for remote
sensing image scene classification called SSCL. In general,
SSCL integrates a cooperative dual-branch structure into Con-
vNets to learn discriminative information from unlabeled data.
To perform effective cooperation between supervised and unsu-
pervised branches, the proposed dual-branch structure adopts
class centers as guiding factors, and an improved clustering
algorithm is developed for the unsupervised branch. Based on
the problem of large intraclass distance and small interclass
distance in high-resolution remote sensing scenes, we optimize
the ConvNets under the joint supervision of SSCL and softmax
loss. In summary, our algorithm has the following two contri-
butions. 1) We construct an end-to-end SSCL framework for
remote sensing scene classification. 2) We propose an improved
clustering algorithm and design a dual-branch structure based
on it, which can fuse discriminative information of all available
remote sensing images to optimize our SSCL-based model.

To validate the effectiveness of the SSCL algorithm, we
performed experiments on the UCM, WHU-RS19, and AID
datasets. Experimental results have demonstrated the pro-
posed method improves the classification performance of high-
resolution remote sensing scenes, especially superior to super-
vised center loss based methods.

However, according to the experimental results of visualiza-
tion analysis, our method still requires to be further optimized to
increase the interclass distance. Therefore, in our future work,
we will further consider how to improve the joint loss function
to minimize confusion of different categories.
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[13] A. Avramović and V. Risojević, “Block-based semantic classification of
high-resolution multispectral aerial images,” Signal, Image Video Process.,
vol. 10, no. 1, pp. 75–84, 2016.

[14] Y. Yang and S. Newsam, “Bag-of-visual-words and spatial extensions
for land-use classification,” in Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geographic Inf. Syst., 2010, pp. 270–279.

[15] A. Bosch, A. Zisserman, and X. Muñoz, “Scene classification via PLSA,”
in Proc. Eur. Conf. Comput. Vis., 2006, pp. 517–530.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,” J.
Mach. Learn. Res., vol. 3, pp. 993–1022, 2003.

[17] M. Lienou, H. Maitre, and M. Datcu, “Semantic annotation of satellite
images using latent Dirichlet allocation,” IEEE Geosci.Remote Sens. Lett.,
vol. 7, no. 1, pp. 28–32, Jan. 2010.

[18] Q. Zhu, Y. Zhong, L. Zhang, and D. Li, “Adaptive deep sparse semantic
modeling framework for high spatial resolution image scene classifica-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 10, pp. 6180–6195,
Oct. 2018.

[19] Y. Zhong, M. Cui, Q. Zhu, and L. Zhang, “Scene classification based
on multifeature probabilistic latent semantic analysis for high spatial
resolution remote sensing images,” J. Appl. Remote Sens., vol. 9, no. 1,
2015, Art. no. 095064.

[20] Y. Zhong, Q. Zhu, and L. Zhang, “Scene classification based on the
multifeature fusion probabilistic topic model for high spatial resolution
remote sensing imagery,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 11, pp. 6207–6222, Nov. 2015.

[21] K. Nogueira, O. A. Penatti, and J. A. dos Santos, “Towards better exploiting
convolutional neural networks for remote sensing scene classification,”
Pattern Recognit., vol. 61, pp. 539–556, 2017.

[22] G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classification:
Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10, pp. 1865–
1883, Oct. 2017.

[23] Y. Liu, Y. Zhong, F. Fei, Q. Zhu, and Q. Qin, “Scene classification based
on a deep random-scale stretched convolutional neural network,” Remote
Sens., vol. 10, no. 3, 2018, Art. no. 444.

[24] W. Zhang, P. Tang, and L. Zhao, “Remote sensing image scene classi-
fication using CNN-capsnet,” Remote Sens., vol. 11, no. 5, 2019, Art.
no. 494.

[25] S. Song, H. Yu, Z. Miao, Q. Zhang, Y. Lin, and S. Wang, “Domain
adaptation for convolutional neural networks-based remote sensing scene
classification,” IEEE Geosci. Remote Sens. Lett., vol. 16, no. 8, pp. 1324–
1328, Aug. 2019.

[26] W. Teng, N. Wang, H. Shi, Y. Liu, and J. Wang, “Classifier-constrained
deep adversarial domain adaptation for cross-domain semisupervised clas-
sification in remote sensing images,” IEEE Geosci. Remote Sens. Lett.,
2019, doi: 10.1109/LGRS.2019.2931305.

[27] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014. [Online]. Available: https://arxiv.
org/abs/1409.1556

[28] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recog., 2015, pp. 1–9.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2016,
pp. 770–778.

[30] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recog., 2017, pp. 4700–4708.

https://dx.doi.org/10.1109/LGRS.2019.2960528
https://dx.doi.org/10.1109/LGRS.2019.2931305
https://arxiv.org/abs/1409.1556


ZHANG et al.: SEMISUPERVISED CENTER LOSS FOR REMOTE SENSING IMAGE SCENE CLASSIFICATION 1373

[31] O. A. Penatti, K. Nogueira, and J. A. Dos Santos, “Do deep features
generalize from everyday objects to remote sensing and aerial scenes
domains?” in Proc. IEEE Conf. Comput. Vis. Pattern Recog. Workshops,
2015, pp. 44–51.

[32] F. Hu, G.-S. Xia, J. Hu, and L. Zhang, “Transferring deep convolutional
neural networks for the scene classification of high-resolution remote
sensing imagery,” Remote Sens., vol. 7, no. 11, pp. 14680–14707, 2015.

[33] M. Castelluccio, G. Poggi, C. Sansone, and L. Verdoliva, “Land use
classification in remote sensing images by convolutional neural networks,”
2015. [Online]. Available: https://arxiv.org/abs/1508.00092

[34] B. Zhao, B. Huang, and Y. Zhong, “Transfer learning with fully pretrained
deep convolution networks for land-use classification,” IEEE Geosci.
Remote Sens. Lett., vol. 14, no. 9, pp. 1436–1440, Sep. 2017.

[35] P. Li, P. Ren, X. Zhang, Q. Wang, X. Zhu, and L. Wang, “Region-wise deep
feature representation for remote sensing images,” Remote Sens., vol. 10,
no. 6, 2018, Art. no. 871.

[36] Y. Yuan, J. Fang, X. Lu, and Y. Feng, “Remote sensing image scene clas-
sification using rearranged local features,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 3, pp. 1779–1792, Mar. 2019.

[37] Y. Liu, Y. Liu, and L. Ding, “Scene classification based on two-stage
deep feature fusion,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 2,
pp. 183–186, Feb. 2018.

[38] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature learning
approach for deep face recognition,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 499–515.

[39] J. Li, D. Lin, Y. Wang, G. Xu, and C. Ding, “Deep discriminative represen-
tation learning with attention map for scene classification,” 2019. [Online].
Available: https://arxiv.org/abs/1902.07967

[40] G.-S. Xia et al., “Aid: A benchmark data set for performance evaluation
of aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965–3981, Jul. 2017.

[41] S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR remote
sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 8, pp. 4775–4784, Aug. 2017.

Jun Zhang received the B.S. and Ph.D. degrees
from the Hebei University of Technology (HEBUT),
Tianjin, China, in 1999 and 2011, respectively.

He is currently an Associate Professor with
the School of Artificial Intelligence, HEBUT. His
research interests include machine learning and
intelligent computing.

Min Zhang received the B.S. degree in computer sci-
ence and technology from Langfang Normal Univer-
sity, Hebei, China, in 2017. She is currently working
toward the master’s degree with the School of Arti-
ficial Intelligence, Hebei University of Technology,
Tianjin, China.

Her research interests include machine learning
and intelligent computing.

Bin Pan received the B.S. and Ph.D. degrees from the
School of Astronautics, Beihang University, Beijing,
China, in 2013 and 2019, respectively.

Since 2019, he has been an Associate Professor
with the School of Statistics and Data Science, Nankai
University, Tianjin, China. His research interests in-
clude machine learning, remote sensing image pro-
cessing, and multiobjective optimization.

Zhenwei Shi (Member, IEEE) received the Ph.D.
degree in mathematics from the Dalian University of
Technology, Dalian, China, in 2005.

From 2005 to 2007, he was a Postdoctoral
Researcher with the Department of Automation,
Tsinghua University, Beijing, China. From 2013 to
2014, he was a Visiting Scholar with the Depart-
ment of Electrical Engineering and Computer Sci-
ence, Northwestern University, Evanston, IL, USA.
He is currently a Professor and the Dean of the Image
Processing Center, School of Astronautics, Beihang

University, Beijing, China. He has authored or coauthored more than 100 scien-
tific papers in related journals and proceedings, including IEEE TRANSACTIONS

ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, IEEE TRANSACTIONS

ON NEURAL NETWORKS, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE

SENSING, IEEE TRANSACTIONS ON IMAGE PROCESSING, and IEEE Conference
on Computer Vision and Pattern Recognition. His research interests include
remote sensing image processing and analysis, computer vision, pattern recog-
nition, and machine learning.

Dr. Shi received the Best Reviewer Award for his service to IEEE TRANSAC-
TIONS ON GEOSCIENCE AND REMOTE SENSING and IEEE JOURNAL OF SELECTED

TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING in 2017. He
has been an Associate Editor for the Infrared Physics and Technology since
2016.

https://arxiv.org/abs/1508.00092
https://arxiv.org/abs/1902.07967


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


