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Adaptive Clutter Suppression and Detection
Algorithm for Radar Maneuvering Target With
High-Order Motions Via Sparse Fractional
Ambiguity Function

Xiaolong Chen *”, Xiaohan Yu

Abstract—Radar maneuvering target detection in clutter back-
ground should not only consider the complex characteristics of
the target to accumulate its energy as much as possible, but also
suppress clutter to improve the signal-to-clutter ratio (SCR). The
traditional fractional domain transform-based detection method
requires parameters match searching, which costs heavy compu-
tational burden in case of a large amount of data. Sparse FT and
sparse fractional FT can obtain high-resolution sparse represen-
tation of the target, but the signal sparsity needs to be known
before, and the sparse representation performance is poor in clutter
background. In this article, adaptive filtering method is introduced
into the sparse fractional ambiguity function (SFRAF) method,
and a SFRAF domain adaptive clutter suppression and highly ma-
neuvering target detection algorithm is proposed, which is named
as adaptive SFRAF (ASFRAF). The ASFRAF domain iterative
filtering operation can suppress the clutter while retaining the
signal energy as much as possible. Simulation results and measured
radar data processing results show that the proposed algorithm
can overcome the limitation of the SFRAF on the sparsity preset
value and achieve high efficiency and robust detection of high-order
phase maneuvering targets under a low SCR environment.

Index Terms—Adaptive sparse fractional ambiguity function
(ASFRAF), clutter suppression, least mean square (LMS) adaptive
filter, radar maneuvering target detection, sparse representation.

1. INTRODUCTION

HE rapid and effective detection of low observable ma-
T neuvering targets is a worldwide difficult problem in the
field of radar technology [1]-[4]. Influenced by the complex
environment (noise or clutter) and the complex motion charac-
teristics of the target (acceleration, jerk, high-order motion, or
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micromotion), the signal-to-cutter ratio (SCR) of the maneuver-
ing target is low, and the echo Doppler exhibits time-varying
characteristics. The acceleration caused by the speed change of
the target, and the fluctuation of the marine target under high sea
conditions would easily lead to high-order phase of the signal,
which increases the difficulty of radar detection [5], [6]. With the
development of novel radar systems such as phased array radar
(PAR), ubiquitous radar [7], and multiple-input multiple-output
(MIMO) radar [8], [9], the observation time of the target is
greatly extended, which is beneficial to increase the integration
gain and improve the refinement processing ability of maneu-
vering target in the clutter background [10]-[12]. However, this
staring observation or the ubiquitous observation mode would
increase the number of echo data, and the high system sampling
frequency would further increase the amount of data, which puts
higher requirements on the algorithm’s calculation efficiency
and system real-time performance [13].

In recent years, the development of sparse signal processing
technology has provided new research ideas for radar target
detection [14]-[17]. Since the moving target’s signal has a
certain sparse characteristic in a certain domain, the moving
target detection problem can be converted into a sparse so-
lution and the detection in the sparse domain. Then, high-
resolution representation of the signal can be achieved in its
corresponding sparse domain. At present, the moving target
detection methods based on sparse representation can be divided
into three kinds. First, from the perspective of mixed signal
sparse decomposition and sparse domain feature differences,
the micromotion target detection and feature extraction method
based on morphological component analysis is proposed for
different source signals [16]. Different dictionaries are used
for sparse representation, and clutter and moving targets can
be distinguished. The second and third kinds are the calcu-
lations from the perspective of sparse optimization [17] and
down sampling fast FT (FFT) [18]-[22], respectively. By con-
structing sparse time-frequency transform domain, the high-
resolution and low-complexity time-frequency representation
of time-varying signals can be realized in the time-sparse do-
main. Both of the methods combine time-frequency distribution-
based moving target detection and the advantage of sparse
representation.
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Among the three kinds of methods, the first kind requires
strict and precise moving target model, and the selection of the
dictionary is the key point. The second kind has good adap-
tive performance, but the sparse optimization solving process
is more complicated. The third methods combine the advan-
tages of FFT and sparse representation, which is suitable for
long-term sequence signal analysis. The most representative
methods are the sparse FT (SFT) proposed by Massanyeh
et al. of Massachusetts Institute of Technology [18], [19] and
the sparse FRFT (SFRFT) proposed by Ran et al. [23]. For a
spectrum sparse N-point large-size input signal, the SFT can
reduce the computational complexity to O(KlogaN), where K
is the sparsity of the signal, i.e., the number of large-value
coefficients in the frequency domain. The SFT method has
been successfully applied in spectrum sensing, image detection,
medical imaging, etc., however, it is based on FT and, therefore,
can only deal with stationary signals, which is not suitable for
radar maneuvering target detection [24], [25]. SFRFT has a good
processing performance on linear frequency modulation signal,
and can improve the analysis efficiency of sparse signals under
large data conditions. However, due to the model mismatch with
real signals, it is unsuitable for high maneuvering target signals
with cubic phase information. Moreover, the reconstruction and
detection performance of SFT and SFRFT are designed for noise
background, the performances will be significantly degraded
in case of strong clutter backgrounds. Therefore, the detection
performance is still difficult to meet the actual requirements.

The radar target detection research group from Naval Aviation
University proposed several SFT-based moving target detection
methods, i.e., adaptive dual-threshold sparse Fourier transform
(ADT-SFT) [26] and robust SFRFT (RSFRFT) [27], which
are more suitable for moving target detection in the clutter
background. For highly maneuvering target detection, sparse
fractional ambiguity function (SFRAF) [28] can not only achieve
good aggregation of high-order phase signals by FRAF, but also
achieve effective improvement of computational efficiency, and
can realize rapid extraction of maneuvering targets under large
data conditions. However, SFRAF has the following two defects
when it is applied to the detection of maneuvering targets in the
clutter background. On the one hand, SFRAF needs to preset
the sparsity K of the signal, but in practical applications, the
sparsity of the signal is often unknown or it may change (for
example, the number of maneuvering targets or spectrum peaks),
which reduces the robustness of the algorithm. On the other
hand, SFRAF itself has no clutter suppression capability, and in
the case of low SCR, the signal reconstruction reliability is poor.

Least mean square (LMS) adaptive filter [29]-[31] uses re-
cursive algorithm for internal operations, which can overcome
the limitation of prior information. It has the advantages of good
robustness, simple structure, and small computational complex-
ity. It is a powerful tool for signal filtering. However, the time-
domain LMS adaptive algorithm is sensitive to the dispersion
of the eigenvalues of the signal autocorrelation matrix, while
the dispersion of the eigenvalues of the nonstationary signal
autocorrelation matrix is large, and it would lead to the degrada-
tion of the convergence performance of the algorithm and poor
filtering performance. Later, the input signal can be orthogonally

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

®\ Y(m)

Filter W(m)

[0}
ENE o

(complex value)

Adaptive
procedure

Fig. 1. Block diagram of transform domain adaptive filtering method.

transformed to filter in the transform domain to reduce the dis-
persion of the eigenvalues of the autocorrelation matrix, thereby
improving the performance of the filtering algorithm. Transform
domain adaptive filtering method, e.g., cosine transform domain
LMS algorithm [32], wavelet transform domain LMS algorithm
[33], [34], FRFT domain LMS algorithm [35], can improve
the convergence of nonstationary signals, reduce steady-state
error, and have good application prospects in spectrum line
enhancement and clutter cancellation.

In this article, the adaptive filtering method is introduced into
the SFRAF processing, and an adaptive clutter suppression and
radar maneuvering target detection algorithm based on SFRAF
is proposed, which is named as an adaptive SFRAF (ASFRAF).
It not only takes the advantage of SFRAF in terms of high
resolution and computational efficiency, but also realizes highly
maneuvering target detection in a clutter background. First,
the principle of transform domain adaptive filtering algorithm
is introduced in Section II. Then, the SFRAF domain adap-
tive filtering algorithm is analyzed in detail in Section III. In
Section IV, the adaptive clutter suppression and maneuvering
target detection procedures of ASFRAF are given and the con-
vergence performance of different parameters is studied. The
simulations and the real radar experimental results show that the
proposed method can suppress the clutter better while retaining
the signal energy to the greatest extent, and still has good
detection performance for the maneuvering target in the case
of low SCR. The detection performance and complexity of the
proposed algorithm are analyzed as well in Section V. Section VI
concludes the article and presents its future research directions.

II. PRINCIPLE OF TRANSFORM DOMAIN ADAPTIVE
FILTERING ALGORITHM

Fig. 1 shows the block diagram of the transform domain
adaptive filtering method. In the figure, xX(n) is an N-dimensional
input complex signal vector, e(n) is an N-dimensional expected
signal vector, F(-) represents transformation, and X(m) and
E(m) are the transforms of x(n) and e(n), respectively. W(m) is
the filter weight coefficient vector, F'~1(-) represents the inverse
transform, and y(n) is the output signal vector. The arrow in
the figure stands for filtering symbol. The transform domain
adaptive filtering mainly consists of four steps.

1) Perform F'(-) transformation on the input signal x(n) and
expected signal e(n) to get the transform results X () and
E(m), respectively.

2) Obtain the transform domain output signal Y(m2) by using
the filter weight coefficient vector W(m), namely

Y (m) = Xgia(m)W(m) €))
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Fig. 2. Flowchart of the SFRAF.

where Xgj, () represents a N x N-dimensional diagonal
matrix corresponding to X(m).
3) Calculate the error vector D(m) as following:

D(m) =E(m) —Y(m). 2)

4) Adaptive procedure. Update the weight coefficient vector
of the filter automatically according to the recursive for-
mula to achieve adaptive iteration until the steady state is
reached

W(m +1) = W(m) + pXa(m)D(m)  (3)

where 1 is the adaptive step size.

III. SFRAF DOMAIN ADAPTIVE FILTERING ALGORITHM
A. Principle of SFRAF

The detailed procedure of the SFRAF is shown in Fig. 2. For a
maneuvering target in clutter background modeled as quadratic
frequency modulated (QFM) signal [6], the discrete signal can
be expressed as

x(nAt) = Apexp [j2ﬂ' (ao + a;nAt + asn’At?
+ azn’At®)] + c(nAt), ne[l,N] @)

where Ay is the signal amplitude, a;(z = 0, 1,2, 3) is the poly-
nomial coefficients, i.e., ag = 2Ro/\, a1 = 2vo/A, as = as/r,
as = gs/3x, Ry is the initial distance, vy, as, gs represent initial
velocity, acceleration, and jerk respectively, A is the wavelength,
At = 1/ fis the sampling interval, N = T, - f; is the sampling
number, the observation time 7},, and the sampling frequency
fs» c(nAt) is the clutter.

The SFRAF R, () with transform angle « is defined as
follows:

Ra(m,7)=Cpn | S |Cn | Rs (n, k) (5)
————
IACF

where m € [1, N] is the discrete variable in SFRAF domain,
C() and S() represent the chirp and SFT operators, respectively.
Rs() is the TACF calculation

Rs(n, 1) = x(nAt + k/2)x* (nAt — k/2)
= Agexp [j27r/<; (a1 + 2aonAt + 3asn® At?
+ a3/£2/4)] + R.(n, k) + Rse(n, k) (6)

where £ is a time delay, R.(n, ) and R,.(n, ) are the IACFs
of autoterm of clutter and cross terms between clutter and target.

After the IACF, the remaining procedure of SFRAF is the
same as the SFRFT [23], which is composed of five parts, i.e.,

chirpl multiplication, spectrum permutation, window function
filtering, subsampled-FFT, reconstruction, and chirp2 multipli-
cation. Normally, the time delay is a constant value [6]. Suppos-
ing the spectrum after reconstruction is F(m), the final result of
SFRAF is R (m).

B. Principle of SFRAF Adaptive Filtering (ASFRAF)

SFRAF has good energy aggregation for QFM signals. In a
particular SFRAF domain, the target signal can be regarded as a
narrowband signal, and the clutter is a wideband signal. There-
fore, by setting a suitable delay 7 for the signal x(n), the clutter is
decorrelated, which is helpful for clutter suppression and target
enhancement. For radar, the input signal x(n) represents the
radar returns after demodulation and pulse compression, which
is complex composed with I and Q two channels.

The delayed signal is used as the expected signal e(n), and
the input complex vector x(n) and e(n) are subjected to SFRAF
operation, respectively, with the processing results X, (m) are
Ep(m), where p is the transform order. Then, the output of the
filter is

Y, (m) = Xaia(m)W (m) (7N

where Xgj,(m) represents a diagonal N x N matrix correspond-
ing to X,,(m), and the corresponding error vector is

Dy(m) = Ey(m) — Y,(m). (8)

The iterative formula (3) has a strong memory effect on the
initial frequency of the signal. Under strong clutter interference,
the tracking performance of the filter is susceptible to residual
clutter. By setting the time-varying weight coefficient vector
and performing power normalization on the adaptive step size,
the tracking performance of the filter in the clutter environment
can be improved as well as the convergence speed of the filter
[35]. At this time, the update formula of the weight coefficient
vector is

W(m +1) = H(z)W (m) + pneus X, (m)Dp(m)  (9)

where H(z) is the leak response function. When H(z) = I (I
is a unit matrix), the above equation can be converted into

W (m + 1) = xW(m) + pnpvs X, (m)Dy(m)  (10)

where y is the leakage factor and pnpags is the normalized

adaptive step size expressed as follows:

1
§+ X3 (m)Xp(m)

(11

HUNLMS =

where £ is a positive constant value.
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TABLE I
IMPLEMENTATION PSEUDOCODE OF THE ASFRAF ALGORITHM

Input x(n)

Output Y,(m)

Initial condition W(0)=0

1. Data selection: x(n) «— x(n)

2. Optimal transform order calculation: pop; < p

3. for /= 1: L (L is the iteration times)

4. Time delay: e(n) < x(n),

5. SFRAF calculation: X,(m) < x(n), E,(m) < e(n)
6.  Filtering: Y, (m) — Xaia(m)

7.  Estimation error: D,(m) « Y,(m)

8. Weight vector coefficient update: W(m+1) < D,(m)
9. end for

10. return Y ,(m)

The mean square error (MSE) of the filter can be defined as
the mean square value of the error vector, namely

E [D}f (m)Dy(m)]
N

where E[ ] represents the expectation. According to [28], if
the adaptive process of the algorithm converges, the condition
should be

o(m) =

12)

O<pu<l4+yx. (13)

C. Algorithm Flowchart

Table I shows the implementation pseudocode of the ASFRAF
algorithm.

IV. DETECTION OF MANEUVERING TARGET VIA ASFRAF

The detailed adaptive clutter suppression and maneuvering
target detection process based on ASFRAF are shown in Fig. 3,
which is composed of four main procedures.

1) Perform SFRAF processing on the input radar echo signal

x(n), and quickly determine the optimal transform order
Popt, by hierarchical iterative kurtosis search.

The traditional peak search method only uses the energy con-
centration of the QFM signal in the FRAF domain to suppress the
clutter. Under the low SCR condition, the detection performance
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in ASFRAF domain

Clutter suppression and maneuvering target detection method based on ASFRAF.

will be seriously degraded, and when a higher parameter esti-
mation accuracy is required, a small search step size is needed,
which would increase the calculation burden greatly. It is found
in [6] that when the QFM signal matches the rotation angle,
its signal component will appear as a super-Gaussian signal in
the fractional domain, and when the signal does not match the
rotation angle, it will still appear as a QFM signal. Therefore,
the kurtosis curve of the echo signal in the FRAF domain will
have a peak point at the best transform order p,;. The kurtosis
of the input vector x(n) is defined as [29]

L BIXG, (m)]
Ko (i) = = — 2 14

)= R ) “
where X, (m) is the p;-order SFRAF of x(n).

In order to reduce the amount of computation, a hierarchical
iterative kurtosis search can be used to determine the optimal
transform order. First, the search range of the transform order p
is initially determined according to the radar parameters and the
target motion state. Assuming that the initial search interval of
p is [a1, b1], the search step size / takes an order of magnitude
lower than the length of the search interval. For example, Ay =
by —a; = 0.3 = 3 x 1071, the initial search step size [, = 102,
Assume that the maximum kurtosis value obtained after the first
search corresponds to the order of p;, taking p; as the initial
value, and perform the hierarchical iteration according to the
following formula:

aj+1 = pj =
bj+1 =p;+ lj
lj+1 = Ollj

5)

where [aj41, bj11] and [; 1 are the search interval and search
step size for the j + Ith search, respectively, p; is the best
transform order for the jth search. p; will approach the required
accuracy in the form of an exponential power of 0.1.

Carry out the iteration calculation sequentially until [; < ¢,
where ¢ is the estimation accuracy for the parameters. The
hierarchical iterative kurtosis search can improve the compu-
tational efficiency of the algorithm, and the higher the accuracy
of the required parameter estimation, the more obvious the
improvement of the computational efficiency.

2) The x(n) delay 7 is obtained to obtain the desired signal

e(n).
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TABLE II
SIMULATION PARAMETERS
Wavelength ~ Sampling number Sampling
P t
arameters A (m) N Sea state frequency f; (Hz)
Value 0.033 8192 3 5000
Motion |pitia] velocity ~ Acceleration Jerk
parameters| vy (m/s) as (m/s?) g, (m/s%)
Value 1.667 8.333 6.667

3) The ASFRAF domain adaptive operation is performed
according to the algorithm description in Table I. When
the error of the filter reaches steady state, the output result
is Y, (m).

4) Compare the ASFRAF amplitude of the output signal as
the detection statistic with the threshold, and output the
final detection result

Hy
1Y (m)]| ? n
Ho

(16)

where 7 is detection threshold, which is determined by Prg,.
If the detection statistic is lower than the detection threshold,
it indicates that the rangebin has no maneuvering target. If
the detection statistic is higher than the detection threshold, it
indicates that the rangebin has the maneuvering target.

V. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, real radar data collected by the council for
scientific and industrial research (CSIR) [36] are used to ver-
ify the performance of the proposed algorithm in sea clutter
background. On the one hand, in order to explain the detail
performance, pure sea clutter and simulated signals of ma-
neuvering target are generated; on the other hand, real data
of maneuvering target are used for the detection in complex
time-varying environment. Moreover, the detection performance
is compared with some traditional coherent integration methods,
e.g., MTD, FRFT, and FRAF, as well as some sparse represen-
tation methods, e.g., SFT, SFRFT, SFRAF, and robust SFRFT
(SFRFT). The computational time is calculated as well.

A. Radar Data Analysis

The proposed algorithm is verified by the TFC17-006 data in
the CSIR database. The radar and experimental parameters of
the data are shown in Table II, and the time distance analysis
and time-frequency analysis of the data are shown in Fig. 4. As
can be seen from the figure, the 30th distance unit is a pure sea
clutter rangebin, which is selected as the background. Supposing
there is a maneuvering target with a center frequency a; =
100 Hz, a modulation frequency as = 500 Hz/s, a secondary
frequency a3 = 400 Hz/s?, the amplitude obeys the Rayleigh
distribution, the simulation satisfies the sampling theorem, and
the radar operating frequency is 9 GHz. The specific motion
parameters are shown in Table II.
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Fig. 5 shows the FRAF result of the generated signal when
SCR = -5 dB. As can be seen from Fig. 5(a), FRAF has good
energy concentration on the QFM signal, and the maneuvering
target appears as a peak point in the FRAF domain. However,
some components of sea clutter are also accumulated in the
FRAF domain, which makes the target submerged in the clutter,
causing great difficulties in detection. In addition, the SFT-based
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SFRAF has no clutter suppression capability, and the detection
performance is seriously degraded under strong clutter interfer-
ence, which is shown in Fig. 5(b). Therefore, it is necessary to
improve the clutter suppression ability of SFRAF.

Assuming the parameter estimation accuracy € = 107, the
initial search interval of the transform order p is [a1, b1] = [1,
1.2], then the initial search step size /; = 1072. The optimal trans-
form order is obtained by hierarchical iterative kurtosis search
as popt = 1.0066. The number of times that the hierarchical
iterative kurtosis search and the traditional peak search are M =
60 and M; = 2000, respectively. Therefore, the hierarchical
iterative kurtosis search can greatly improve the computational
efficiency.

B. Parameters Selection

The problem of maneuvering target detection in clutter back-
ground can be regarded as the detection problem of narrowband
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signals in wideband signals. The correlation radius of the wide-
band signal should be greater than the correlation radius of the
narrowband signal. Using this property, when the selected time
delay 7 is longer than the correlation time of the target’s signal
and less than the correlation time of the clutter signal, the SFRAF
domain adaptive algorithm can be used for the decorrelation of
clutter. Then, the clutter suppression and target enhancement can
be achieved. The correlation of the signal in the SFRAF domain
can be measured by the autocorrelation function (ACF), which
is defined as [35]

SN Xp(4) X (i 4 m)
Sy X (1) X (4)

where m is the number of sampling points in the interval. The
ACEF represents the correlation time of m adjacent samples.

ACF,, =

a7
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Fig. 6 shows the ACF curves of the sea clutter and the target
in the FRAF domain. It can be found that the correlation radius
of the sea clutter in the FRAF domain is about 20 sampling
points, and according to f; = 5000 Hz, the time delay is about
4 ms; while the correlation radius of the maneuvering target
in the FRAF domain is only seven sampling points, and the
corresponding time delay is 1.4 ms. Therefore, the signal of
maneuvering target in the FRAF domain has a shorter correlation
time than that of the sea clutter. The time delay of the SFRAF
domain adaptive line enhancer should be in the range of 1.4 ms
<7 <4ms.

In practical applications, in order to ensure the stability of the
filter, the value of the leakage factor x is generally 0.95 < x < 1
[37]. In this section, it is set to x = 0.97, and the range of the
adaptive step sizeis 0 < p1 < 1.97 obtained by (13). Taking 7 =2
ms, £ ~ 0, and the sparsity K = 8, the effects of adaptive step size
and transform order on the convergence performance of SFRAF
domain adaptive filter are studied. Fig. 7 shows the relationships
between different adaptive step sizes and transform orders as
well as MSE in case of SCR = 3 dB. The x-axis is the number of
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iterations of the filter, and the y-axis is the average MSE under
50 independent simulations, which is also normalized. Fig. 7(a)
shows the relationship between different adaptive step sizes and
MSE when p = 1.0066. The step values are pqy = 1.9, ue = 1.5,
and p3 = 1.1. As can be seen from the figure, the larger the step
size, the smaller the MSE of the filter, and the faster speed of the
convergence, the more stable the algorithm. Fig. 7(b) shows the
relationship between different transform orders and MSE, with
the step size ;1 = 1.9. It can be found that the MSE of the filter can
converge to the minimum value only when p = p,,¢. However,
when p takes other values, the convergence performance is worse
because the transform angle does not match the target signal.

C. Detection Results

Fig. 8 shows the detection results of FFT, FRFT, SFRFT,
FRAF, SFRAF, and ASFRAF of CSIR data with SCR = -5 dB.
Among them, FRFT and FRAF use the traditional peak search,
the sparsity setting of the SFRFT and SFRAF algorithms is K =
7, the number of baskets is B = 256, the parameters of ASFRAF
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are 7 = 2 ms, x = 0.97, and px = 1.9. Several results can be
obtained:

1) Due to the obvious maneuverability of the target, it is
difficult to find the target in the frequency domain.

2) The energy aggregation results of FRFT and SFRFT are
better than the FFT, but the target cannot be effectively
detected due to the transform model mismatched with the
real signal.

3) FRAF and SFRAF can both accumulate the target’s energy
and detect the target better. Moreover, the computational
complexity analysis in [28] shows that the SFRAF algo-
rithm can greatly improve the computational efficiency.
However, since the preset sparsity value of SFRAF may
be inconsistent with the number of strong spectrum points
of target, sea clutter will also be detected resulting in
false alarms [see Fig. 8(e)], which will seriously affect
the detection performance.

4) For the proposed ASFRAF algorithm, the sea clutter is
suppressed greatly and at the same target’s energy is re-
mained. And there are almost no false alarms (sea clutter)
remaining in the detection result [see Fig. 8(f)]. Although
the preset sparsity value is inconsistent with the exact
number, the detection result is less disturbed by the clutter,
which shows the robustness of the algorithm. Therefore,
the proposed ASFRAF domain adaptive detection method
can effectively improve the maneuvering target detection
performance in case of strong clutter environment.

The influence of different values of the sparsity K on the detec-
tion result of the ASFRAF algorithm is further studied. Fig. 9(a)
and (b) shows the SFRAF and ASFRAF detection results with
K = 10, and Fig. 9(c) and (b) correspond to the results for K =
15. Comparing Fig. 8(e)—(f) with Fig. 9, we can find that: 1)
Although the value of sparsity is inconsistent with the real value,
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TABLE III
RESULTS COMPARISON OF DIFFERENT METHODS

Target Sea clutter . Peak Time '(s)
peak peak difference

FFT 1 0.9541 0.0459 0.0469
FRFT 1 0.6318 0.3682 1.8209
SFRFT (K=7) 1 0.6318 0.3682 0.0415
FRAF 1 0.6776 0.3224 2.3547
SFRAF (K=7) 1 0.6538 0.3462 0.0664
ASFRAF (K=7) 1 0.1626 0.8374 0.9389
SFRAF (K=10) 1 0.6754 0.3246 0.0792
ASFRAF (K=10) 1 0.1763 0.8237 1.1578
SFRAF (K=15) 1 0.6776 0.3224 0.0904
ASFRAF (K=15) 1 0.1658 0.8342 1.5303

*Computer configuration: Intel Core i7-4790 3.6 GHz CPU; 16G RAM.

the clutter can be well suppressed in the ASFRAF domain, which
indicates that the ASFRAF is less influenced by clutter. 2) Under
the condition of different K values, although the number and
amplitude of sea clutter in the ASFRAF domain are slightly
different, the SCR as well as the clutter suppression capability
are significantly improved compared with SFRAF. Therefore,
we can draw the conclusion that the ASFRAF domain detection
method can overcome the influence of the unknown sparsity
value and enhance the robustness of the SFRAF algorithm.
Table III further quantitatively compares the detection results
of the different methods in Figs. 8 and 9, and gives the specific
target and sea clutter peak differences as well as the calculation
time. The target’s peak is normalized to 1 for better comparison.
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Fig. 13.  SCR versus P, curves of different detection methods.

It can be seen from the table that after the ASFRAF domain
processing, the peak difference between the target and the sea
clutter is significantly increased, and the sea clutter is greatly
suppressed. Taking the sparsity K = 7 as an example, the
peak difference increases from 0.0495 of FFT, 0.3682 of FRFT,
0.3224 of FRAF, 0.3682 of SFRFT, 0.3462 of SFRAF to 0.8374
of ASFRAF. Due to the iteration of the adaptive filter, calcu-
lation time of the proposed method is a more time-consuming
compared with SFRAF. However, its computational efficiency
is still at least 50% higher than that of the FRAF method. This is
due to the SFT and hierarchical iterative kurtosis search method.
It should be noted that the calculation time given here is the
average time calculated by MATLAB software. If optimized by
the program, the proposed algorithm will be more obvious than
the FRAF in terms of computational efficiency.

The data of the maneuvering target rangebin are selected
for the demonstration of detection performance of ASFRAF
domain algorithm for real measured data. Fig. 10 shows the
time-frequency analysis of the 21#~25# rangebins. The data
segments with the starting time 7y = 26 s, the number of sampling
points N = 8192, and the observation time 7,, = 1.6384 s are
selected, which are processed by FFT, SFT, FRFT, SFRFT, RS-
FRFT, FRAF, SFRAF, and ASFRAF algorithms, respectively.
For the SFT, SFRFT, and SFRAF algorithms, the preset value of
the sparsity is K= 10, and for ASFRAF, 7 =2 ms, x =0.97, u =
1.9. It can be found from the figure that the marine target Doppler
exhibits time-varying characteristic and high-order motion.

Fig. 11 shows a comparison of the 2-D detection results
(rangebin versus Doppler) using different methods. It can be
found:

1) The FRFT-based method [see Fig. 11(b), (e), (g)] has better
energy aggregation of the target signal than the FT-based
method [see Fig. 11(a), (d)].

2) Since there is no clutter suppression capability, there are
many clutter false alarm points in the detection results of
the SFT algorithm and SFRFT algorithm, and there are a
large number of missing points of the target.

3) The RSFRFT algorithm can detect the target well, and
there is less clutter false alarms in the rangebin versus
Doppler figure.
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4) The FRAF-based method [see Fig. 11(c), (f)] has better
energy aggregation ability for maneuvering targets than
the FRFT-based method, but there are still clutter residuals
of SFRAF. Using the ASFRAF domain adaptive filtering,
the sea clutter is better suppressed.

In order to more clearly compare the detection results of differ-
ent methods, Fig. 12 shows the detection parameter estimation
results of the 25th rangebin of TFC17-006 data. In this rangebin,
the target spectrum is extremely weak and is subjected to strong
clutter interference, making the detection more difficult. It can
be seen from the figure that neither the SFT nor the SFRFT
algorithm can detect the target. In the SFRAF detection result,
the target is influenced by strong clutter interference, which
leads to a serious decline in detection performance. It should be
noted that due to the characteristics of the adaptive filter itself,
the ASFRAF domain algorithm cannot completely eliminate
the clutter, but it can suppress the sea clutter to the greatest
extent while preserving the target’s energy, thereby improving
the target detection performance in strong clutter backgrounds.

D. Detection Performance Analysis

The detection performance of the proposed algorithm is fur-
ther analyzed by Monte Carlo simulation. The same target’s
motion parameters and sea clutter data in Table II are used, and
the number of sampling points is N = 4096. The maneuvering
target signal is processed by four methods, i.e., FRFT, FRAF,
SFRAF, and ASFRAF algorithms, where K = 5 and B = 128
of SFRAF, 7 = 1.6 ms, x = 0.97, and p = 1.9 of ASFRAF.
Under the condition of Pr, = 1073, 10° Monte Carlo simulation
calculations were performed on different SCRs. Fig. 13 shows
the detection performance curves (SCR versus P;) of the four
methods. It can be seen from the figure that due to the model
mismatch, the detection performance of the FRFT algorithm
for the maneuvering target is significantly different from that of
the other three methods. Compared with SFRAF, The detection
performance of the proposed algorithm is improved by about
6 dB, and it is slightly better than the FRAF algorithm due to
the adaptive filtering procedure. Under lower SCR conditions
(-10 dB), it still has better detection performance.

VI. CONCLUSION

In this article, by introducing the adaptive filtering method
into SFRAF processing, a novel adaptive clutter suppression
and radar maneuvering target detection algorithm named as
ASFRAF is proposed. The simulations and experiments using
real radar data verified the advantages:

1) ASFRAF algorithm can overcome the influence of the
unknown sparsity value and enhance the robustness of
SFRAF algorithm, which is more practicable.

2) ASFRAF algorithm can suppress the clutter effectively
while retaining the signal energy to the greatest extent,
and has good detection performance for the maneuvering
target in low SCR conditions (—10 dB), which is more
suitable for clutter background than SFRAF.

3) The detection performance of ASFRAF algorithm for
maneuvering targets with jerk and high-order motions is
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4)

5)

In

as good as FRAF method, which provides a new way for
target with complex motion characteristics.

Due to the iteration process, the calculation time of AS-
FRAF is more time-consuming compared with SFRAF.
However, due to the utilization of SFT and hierarchical
iterative kurtosis search method, the computational effi-
ciency of proposed method is still at least 50% higher
than that of the FRAF method.

The performance of ASFRAF is closely related to the
edition of SFT or ADT-SFT, and also some information
of the spectrum of the target may be lost in low SCR.

a word, the proposed adaptive clutter suppression and

maneuvering target detection method is not only suitable for
maneuvering target with complex motion characteristics in clut-
ter background, but also can meet the requirements for the

real-

time processing of large-size signals, which provides a

practical solution for applications in complex environments. In
the future, we will further verify the detection performance of
the proposed algorithm in different clutter environments and

also

study the problem of long-time processing for range and

Doppler migrations.
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