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An Individual Tree Segmentation Method Based on
Watershed Algorithm and Three-Dimensional

Spatial Distribution Analysis From
Airborne LiDAR Point Clouds

Juntao Yang , Zhizhong Kang , Sai Cheng, Zhou Yang, and Perpetual Hope Akwensi

Abstract—Accurate individual tree segmentation is an impor-
tant basis for the subsequent calculation and analysis of forestry
parameters. However, rasterized canopy height model based meth-
ods often suffer from 3-D information loss due to the interpola-
tion operation. Therefore, this article proposes an individual tree
segmentation method based on the marker-controlled watershed
algorithm and 3-D spatial distribution analysis from airborne Li-
DAR point clouds. First, based on the potential tree apices derived
from the local maxima filtering, the marker-controlled watershed
segmentation algorithm is conducted to obtain the coarse point
clusters. Then, within the principal component analysis defined
local coordinate reference framework, a multidirectional 3-D spa-
tial profile analysis is performed on each point cluster to refine
the potential tree apex positions. Finally, the refined potential
tree apex positions are used as a prior of K-means clustering
to achieve the coarse-to-fine individual tree segmentation. Com-
parative experiments were conducted on the public NEWFOR
dataset to evaluate the proposed method. Results indicate that the
proposed method is efficient and robust for segmenting individual
trees.

Index Terms—Airborne LiDAR, canopy height model (CHM),
individual tree segmentation, profile analysis, watershed algorithm.

I. INTRODUCTION

FOREST ecosystem, one of the largest and most important
natural ecosystems among all the terrestrial ecosystems,

is a natural complexity with specific structure, function, and
self-regulation capability, formed by the forest community and
its environment. Its primary characteristics are a variety of an-
imal and plant species, and complicated community structures,
where the population density and the community structures can
be in a stable state for a long time, especially in the tropical
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rainforest ecosystem. Obviously, the forest ecosystem and its
changes are of special ecological significance in maintaining
the pattern, function, and process of the natural ecosystem [1].
Furthermore, the sustainable service capability of a forest is
dependent on the efficient forest management and scientific
understanding of carbon, water, and nutrient cycling [2]. As
the basic unit of forest, the spatial structure, biophysics, and
chemical composition of individual trees are the key factors for
forest stock [3] and biomass estimation [4], species identification
[5], [6], tree growth modeling [7] etc. Therefore, the automatic
delineation of the individual trees has always been and still is
one of the most critical topics in forest resource investigation
and management.

Traditional forestry survey methods require manual field in-
vestigation over the whole forest area [8], which is time con-
suming, laborious, and difficult to obtain regional and large-
scale data. At present, remote sensing techniques provide an
effective substitute to the manual field survey. With the de-
velopment of remote sensing technology, forest remote sens-
ing has gradually developed from the early qualitative study,
such as forest classification and mapping [9], to the quantita-
tive analysis of the overall characteristics of forests [10]–[14].
Moreover, the individual tree information derived from remote
sensing data can not only effectively improve the efficiency
of forest survey but can also ensure the spatial integrity and
temporal consistency of individual tree information with high
accuracy.

Airborne laser scanning as a novel active remote sensing is a
technology that can effectively support forest survey, research,
and management. The use of LiDAR technologies in forest
inventory has made it possible for forest stands to be measured at
individual tree level [15]. LiDAR data, due to their high resolu-
tion, can be used to measure the horizontal and vertical structure
of a forest stand. Furthermore, compared to other traditional
remote sensing techniques, LiDAR has the ability to penetrate
forest canopy thus enabling us to obtain more accurate digi-
tal elevation model, digital surface model (DSM), and canopy
growth state, which in turn shows the potential and advantages
of accurate estimation of forest parameters like individual tree
height, forest floor topography, forest stand biomass, number of
trees, and circumference of tree crown.
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Although numerous individual tree segmentation methods
have been developed in recent years, it is still challenging. For
canopy height model (CHM) based methods, the CHM is gen-
erated through rasterization and interpolation techniques during
which some part of the 3-D information in the raw point clouds
often gets lost. At the same time, rasterization might smooth
the original shape of the tree crown. Moreover, the grid size
employed in the rasterization process is also an important factor,
which affects the performance of the subsequent segmenta-
tion. More recently, point cloud-based methods are increasingly
becoming popular and can directly detect the individual tree
crowns by analyzing their spatial distribution, which eliminates
the effect of information loss due to rasterization compared with
CHM-based methods. Nevertheless, it is well known that point
cloud-based method usually requires a lot of knowledge-based
rules because of the unstructured nature of discrete point clouds,
which might be not applicable.

To address these challenges, this article proposes a hybrid
method, which combines the marker-controlled watershed al-
gorithm and multidirectional 3-D spatial distribution analysis,
to achieve a coarse-to-fine individual tree segmentation from
airborne LiDAR point clouds. Furthermore, a qualitative and
quantitative analysis is carried out on the public NEWFOR
dataset [16] to evaluate the validity and robustness of the pro-
posed method. The main contributions of the proposed method
are as follows.

1) Considering the spatial distribution characteristics of mul-
tiple (overlapping) trees, a multidirectional 3-D spatial
profile analysis within the principal component analysis
(PCA) based local coordinate framework is carried out in
3-D space to refine the positions of the potential tree apices
so as to effectively improve the performance of tree apex
detection.

2) Based on the coarse segmentation derived from CHM, the
refined potential tree apex positions are used as a prior of
K-means clustering algorithm to realize the coarse-to-fine
segmentation of single trees.

The rest of this article is organized as follows. Works related
to the individual tree delineation are reviewed in Section II.
Section III describes the proposed method in detail. Section IV
presents the experimental results and analysis for evaluating the
proposed method. This article concludes with a discussion of
future research considerations in Section V.

II. RELATED WORK

To date, LiDAR data-derived individual tree delineation has
become a hot topic in forest remote sensing and numerous
individual tree segmentation approaches have been proposed,
which can be generally divided into two categories: CHM-based
methods and point cloud-based methods.

A. CHM-Based Methods

CHM-based methods mainly use current image segmenta-
tion techniques, such as template matching, region growing, or
watershed-based methods, on a rasterized CHM derived from
LiDAR point clouds using surface interpolation, to extract and

segment individual trees. Indeed, the key insight behind majority
of the CHM-based methods is that a single tree has exactly one
treetop and its tree crown exhibit a general ellipsoidal shape.
Based on this assumption, the local maxima within a certain
spacing can be considered as the position of the individual
treetop. Koch et al. [17] conducted a knowledge-based indi-
vidual tree crown detection after a local maximum filtering
from rasterized LiDAR data in deciduous and mixed temperate
forests. However, finding the local maxima largely depends
on the determination of the window size, which might result
in over-segmentation or under-segmentation. Considering the
fact that there is a relationship between the tree height and the
tree crown, Chen et al. [18] detected the treetops as markers
via local maximum filtering with variable window sizes in a
CHM and applied a marker-controlled watershed segmentation
to isolate single trees. Unlike the work presented in [18], there
are many approaches for alleviating this over-segmentation or
under-segmentation. Mongus and Žalik [19] combined the tree-
tops derived from the local maximum filter and tree trunks
for optimizing the 3-D single tree crown delineation. Parkan
and Tuia [20] modeled the uncertainty of coarse delineation
derived from marker-controlled watershed segmentation with
ensemble-based filtering for removing erroneous initial segmen-
tation. Liu et al. [21] used crown boundary refinement based on
a proposed fishing net dragging method and segment merging
based on boundary classification to individually delineate tree
crowns from airborne LiDAR data. To handle the symmetry of
the citrus tree, Ok and Ozdarici-Ok [22] presented an original
approach to detect and delineate citrus trees using unmanned
aerial vehicle (UAV) based photogrammetric DSMs, where an
orientation-based radial symmetry transform was performed
and then the individual citrus trees were delineated using ac-
tive contours. Similarly, Dong et al. [23] also developed an
automated single tree detection framework based on gradient
orientation clustering from rasterized airborne LiDAR point
clouds. Pirotti [24] adopted a template matching method to
extract a correlation map from LiDAR-derived digital CHM for
obtaining stem density, position, and height values. Zaforemska
et al. [25] investigated five existing individual tree detection
methods and drew a conclusion that the rasterized CHM-based
methods highly relied on the size of moving window used to
detect the local maxima. Unlike the previous local maxima
filtering methods, Holmgren and Lindberg [26] established a tree
crown density model to represent the correlation surface, which
served as the input of the conventional watershed segmentation
algorithm for the tree crown delineation. However, this method
requires the positions of individual trees as a prior. Marinelli et
al. [27] developed a Bayesian fusion method to detect the trees
from bitemporal LiDAR data.

B. Point Cloud-Based Method

Currently, there are many methods based on point cloud dis-
tribution recognition, including voxel-based clustering methods,
K-means clustering methods, Markov-based clustering meth-
ods, and global clustering methods. Morsdorf et al. [28] used
treetops as a prior of K-means clustering approach for single
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tree detection. Li et al. [29] segmented single tree crowns based
on the relative spacing between trees. Yao et al. [30] conducted
a sensitivity analysis of the parameters 3-D individual tree
detection methods use, to guide the selection of parameter values
in new applications. Lu et al. [31] studied the intensity and 3-D
structure of leaf-off LiDAR point clouds and then developed
an individual tree segmentation approach from tree trunks to
other parts. Generally speaking, the position of an individual
tree crown should be identical at several vertical neighboring
layers. Based on this assumption, Wang et al. [32] analyzed
projection images at different height levels, and implemented a
clustering algorithm at each level to extract single trees. Similar
to the work presented in [32], Ayrey et al. [33] also developed an
automatic slice-based method, where whole point clouds were
sliced into different layers and individual trees were delineated
via intralayer isolation and interlayer merging of points. On the
basis of the work presented in [32], Kandare et al. [34] mainly
analyzed the effects of forest structure and point cloud density
on the performance of 3-D delineation of individual tree crowns.
Ferraz et al. [35] implemented the mean shift algorithm to de-
compose the airborne LiDAR point clouds into individual trees.
Following the previous work [35], Dai et al. [36] investigated the
performance of multispectral LiDAR for delineating individual
trees using the mean shift algorithm, where both spatial and
spectral information were used to refine the segmentation. Yan
et al. [37] first carried out a voxel-based mean shift segmentation
algorithm on a normalized nonground UAV LiDAR point cloud
for 3-D single tree segmentation and then used normalized cut
segmentation for optimizing the under-segmented parts. Xiao
et al. [38] investigated the performance of mean shift algorithm
and its variants for tree segmentation from airborne LiDAR data.
Ramiya et al. [39] presented a super-voxel-based labeling frame-
work for delineating individual trees from airborne LiDAR.
Harikumar et al. [40] combined 3-D volumetric texture and 2-D
crown boundary to detect both dominant and subdominant tree
crows from high-density airborne LiDAR data.

To sum up, CHM-based methods generally formulate the
individual tree detection into a gray-scale image segmentation
problem, and numerous well-established image segmentation
techniques can be applied for achieving the superior perfor-
mance. Unavoidably, the performance of these CHM-based
methods is limited by the spatial interpolation and rasterization
processes since 3-D information can successfully provide im-
portant factors from another perspective for effective individual
tree segmentation. In comparison with the CHM-based methods,
the point cloud-based methods directly are implemented on
3-D point clouds without any information loss. Due to the
inherent characteristics of 3-D point clouds (such as being
unstructured, discrete, uneven), these point cloud-based meth-
ods generally require certain complicated knowledge-based
assumptions.

III. METHODOLOGY

It is well known that for majority of the CHM-based meth-
ods, the performance largely depends on the effectiveness and
robustness of the local maxima filter. Hence, we present an

individual tree segmentation method based on the marker-
controlled watershed algorithm and a 3-D spatial distribution
analysis from airborne LiDAR point clouds. Fig. 1 shows the
workflow of the proposed method. It consists of two parts: 2-D
CHM-based coarse segmentation and 3-D point cloud-based fine
segmentation. Referring to the previous work [18], the coarse
tree segmentation is performed on a rasterized CHM. Based
on the CHM-derived coarse segmentation, a multidirectional
3-D spatial profile analysis is carried out through the local
maximum shape curve fitting to refine the potential tree apex
positions, which serves as the initial seeds of K-means clustering
algorithm. As a result, the raw point clouds are segmented into a
set of individual trees. Key algorithms of our proposed method
are given in detail below.

A. Two-Dimensional CHM-Based Coarse Segmentation

As mentioned earlier, after transforming the 3-D point
cloud into CHM, the single tree detection based on CHM
is formulated into a gray-scale image segmentation problem,
in which many well-established image segmentation meth-
ods (e.g., region growing method, watershed algorithm, and
template matching) have been successfully applied. However,
the traditional watershed segmentation algorithm always pro-
duces over-segmentation issues due to noises. To solve the
over-segmentation issues from numerous potentials but triv-
ial regional minima, marker-controlled watershed segmenta-
tion as a variant of the classical watershed segmentation
[41] has been proposed and successfully used in single tree
detection applications. Thus, in this section, we conduct a
marker-controlled watershed segmentation [42] for 2-D CHM-
based coarse segmentation, which includes CHM generation
and coarse segmentation via a marker-controlled watershed
segmentation.

1) CHM Generation: It is well known that watershed seg-
mentation works through the analysis of topographic morphol-
ogy, which is difficult to perform directly on the original 3-D
LiDAR point cloud due to nonuniformly distributed and unstruc-
tured characteristics. Therefore, prior to the marker-controlled
watershed segmentation-based coarse segmentation, a rasterized
CHM is first required and generated. The CHM is a 2-D surface
model that expresses the height of the upper canopy surface
above the ground. Indeed, it eliminates the effect of topographic
relief on the tree canopy height, thus reflecting the height fluc-
tuation of the forest canopy, and also plays a significant role
in the inversion of forest parameters or forest biomass. In our
implementation, the elevation value of each point in the DSM
is subtracted from the corresponding ground elevation value,
and the normalized point cloud is obtained. Then, the CHM is
derived from the normalized point cloud through interpolation
techniques. Since the noises contained in the generated CHM
may affect the determination of local maxima, a fixed window
size Gaussian filter (in this article, the template size is set 5× 5,
sigma is set 0.5) is used to smooth the CHM for alleviating the
noises. As a result, the Gaussian canopy height model (GCHM)
is produced, as shown in Fig. 2.
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Fig. 1. Workflow of the proposed method.

Fig. 2. 3-D display of individual trees within a local GCHM. The GCHM is
rendered from blue to yellow according to height values.

Fig. 3. Illustration of the concept of watershed segmentation. (a) Profile of
gray-level image. (b) Catchment basins and watersheds.

2) Coarse Segmentation From a Marker-Controlled
Watershed Segmentation: After the GCHM generation, a
marker-controlled watershed segmentation is carried out for
coarse segmentation. Watershed segmentation is a powerful
image segmentation method that has its basis in mathematical
morphology [43]. It considers a gray-level image as topographic
surface, where the gray value of each pixel is interpreted as
altitude. Fig. 3 shows the concept of watershed segmentation,
and its efficient implementation may be obtained based on
immersion simulations [44]. More specifically, suppose a water
source is placed in each regional minimum and the entire
topography structure is flooded from below. When water from

two sources (i.e., regional minima) are about to meet, a dam
is constructed to prevent the merging. The flooding and dam
construction process continues until only the dams are visible
from above. Consequently, these dams, i.e., the watershed
lines, effectively segment the image into a set of regions, i.e.,
catchment basins.

It is worthy to notice that if a watershed segmentation algo-
rithm is performed using all local minima within the GCHM
image, all the contours between two minima will be present and
then an over-segmented image will occur. Apparently, there are
several possible solutions to this problem. One of them is to
start the watershed from selected points only. In this case, only
the contours dividing marked regions are detected. Therefore, a
unique marker has to be found. Unlike the watershed segmenta-
tion algorithm, the marker-controlled watershed segmentation
algorithm alleviates the over-segmentation through the input
of “markers” that correspond to the positions of objects to be
segmented. In this case, the selection of “markers” affects the
performance of the segmentation. As shown in Fig. 2, we can
summarize that single tree point clouds acquired from airborne
LiDAR usually exhibit the following characteristics: (1) the
elevation of a tree apex is higher than that of the rest of the
tree crown; (2) the maximum elevation of a single tree crown is
the top of the tree. Based on these assumptions, we performed
local maximum filtering for determining the positions of in-
dividual trees as markers in the marker-controlled watershed
algorithm. In our implementation, we define a local sliding
window with a fixed size (set 7× 7 in this article) to find the
positions of individual tree apex. In Fig. 4(a), the identified
individual tree apexes are marked in red.

Afterward, the GCHM image is reversed and further modi-
fied based on minima imposition technique [45], which makes
regional minima occur at marker pixels. Finally, the marker-
controlled watershed segmentation algorithm is performed on
the modified GCHM image for producing a set of coarsely seg-
mented individual trees. Some typical watershed segmentation
results are demonstrated in Fig. 4(b) and the tree crowns are
highlighted in GREEN polygons. Consequently, these polygons
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Fig. 4. Example of marker-controlled watershed segmentation. The GCHM
is rendered according to the values of height from blue to yellow. The identified
individual tree apexes are marked in red and the tree crowns are highlighted
in green polygons. (a) Tree apex positions derived local maximum methods.
(b) Crown delineation display.

are used as references to assign each point in the normalized
LiDAR point clouds into the corresponding point cluster for
achieving the coarse individual tree segmentation.

A. Three-Dimensional Point Cloud-Based Fine Segmentation

After the coarse segmentation, the 3-D point cloud-based
fine segmentation is carried out on each point cluster. As a
matter of fact, the sliding window size selection places a severe
constraint on the performance of the local maximum filter,
thus affecting the coarse segmentation results derived from the
marker-controlled watershed segmentation. That is, if the sliding
window is small for the local maximum detection methods,
more local maxima can be identified, but the larger crowns
will be divided into multiple vegetation. Otherwise, the number
of local maxima identified is small, and many smaller crowns
are merged into one crown. As shown in Fig. 5, the tree apex
positions obtained using the local maximum detection method
based on the fixed sliding window size are used as markers of
the marker-controlled watershed algorithm to produce the error
segmentation result. To date, some studies have also been devel-
oped in an attempt to address this issue. Empirically, the crown
width of one tree is related to its height and their relationship
is inversed for establishing a variable sliding window size to
enhance the detection performance of tree apex. Although the
local maxima detection method using the variable-size sliding
window improves the detection efficiency of individual tree apex
positions [46], its performance is largely limited by the estab-
lished empirical regression model between crown width and tree
height. To address the limitations from which the existing meth-
ods suffer, the 3-D point cloud-based fine segmentation through
the combination of a multidirectional 3-D profile analysis and
K-means clustering [28] is carried out on each point cluster after
the coarse segmentation. As shown in Fig. 6, the key insight
behind the fine segmentation is that the peaks of the shape fitting
curve from the multidirectional 3-D profiles are considered as
the potential tree apexes, hence, the calculated potential tree
apexes are used as the traditional K-means clustering algorithm
prior for iteratively producing a robust segmentation.

1) Spatial Profiles for Robustly Locating the Potential Tree
Apexes: The traditional K-means clustering algorithm is an
unsupervised algorithm. Thus, given a point set, groups of

clusters are generated based on the Euclidean distance, i.e., by
achieving the objective that allows short intracluster distances
and large intercluster distances. However, the performance of
traditional K-means clustering algorithm largely depends on the
location and number of initial clustering centers, meaning a
wrong initial allocation often leads to a suboptimal solution.
For the task of single tree segmentation, the number of seeds
for K-means clustering algorithm is directly related to those
of the individual trees within the current cluster. Thus, the
number of possible individual trees can be used as a prior to
improve the performance of the traditional K-means clustering
algorithm.

In field surveys, the location of an individual tree is correctly
measured at the bottom of its stem. Unfortunately, the point
density of airborne LiDAR point clouds usually decreases from
top to bottom, which results in the fact that the amount of tree
trunk/stem structure details is relatively less compared with the
rest of the tree crown. As a result, it is difficult for airborne
LiDAR point clouds to accurately locate the positions of in-
dividual tree stems due to the lack of understory information
[37], especially in overlapped forests. Similar to tree stems,
the tree apexes are also used as markers of individual trees,
which represents the specific number of individual trees in point
clouds to be processed. Therefore, the spatial profile analysis is
proposed for robustly locating the potential tree apexes.

Fig. 7 shows the concept of the 3-D profile analysis in a certain
direction. Fig. 7(a) shows the location of the current profile in
3-D space. Then, 3-D profile points on the current profile are
extracted from the current point cluster in a certain direction [as
shown in Fig. 7(b)] and the local maximum points are chosen
using an established local maximum histogram [as shown in
Fig. 7(c)]. Afterward, the shape curve corresponding to the local
maximum point is fitted by a cubic polynomial interpolation
method [as shown in Fig. 7(d)], and then the peak value of the
fitting curve is calculated as the potential tree apex [as shown in
Fig. 7(d)]. By doing this, the potential tree apexes on the current
profiles can be robustly located.

2) Local Coordinate Reference Establishment for
Multidirectional Spatial Profile Analysis: As mentioned earlier,
we attempt to refine the coarse individual tree segmentation
results in Section III-A through the multidirectional 3-D
spatial distribution analysis. The detailed description of the
3-D profile analysis in a certain direction is given in Section
III-B1. However, for the multidirectional 3-D profile analysis,
its performance and robustness depend on the location selection
and combination of profiles. Consequently, to investigate how
the potential tree apexes are easily on the profiles, the spatial
distributions of the point clusters are analyzed. Fig. 8 shows
fitting results of the projection contours of individual and
multiple trees. Generally, the projection contour and spatial
distribution of single tree point clouds in the horizontal plane
is approximately circular, while that of multiple tree point
clouds is approximately elliptical [36]. It is obvious that the
tree apexes of multiple trees are more likely to appear along
the major axis of the projected ellipse. That is to say, the tree
apex of multiple trees can be detected more easily if we section
the point cluster along the major axis of its projected ellipse.
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Fig. 5. Wrong examples of coarse segmentation. Individual trees are colored in different colors. (a) Ground Truth (Example. #1). (b) Coarse segmentation
(Example #1). (c) Ground Truth (Example #2). (d) Coarse segmentation (Example #2). (e) Ground Truth (Example #3). (f) Coarse segmentation (Example #3).
(g) Ground Truth (Example #4). (h) Coarse segmentation (Example #4).

Fig. 6. Key insight behind the fine segmentation of combining the multidirectional profile analysis and K-means clustering. For multidirectional profile analysis,
the red solid circles are the projected points from the extracted LiDAR points on the current profile, black solid circles are LiDAR points on the current profile,
green stars are the local maxima, and red dot lines are the fitted shape curve. For K-means clustering, different colors represent different clusters and their associated
cluster centers.

Hence, we first establish a local coordinate reference framework
before performing the multidirectional 3-D spatial distribution
analysis, which will provide guidance for the profile location
selection.

More specifically, prior to the multidirectional 3-D profile
analysis, we construct a local coordinate reference framework
for each point cluster, the x-axis of which needs to be aligned
with the major axis of the projected ellipse. Since the spatial
distribution of the point clusters is analyzed in 2-D space,
we first project the raw 3-D point clouds into the xyz plane.
Then, we perform a PCA on the 2-D projected point cluster to

establish a local coordinate reference framework for providing
the guidance of the profile selection at the subsequent procedure.
In our implementation, we construct a local coordinate reference
system at each point cluster from Section III-A2 by conducting
an eigenvalue decomposition on the 2-D covariance matrixC2d

p .
The details of establishment are as follows: The raw 3-D point
cluster is projected onto the xoy plane and the 2-D covariance
matrix C2d

p is constructed as defined in the following:

C2d
p =

1

|N |
n∑

i=1

(
p2di − p̄2d

) (
p2di − p̄2d

)T
(1)
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Fig. 7. Concept of the profile analysis. In (a), the red solid circles are the extracted LiDAR points in 3-D space and the light blue plane is the current profile. In
(b), the red solid circles are the extracted LiDAR points on the current profile. The value of each bin in (c) is the local maximum height. In (d), black solid circles
are LiDAR points on the current profile, green stars are the local maxima, and red dot lines are the fitted shape curve.

Fig. 8. Fitting results of projection contours of individual and multiple trees.
The 2-D projected points are rendered according to their heights from blue to
red. (a) Individual tree. (b) Multiple trees.

where p̄2d = 1
|N |

∑n
i=1 p

2d
i and n denotes the number of points

within the current point cluster. Following this, the 2-D co-
variance matrix C2d

p is decomposed in order to establish the
local coordinate reference framework, where the eigenvector
corresponding to the maximum eigenvalue is the x-axis, the
eigenvector corresponding to the minimum eigenvalue is the
y-axis, the z-axis is perpendicular to the xyz plane, and the
origin is the tree apex detected by the local maximum filter in
Section III-A2. Fig. 9(a) shows the established local coordinate
reference framework in 3-D space.

3) Combining Multidirectional Profile Analysis and
K-Means Clustering for Fine Segmentation: After the local
coordinate reference framework of the current point cluster is
constructed in Section III-B2, the projected 2-D point clusters
are remapped into 3-D space. That is, the fine segmentation,
which combines multidirectional profile analysis and K-means
clustering is conducted in the 3-D space. The multidirectional
3-D spatial distribution analysis starts with profile generation,
which sections the point cluster from 0◦ to 180◦ in increments

of specific direction interval into a set of profiles for further
analysis. Fig. 9 is an example of local maximum shape curve
fitting of multidirectional 3-D spatial profiles when the direction
interval is set to 60◦, which means that we will section each point
cluster in the 0◦, 60◦, and 120◦ directions in our implementation.
Fig. 9(b) shows the locations of profiles from the top view and
Fig. 9(c) and (d) shows the corresponding fitting shape curves,
respectively.

The potential tree apex position obtained from the multidi-
rectional 3-D profile analysis is then judged based on neigh-
borhood relation and a height difference rule to eliminate the
detected pseudo tree apex [47], and the refined potential tree
apex is used as the initial clustering center of K-means clustering
algorithm. Finally, the height of the current point cluster is
scaled down [48] and iterative K-means clustering is performed
to refine the 3-D segmentation for generating the individual
trees.

IV. EXPERIMENTATION AND ANALYSIS

In this section, a brief description about the experimental data
and evaluation criteria is first given. Then, we qualitatively and
quantitatively analyze the performance of the results derived
from the proposed method, respectively.

A. Experimental Data and Evaluation Criteria

To verify the effectiveness and robustness of the proposed
method, experiments are performed on the public NEWFOR
dataset for the qualitative and quantitative analysis. The pub-
lic NEWFOR dataset [16] aims to improve and promote the
application of new remote sensing technologies, such as Li-
DAR, in forest resources investigation and management so as
to better understand and improve forest management strategies.
The study area covered by the dataset includes different forest
types, forest structure, point density etc.. The data in each study
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Fig. 9. Example for local maximum shape curve fitting of multidirectional 3-D spatial profiles when the direction interval is set to 60◦. Red points in (a) are
LiDAR points. In (b)–(d), black solid circles are LiDAR points on current profile, green stars are the local maxima, and red dot lines are the fitted shape curve.
(a) 3-D display and local coordinate system. (b) 2-D top view for displaying the location of profiles. (c) 0° profile. (d) 60° profile. (e) 120° profile.

TABLE I
DETAILED INFORMATION OF SAMPLE PLOT

area include LiDAR point clouds collected by different sensors,
digital terrain model with a spatial resolution of 0.5 m× 0.5 m
or 1.0 m× 1.0 m, and field position, height and diameter at
breast height of individual trees. Table I summarizes the related
information of sample plots used in this article. Both sample
plots are single layered forests, where plot #1 is coniferous forest
and plot #2 is mixed forest. Parameters, such as stem locations,
tree heights, and information about species composition are
provided.

The performance evaluation of the proposed method is a key
issue in the whole modeling process. This article evaluates the
individual tree segmentation results from two aspects. The first is
to calculate the correlation coefficient R2 and root mean square
error (RMSE) between the field height and positions, and the
estimated results derived from LiDAR point clouds, as defined
in (2) and (3). In general, the larger the value of R2, the
better the estimation. The smaller the RMSE value, the better
the estimation. Second, after automatic matching with field data
[40], the segmentation results are quantitatively evaluated by
four evaluation criteria [extraction rate (ER), match rate (MR),
commission rate (CR), and omission rate (OR)], as defined in
(4)–(7)

R2 = 1−
∑n

i=1 (yi − ŷi)
2

∑n
i=1 (yi − ȳi)

2 (2)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n− 1
(3)

where yi denotes the field value, ŷi denotes the estimated value,
ȳi denotes the mean value, and n denotes the number of samples

ER =
Ntest

Nref
× 100% (4)

MR =
Nmatch

Nref
× 100% (5)

CR =
Ncom

Ntest
× 100% (6)

OR =
Nom

Nref
× 100% (7)

where Ntest is the number of trees from the proposed method,
Nref is the number of field trees,Nmatch is the number of the cor-
rectly matched trees,Ncom is the number of incorrectly matched
trees among the trees from the proposed method, and Nom is the
number of incorrectly matched trees among field trees.

B. Qualitative Evaluation

For qualitative evaluation, this section illustrates the visual
comparisons of segmentation results as aforementioned. Fig. 10
shows two comparison examples before and after segmentation
refinement. The results before segmentation refinement is only
from the marker-controlled watershed segmentation algorithm.
More specifically, after the 2-D contour of single tree crowns are
extracted from the rasterized CHM using the marker-controlled
watershed algorithm, each single tree polygon segment on CHM
is considered a reference. These references are used to select the
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Fig. 10. Comparisons between with and without optimization. In (a), (e), (f), and (j), different extracted individual trees are rendered using red, green, and blue.
In (b)–(d) and (g)–(i), black solid circles are LiDAR points on current profile, green stars are the local maxima corresponding the refined tree apexes, and red dot
lines are the fitted shape curve. (a) Before segmentation refinement (example #1). (b) 0° profile (example #1). (c) 60° profile (example #1). (d) 120° profile (example
#1). (e) After segmentation refinement (example #1). (f) Before segmentation refinement (example #2). (g) 0° profile (example #2). (h) 60° profile (example #2).
(i) 120° profile (example #2). (j) After segmentation refinement (example #2).

points belonging to the 2-D contour of the CHM in the normal-
ized LiDAR point clouds for achieving the coarse individual tree
segmentation. In Fig. 10(a) and (f), the tree group consisting of
individual trees with different heights was segmented together
by the marker-controlled watershed segmentation algorithm.

For each point cluster corresponding to the segmented individ-
ual tree, the local coordinate reference framework is established
through covariance matrix decomposition. Following this, the
potential tree apexes are obtained by profiling the current point
cluster in the following three directions, i.e., 0◦, 60◦, and 120◦,
which can be used as a prior of K-means clustering algorithm
to complete single tree detection. As shown in Fig. 10(b)–(d)
and (g)–(i), the multidirectional profile analysis is performed to
detect the tree apexes of each point cluster, where green stars
are the local maxima corresponding to the refined tree apexes.
Hence, it can be concluded that through the multidirectional
profile analysis of 3-D point cloud, the adjacent potential tree
apex can be effectively identified, and the accuracy of single
tree detection can be improved. As shown in Fig. 10(e) and (j),
the tree group consisting of individual trees is segmented into
multiple trees by using the K-means clustering algorithm with
a prior, where different extracted individual trees are rendered
using red, green, and blue. Fig. 11(a) and (b) show the overview
of 3-D segmentation results over two sample plots, in which
different individual trees are colored in different colors. Fig. 12
shows some of the individual trees, which suggests that the

Fig. 11. 3-D display of segmentation results. Different individual trees are
rendered using random colors. (a) Sample plot #1. (b) Sample plot #2.

proposed method can effectively extract the complete structure
of individual trees.

C. Quantitative Evaluation

1) Role of Multidirectional Profile Analysis in Segmentation
Results: The tree apex is a crucial indicator, which suggests the
positions of individual trees. Thus, the tree apexes are always
used as a prior for assisting the implementation of the marker-
controlled watershed segmentation algorithm. As mentioned in
Section III-B, the potential tree apexes remarkably affect the
segmentation results. Consequently, the multidirectional profile
analysis is presented in this article to enhance the segmentation
performance. To investigate the role of multidirectional profile
analysis in the segmentation results, the results derived from
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TABLE II
ROLE OF MULTIDIRECTIONAL PROFILE ANALYSIS IN SEGMENTATION RESULTS

The performance from the proposed method is highlighted in BOLD fonts.

Fig. 12. Three-dimensional visualization of extracted individual trees. Red
points are individual trees. (a) Example #1. (b) Example #2. (c) Example #3.
(d) Example #4. (e) Example #5. (f) Example #6. (g) Example #7.
(h) Example #8.

both the conventional marker-controlled watershed segmenta-
tion algorithm and the proposed method are compared in this
section. Table II outlines the comparison results, where the
results from the proposed method is highlighted in bold fonts.
Results demonstrated that the proposed method is superior to
the conventional marker-controlled watershed segmentation al-
gorithm, with differences of approximately 14.7% in extraction
rate and approximately 7.8% in match rate. Furthermore, the
omission rate is reduced from 40.2% to 32.5%. In summary, the
multidirectional profile analysis is efficient to optimize the de-
tection of the tree apexes for further improving the segmentation
of individual trees.

2) Effect of Profile Direction Interval on Segmentation
Results: As mentioned earlier, both multidirectional profile
analysis and K-means clustering algorithm are integrated to-
gether to robustly segment individual trees, which remark-
ably enhances the segmentation performance. Moreover, the
direction interval in multidirectional profile analysis determines
the detection performance of the proposed method to some
extent. In order to verify the effect of the profile direction
interval on segmentation results, experiments are conducted
using sample plot #1, where the direction interval is set to
30◦, 45◦, 60◦, and 90◦, respectively. Fig. 13 illustrates the
fluctuation in extraction rate, matching rate, commission rate,

Fig. 13. Effect of profile direction interval on segmentation results (Plot #1).

Fig. 14. Scatter plots of extracted tree height and reference tree height.

and omission rate of segmentation results for different pro-
file direction intervals. The experimental results indicate that,
when the profile direction interval is equal to 60◦, the match-
ing rate can be higher with a lower commission rate and
omission rate. Smaller profile direction interval results in a
larger extraction rate, and correspondingly a larger commis-
sion rate. Moreover, the profile analysis in this article is based
on the established local coordinate framework, which reduces
the possibility of tree apexes along the y-axis of the local co-
ordinate framework. Consequently, when the direction interval
of the profile equals 90◦, higher commission rate and omission
rate occur.

3) Analysis of Tree Height Estimation: To verify the correct-
ness of the estimated height derived from the proposed method,
the proposed method is used to detect the positions of individual
trees (in which the profile direction interval is set to 60◦). This
is also one way of demonstrating the accuracy of the estimated
height. The information of the tree top height is obtained and
compared with the field tree height. The comparison results of
the field tree heights and the estimated ones are shown in Fig. 14.
The x-axis represents the field value of tree heights and the
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TABLE III
COMPARISONS AMONG DIFFERENT METHODS

The performance of the proposed method is highlighted in BOLD fonts and the best performance is highlighted in RED fonts.

y-axis represents the ones estimated from the proposed method.
Although there are some errors between the field value and the
ones estimated, the field value and the estimated value of tree
heights satisfy a good linear relationship. The correlation co-
efficient R2 = 0.91 and root mean square error RMSE = 1.66
between the field value and the estimated value show that the
proposed method can better estimate the individual tree heights.

4) Comparison With Other Existing Methods: In order to
further evaluate the effectiveness of the proposed method, it is
quantitatively compared with other existing methods, includ-
ing local maxima + multiscale CHM [16], segmentation +
clustering [16], local maxima + filtering [49], local maxima
+ region growing [50], mean shift segmentation [38], and
horizon slice + vertical merging [34]. The experimental re-
sults derived from these methods (i.e., local maxima + multi-
scale CHM [16], segmentation + clustering [16], local maxima
+ filtering [49], local maxima + region growing [50]) were
available in literature [16] for objective comparisons, mean
shift segmentation [38], and horizon slice + vertical merging
[34] are state-of-art methods. Mean shift segmentation method
considers the tree group as a multimodal distribution, which
assumes the highest point density is usually the top of the tree.
Horizon slice + vertical merging method performs K-means
clustering on the horizon slices and then merges the clusters
in the vertical direction. Table III summarizes the differences
in extraction rate, match rate, commission rate, omission rate,
vertical RMSE, and horizontal RMSE of tree heights among the
different methods. The experimental results show that the match
rate of the proposed method is obviously better than that of other
existing methods, with an average difference of more than 15%.
Compared with other existing methods, the proposed method
achieves a lower omission rate, which is more than 6.3% lower
on average. Although the proposed method presents a relatively
higher commission rate than both local maxima + filtering
and local maxima + region growing, it has a higher extraction
rate and a lower commission rate. Additionally, the proposed
method is superior to mean shift segmentation, with difference
in match rate and omission rate. When it comes to the vertical
RMSE of tree heights, the proposed method is superior to local
maxima + region growing, local maxima + multiscale CHM,
segmentation+ clustering, and horizon slice+ vertical merging.
Although the proposed method is slightly higher than local
maxima + filtering in the vertical RMSE, the proposed method

has higher extraction rate, match rate, and lower omission rate
than local maxima + filtering. In terms of the horizontal RMSE,
the proposed method has the same precision as local maxima +
filtering, which is significantly lower than both local maxima +
region growing and segmentation + clustering. Although our
horizontal RMSE is higher than local maxima + multiscale
CHM, the proposed method has obvious advantages in match
rate, commission rate, and omission rate.

V. CONCLUSION

Due to the increasing demand of airborne LiDAR for forest
planning and management, single-tree detection based on air-
borne LiDAR has become a hot topic. To address the problem
where the performance of CHM-based methods is limited by
the search window size, this article develops an individual tree
segmentation method based on the marker-controlled watershed
algorithm and a 3-D spatial distribution recognition from air-
borne LiDAR point clouds. First, based on the coarse segmen-
tation derived from CHM, the idea of point cloud distribution
recognition in 3-D space is introduced for carrying out the mul-
tidirectional spatial distribution analysis to refine the potential
tree apex positions, which effectively improves the efficiency
of tree apex detection. Second, taking the spatial distribution
pattern of the tree group into consideration, the PCA-based
method is used to establish the local coordinate system, which
guides the location selection of 3-D spatial profiles. Finally,
the refined potential tree apex positions are used as a prior of
K-means clustering algorithm to realize the 3-D coarse-to-fine
segmentation of single trees. Although the proposed method
can improve the detection accuracy of tree apex positions by
analyzing the horizontal profile structure in 3-D space, it fails
on multilayer forest structure. In the future, the vertical profile
structure analysis will be one of our focus. Meanwhile, on the
basis of single tree detection, our next step will be to analyze
and extract the 3-D structural parameters of single tree crowns,
and to study the actual crown structure and its dynamic changes
at stand level.
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