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A Novel Threshold Detection Technique for the
Automatic Construction of Attribute Profiles
in Hyperspectral Images
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Abstract—Attribute profiles are well-acknowledged as one of the
most significant techniques to characterize spectral-spatial prop-
erties of a hyperspectral image. The spectral-spatial content of an
attribute profile is influenced by the threshold values considered
during its construction. In this article, we propose a robust method
to detect the threshold values automatically by overcoming the lim-
itations of the existing techniques. The proposed method employs a
tree structure representing the connected components of the image
and evaluates attribute values at each node. Then, a total char-
acteristic function (TCF) is defined that represents these attribute
values in a nondecreasing order. The defined TCF is analyzed using
a novel technique to detect a few informative thresholds for the
construction of a low-dimensional attribute profile representing
substantial spectral-spatial information. The proposed threshold
detection method is computationally efficient. To assess the effec-
tiveness of the proposed technique experiments are conducted on
three real hyperspectral datasets using six different attributes and
the results are compared to the recent state-of-the-art method.
The results demonstrate that the proposed method has several
advantages over the existing state-of-the-art method.

Index Terms—Attribute profiles (APs), hyperspectral images
(HSIs), mathematical morphology (MM), random forest, spectral-
spatial classification, support vector machines (SVMs), threshold
detection.

I. INTRODUCTION

YPERSPECTRAL images (HSIs) are acquired in hun-

dreds of contiguous channels with a very fine spectral
resolution. This allows an accurate class-discrimination among
the surface materials in the captured scene. Traditional meth-
ods perform the classification of HSI considering only spectral
measurements, even if spatially neighboring pixels contain cor-
related information that could be used to decrease labeling uncer-
tainty. Several approaches exist in the literature to incorporate
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spatial information, among which we recall, Markov random
field modeling [1], segmentation [2]-[4], intrinsic image de-
composition [5], edge preserving filtering [6], Gabor feature
extraction [7], [8], sparse representation [9]-[13], and deep con-
volutional neural network (CNN) [14]-[18]. Another promising
and emerging approach is based on mathematical morphology
(MM) [19]-[24]. A detailed analysis of the literature on different
spectral-spatial techniques employed for HSI classification can
be found in [25].

In the MM framework, the morphological filters are able to
model different spatial characteristics of a given image [26].
However, they suffer from the limitations related to both the fixed
shape of the SE and the inability to filter based on gray-level
properties. These limitations are overcome by attribute filters
(AFs), which process a given image based on its connected
components and provide the flexibility to use any property
(attribute) that can be computed for a connected component
[27], [28]. The AFs merge the connected components to their
background if their attribute values are smaller than a considered
threshold value. By considering a sequence of threshold values,
a set of filtering results are obtained and concatenated with the
original image to form an attribute profile (AP). For an HSI,
an extended AP (EAP) is constructed by concatenating the APs
generated for each component image obtained by reducing the
dimension of the HSI [20].

In the literature to incorporate sufficient spatial information,
EAPs are constructed either using a large number of threshold
values sampled manually from a wide range [29], [30] or using
optimal number of threshold values detected automatically [31].
Only a few methods exist in the literature that detect threshold
values automatically for the construction of EAPs [31]-[34].
The first approach in this direction is presented in [31], where a
preliminary clustering (or classification) is performed to group
the pixels into homogeneous clusters. Then, the considered
attribute value is computed for each group of pixels and stored
in a vector. Finally, the created vector is again clustered to select
representatives of each cluster as the detected threshold values.
This approach is sensitive to the preliminary clustering (or clas-
sification) results. The approaches presented in [32] and [33] are
supervised in nature and concentrate on single attributes namely
standard deviation and area, respectively. They perform statisti-
cal analysis on the available training samples to detect threshold
values. Another interesting approach has been recently presented
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in [34] where the threshold values are detected automatically by
exploiting the information contained in the tree representation
of the considered image. In this approach, first a large number of
threshold values (all possible threshold values) are obtained from
the tree representation of the image. Considering each threshold
value, a measure of interest is computed and stored in a vector
called granulometric characteristic function (GCF). Then, the
subset of threshold values which better approximates the GCF
is finally selected for constructing the profile. This approach has
the drawback to require a high computational time. Moreover,
all the mentioned techniques detect some suboptimal thresholds
that may construct APs with redundant information.

In this article, we present a novel technique that detects a set of
informative threshold values automatically for the construction
of APs. To this end, first, the considered image is represented
with a tree structure where each node of the tree is associ-
ated with a connected component of the image. Then, a total
characteristic function (TCF) is defined that stores the attribute
values of the nodes in a nondecreasing order. By analyzing the
TCF curves, it is possible to observe that irrespectively of the
datasets and the attributes considered, initially they have a stable
portion, i.e., a large number of nodes in the tree (connected
components of the image) have similar attribute values. After
that, they have an unstable portion where the attribute values of
different nodes have sharp variations. Since the unstable portion
on the TCF curve separates some nodes of the tree into two
disjoint subsets, one having nodes with lower and another having
nodes with higher stable attribute values, selecting appropriate
attribute values as thresholds from the unstable portion on the
TCF curve results in extracting significant spatial information.
We propose a novel technique that automatically selects a set of
suitable thresholds from the unstable portion of the TCF curve.
The set of thresholds obtained by the proposed technique is used
to construct the AP. The proposed approach has the following
advantages.

1) It automatically detects a set of informative threshold

values based on the tree representation of an image.

2) The initial few threshold values detected by the proposed
technique are enough to capture relevant spatial informa-
tion. As aresult, it generates low-dimensional profiles that
are informative (less redundant) and mitigate the curse of
dimensionality problem.

3) It is computationally efficient.

Experiments are conducted on three real hyperspectral
datasets considering six different attributes namely area, diago-
nal of bounding box, standard deviation, diameter of equivalent
circle, area of convex hull, and perimeter. The experimental
results validate the aforementioned advantages of the proposed
method.

The rest of this article is organized as follows. The basics of
APs are briefly recalled in Section II. The proposed method is
presented in Section III. Section IV illustrates the datasets used
in the experiments. The conducted experiments and the results
are presented in Section V. Finally, conclusions are drawn in
Section VI.
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II. BASICS OF APs

In the following subsections, the attribute filtering operations
and the construction of APs are recalled.

A. Attribute Filtering

AFs are connected filters that can filter a given image by
exploiting different properties of its connected components [27].
The AF operation consists of three phases. The first phase
deals with representing a gray-scale image with the help of a
tree structure. In this article, max-tree (min-tree) is employed
for representing the image. In the next phase, the nodes of
the tree structure are filtered based on a condition formulated
considering an attribute and a threshold value. In the last phase,
the filtered tree is transformed back to a filtered image. The
following subsections give details of each phase.

1) Max-Tree (Min-Tree) Representation: A gray-scaleimage
is represented by a tree structure for which several options
are available in the literature [28], [35]-[37]. Among those
the max-tree (min-tree) is widely accepted choice [20], [22],
[28], [30], [38], [39]. Each node of the max-tree (min-tree)
represents a connected component of the image. In the max-tree
(min-tree), the pixels with minimum (maximum) gray-value are
situated in the root and the pixels having maximum (minimum)
gray-value are placed in leaf nodes. A gray-scale image (where
the component names are followed by their gray-levels) and its
corresponding max-tree representation is shown in Fig. 1.

2) Filtering of the Max-Tree (Min-Tree): In the filtering
phase, the nodes of the max-tree (min-tree) are filtered by
merging them with their parent nodes based on the outcome of
a logical condition. The logical condition compares an attribute
value evaluated for a node with a predefined threshold value
A. Suppose Attribute(NV;) is an attribute value evaluated on
the ¢th node NN; then during filtering, the node NN; on the tree



1376

will be merged to its parent node if it satisfies the condition
Attribute(V;) < A.

3) Restitution of Filtered Max-Tree (Min-Tree): After filter-
ing of the max-tree (min-tree), the filtered tree is transformed
back as a filtered image. Fig. 1 shows the filtered image obtained
from the filtered max-tree. For details of restitution process
readers are referred to [28].

AFs, as introduced by [27], can be either attribute thinning
or its dual attribute thickening. Attribute thinning uses max-
tree representation and filters bright objects. Whereas, attribute
thickening uses min-tree representation and filters dark objects.
When the attribute is increasing, thinning (thickening) is speci-
fied as opening (closing).

B. Attribute Profile

Multiple thinning and thickening filters are applied on a gray-
scale image with varying threshold values and the resultant set
of output images are stacked together with the original image to
form an AP. An attribute profile AP(I) for a gray-scale image T
is defined as

AP(I) = {qb}\t (I)7¢Mf1 (1)7 .. '7¢)»1 (1)7177)»1 (I)7
’Y}nz(I)?"'a’Y}»t(I)}' (1)

Here, the AP stores the original image I with its thickening
transforms ¢,, and thinning transforms ,, where X; is the
tth threshold value used during filtering. The threshold value
A; varies from ¢ = 1,2,...,t resulting in ¢ thickening and ¢
thinning transforms. Thus, the constructed AP is of size 2¢ 4 1
and incorporates diverse spatial information from the original
image.

C. Extended Attribute Profile

For spectral-spatial analysis of HSIs, an EAP is created. In
order to overcome the curse of dimensionality problem, first,
the dimension of HSI is reduced using a supervised or unsuper-
vised dimensionality reduction technique. Principal component
analysis (PCA) [40] is an unsupervised dimensionality reduction
technique widely used for this purpose [19], [21], [22]. To
construct an EAP, the APs constructed on the first L principal
components (PCs), namely PC;,PC,, ... ,PCy, of the HSI are
concatenated together. An EAP for HSI H is formulated as

EAP(H) = {AP(PC,),AP(PC,),...,AP(PCL)}. (2)

III. PROPOSED METHOD

In this article, we propose a novel computationally efficient
method to detect the suitable threshold values automatically for
constructing spectral-spatial profiles. In the proposed technique,
first the dimension of the HSI is reduced using PCA. Then, for
each selected PC, a tree is constructed such that the nodes of the
tree represent different connected components of the image. In
this work, to represent different connected components of the
image, the widely accepted max-tree and min-tree representa-
tions are used [20], [22], [28]. Next, for each node of the tree, the
attribute value is computed and a TCF is defined to store these
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attribute values in a nondecreasing order. In detail, for a tree 77
with k£ nodes constructed corresponding to a component image
1 in the reduced dimension, the TCF is computed as follows:

) 3)

where Attribute(V;) is the attribute value of the connected com-
ponent represented by the ith node in the tree and TCF7, stores
the attribute values of all the connected components of the image
I in ascending order. Fig. 2 shows a TCF curve corresponding to
the first PC of a real hyperspectral dataset considering diagonal
of bounding box as an attribute. The attribute values are shown
versus index ¢ = 1,2,...,k, where k is the total number of
nodes in the tree. Note that similar behavior of TCF curves
is observed for different attributes as the values are in sorted
order. By analyzing the TCF curve shown in Fig. 2, one can
see that initially it is almost parallel to the z-axis, i.e., a large
number of nodes in the tree (connected components of the
image) have similar attribute values. After that, it has an unstable
portion (shaded portion) where the attribute values of different
nodes vary. Beyond this portion, the curve has higher attribute
values that represent important connected components of the
image (which need to be preserved). Since the shaded portion
on the TCF curve separates some nodes of the tree into two
disjoint subsets (one having nodes with lower and the other
having nodes with higher attribute values), selecting diverse
points as thresholds from the shaded portion on the TCF curve
can incorporate significant spatial information. In this work,
we propose a novel technique that automatically selects a set
of suitable thresholds from the unstable portion of the TCF
curve to generate a spectral-spatial profile for HSI. Our goal
is to select minimum number of thresholds from the unstable
portion of the TCF curve to generate a small number of filtered
images that incorporate sufficient spatial information. To achieve
this, we cover the TCF curve from its lowest to highest value
with a straight line and detect a position among those potential
threshold values where a sharp change of attribute value occurs.
To this end, the proposed technique first draws a straight line that
covers the unstable portion of the TCF curve. To find such line we
propose to compute the gradient of all the lines passing through

TCFr, = SORT,. ({Attribute(1V;)
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the starting point to all the other points on the TCF curve; the
one which has maximum gradient value is selected. After that,
the index on z-axis that corresponds to maximum interspace
distance between the TCF curve and the covering straight line
is chosen to compute the first suitable threshold value from the
unstable portion of the TCF curve. To get the next threshold, we
repeat the whole procedure by considering the point on the TCF
curve associated with the chosen index as a new starting position.

In greater detail, let psiar¢ be the starting point (iggart,
TCF(istart)) and penq be the end point (k, TCF(k)) of the TCF
curve, as shown in Fig. 2. For detecting the first threshold, the
starting index on x-axis of the TCF curve is set to isgart = 1.
Our technique first computes the gradient of the lines passing
through the starting point psayt and a point (i, TCF(4)) for
1 = igtart + 1, start + 2, - .., k. The gradient of a line passing
through psta,t and ¢th point on the TCF curve (i.e., (¢, TCF(7))
is computed as

TCF(i) — TCF(istart)

17— Istart

Gradient(i) = (4)

After computing the gradients, if a line passing through
Dstart (start, TCF(istart)) and M (m, TCF(m)) provides max-
imum gradient at m, i.e.,

m=arg max {Gradient(:)} 5)

i=lstart+1,...,k
then a straight line .S is drawn between pgta,¢ and M to cover
the unstable portion of the TCF curve. Now, to select the first
suitable threshold from the unstable portion of the TCF curve,
the interspace distance (Linterspace) between S and TCF is
computed at each index as follows:

Linterspace(i) = S(Z) - TCF(Z),

and the index h on the x-axis within the range [isgars,
provides maximum interspace distance is chosen i.e.,

m{LintcrspaCC(Z’)}' (7)

sm (6)

7 = lstart, --

m)] that

h =arg max
Finally, the attribute value at index h, i.e., TCF(h), is selected
as the first suitable threshold. For selecting the next threshold,
the same procedure is repeated considering is,,t = h so that
(h, TCFE(h)) becomes the new pgiart. Fig. 3 demonstrates the
detection of first three threshold values in a synthetic TCF
curve. The detection of the first threshold th; is shown in

mTree Nodéws
(b) (©)

Tree ﬁodes

Example of detection of the first three threshold values considering a sample TCF curve. (a) First detected threshold. (b) Second detected threshold. (c)

Algorithm 1: Proposed Threshold Detection Technique.

Input: Tree 77,
Attribute A (area, perimeter, etc.),
Required number of thresholds C'.
Output: Vector (V) consisting of C' threshold values.
1:  Compute the attribute value at each node of the tree 17
and define the T'C'Fr, using (3).

2: Wh «— ¢

3 dgtart < 1 //starting index.

4: j<1//loop counter.

5: while j <= C'do

6:  Find the point M (i.e.(m, TC'F(m))) on the TCFr,
that has maximum gradient from pg¢art, i.€.,
(istarta TCFTI (istart))7 USing (4)

7. Draw a straight line S connecting pggars and M.

8:  Considering S and T'C Fr,, find the index h of
T'CFr, having maximum Linterspace Using (7).
9:  thj < TCFr,(h) //detected threshold.
10: ‘/th — {V;gh,thj}.
11: istart < h.
12: Jj—J+1L
13:  end while
14: Return V}y,.

Fig. 3(a) where a straight line is drawn between pga,t and M and
the position corresponding to maximum Li,terspace 1S chosen
as threshold th;. For detecting the second threshold tho, the
point th; on TCF curve is treated as new pgtart, as shown in
Fig. 3(b). Similarly, for the third detected threshold ths, the
same procedure is repeated considering the point the as new
Dstart- Lhe steps of the proposed method are summarized in
Algorithm 1.

Fig. 4 shows the overall architecture for the construction of
EAP using the proposed threshold detection technique. One can
see from the figure that for each image component in reduced
HSI space a separate set of threshold values are detected auto-
matically corresponding to a tree representation (max-tree and
min-tree). The APs are constructed for all component images.
The constructed APs are then concatenated together to form an
EAP for the HSI using (2). Such constructed EAP is compact in
size and effective for spectral-spatial classification of HSI.
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A. Complexity Analysis

The proposed method analyzes the attribute values computed
on the nodes of the tree to detect effective threshold values.
Let us assume that, the image has k connected components.
Accordingly, the constructed tree will possess k& nodes. For
constructing TCF, we need to sort the attribute values from all
the k nodes. Thus, the time complexity for constructing the
TCF is O(klogk). Once we have the TCF, the gradient and
the Linterspace can be computed in O(k) each for detecting a
threshold, resulting in a time complexity of 2 x O(k). The time
complexity for detecting C' threshold values is C' x 2 x O(k).
Therefore, the total time complexity required to detect C' effec-
tive thresholds for a given image using the proposed method is
O(klogk) 4+ 2C x O(k), which is equivalent to O(klog k). It
is worth noting that the number of connected components in an
image is far less than the number of pixels in it. This shows that
the proposed method is efficient in detection of threshold values.

IV. DESCRIPTION OF DATASETS

The effectiveness of the proposed technique are assessed by
a set of experiments carried out on the following three real
hyperspectral datasets.

ROSIS University of Pavia, Italy: The first dataset! is an HSI
of size 610 x 340 pixels with 1.3 m spatial resolution. This scene
was acquired by the airborne sensor ROSIS (Reflective Optics
System Imaging Spectrometer) over the University of Pavia
situated in the North Italian urban area of Pavia. In this dataset,
there are 103 spectral bands available for use after discarding 12
bands due to irregularity in signals during transmission. Fig. 5
shows a three-band false color composite of the University of
Pavia along with its ground truth having nine thematic classes.

CASI University of Houston, USA: The second dataset? is an
HSI of size 349 x 1905 pixels with 2.5 m spatial resolution. The

! Available at: http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral
_Remote_Sensing_Scenes
2 Available at:http://hyperspectral.ee.uh.edu/?page_id=459

Max-tree | thresholds Generate C
representation using proposed | filtered images
I method 1
b o o - - -
” AP(PC))
> Original PC
—————— =
: Detect C 1
Min-tree thresholds Generate C
representation _>| using proposed :_> filtered images
I method 1
1> b o - - - - -
PCA AP(PC,)
. .
14 .
i .
> AP(PC;)

Overall architecture to construct EAP for HSI using the proposed automatic threshold detection technique.

Fig. 5. Three-band false-color composite of the University of Pavia image
along with ground truth and color legend.

6 7 8 9 10 11 12 13 14 15

Fig. 6. Three-band false-color composite of the University of Houston image
along with ground truth and color legend.

CASI sensor acquired the data over the campus of University of
Houston, Texas, United States, and its neighboring urban area
with a spectral coverage ranging between 380 and 1050 nm.
The acquired dataset consists of 144 spectral bands after pre-
processing. Fig. 6 shows a three-band false color composite of
the University of Houston data along with its ground truth having
fifteen thematic classes.
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Fig.7. Three-band false-color composite of the Indian Pines image along with
ground truth and color legend.

AVIRIS Indian Pines, USA: The third dataset! is an HSI of 145
x 145 pixels with 20 m spatial resolution. It was acquired by
the AVIRIS (Airborne Visible/Infrared Imaging Spectrometer)
sensor over the agricultural land of Indian Pines, Indiana, USA.
The total number of spectral bands of the acquired scene was
initially 220 out of which 200 spectral bands are available
for use after preprocessing. The coverage of the sensor ranges
between 400 and 2500 nm. Fig. 7 shows a three-band false color
composite of the Indian Pines dataset and its related ground truth
categorized into sixteen thematic classes.

V. EXPERIMENTAL RESULTS

A. Experimental Set-Up

The effectiveness of the proposed method is assessed by
the experimental results obtained on the abovementioned hy-
perspectral datasets. The different spectral-spatial profiles are
constructed based on six different attributes including area (A),
diagonal of bounding box (DBB), standard deviation (SD),
diameter of equivalent circle (DEC), area of convex hull (ACH),
and perimeter (PER). Among these, A, DBB, DEC, and ACH are
of increasing nature, whereas SD and PER are of nonincreasing
nature. PCA is used for reducing the spectral dimension of
HSI and spectral-spatial profiles are constructed on the first
5 PCs, which retain most of the cumulative variance in the
original HSI data. The profiles constructed by the proposed
method (EAP,;op0sed) are compared to those constructed using
automatically detected threshold values by the state-of the-art
method [34]. The profiles constructed by the state-of-the-art
method are based on the measures number of regions (EAPxRr),
number of pixels (EAPxp), and sum of gray-values (EAPsg). The
dimension of the profiles constructed by the proposed and the
state-of-the-art method are kept the same for a fair comparison.
The profile sizes are 15, 25, and 35 (considering the first one,
first two, and first three automatically detected thresholds, re-
spectively). During profile construction one can adopt min, max,
direct, or subtractive filtering rule. In our experiment, we have
adopted the subtractive filtering as it is more robust than the other
filtering rules [20], [21], [41]. The EAP},posed 1S also compared
to a large spectral-spatial profile (EAP,anua1) generated based
on the following nine manually selected threshold values (the
set of threshold values showing best result in trial and error) that
yields a profile of size 95.

1) A=1[50250450 650850 1050 1250 1450 1650].

2) DBB =19 16 253649 64 81 100 121].

3) SD=[1274.15569839.711.112.5].
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Fig. 8.  First three threshold values detected by the proposed method on the
TCF curves constructed for the first PC of the University of Pavia dataset
considering attributes (a) Diagonal of bounding box and (b) Standard deviation.

4) DEC =[515253545556575 85].

5) ACH = [100 200 300 600 900 1200 1500 2000 2500].

6) PER = [30 180 330 480 630 780 930 1080 1230].

All the experiments related to implementation of the proposed
technique as well as the state-of-the-art method are carried out
using 64-b MATLAB (R2015a) running on a workstation with
CPU Intel(R) Xeon(R) 3.60 GHz and 16 GB RAM. For all the
considered datasets, the effectiveness of the proposed method
is evaluated by the two sets of experiments. The first set of
experiments assess the stability of the proposed technique and
compares it with a state-of-the-art technique by using randomly
selected training and test sets. The second set of experiments
analyzes the effectiveness of the proposed technique by compar-
ing it with several state-of-the-art spectral-spatial classification
techniques by using standard/fixed training and test sets.

B. Results on the Randomly Selected Training and Test Sets

In this experiment, for all the three datasets, the proposed
method is compared to the state-of-the-art method using a one-
against-all support vector machine (SVM) classifier trained with
30% of the labeled data (randomly selected from each class)
and considering the rest 70% for testing. The experiments are
run ten times to show the stability of the proposed method and
classification results are reported taking average of the quality
indices, namely the overall accuracy (OA), the related standard
deviation (OA_std), and the kappa coefficient (kappa). The SVM
classifier is implemented by using the LIBSVM library [42]. The
radial basis function (RBF) kernel is adopted for the classifier.
The SVM parameters {o, C} (i.e., the spread of the RBF kernel
and the regularization parameter) are obtained by applying grid
search with five-fold cross validation.

Figs. 8-10 show the three thresholds automatically detected
by the proposed method on the basis of the TCF curves for the
University of Pavia, the University of Houston, and the Indian
Pines datasets, respectively. The TCF curves in the figures are
constructed for the max-tree corresponding to the first PC for
all the datasets considering the increasing DBB attribute and the
nonincreasing SD attribute. One can observe from these figures
that the first detected threshold is at a position in the beginning of
the unstable portion of the TCF curves. This allows the proposed
method to incorporate significant amount of spatial information
in its first filtering operation by removing most of the outliers
present on the image. Moreover, from these figures one can see
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TABLE I
AVERAGE OVERALL ACCURACY (OA), RELATED STANDARD DEVIATION (OA_STD), AND KAPPA COEFFICIENT (KAPPA) FOR PROFILES CONSTRUCTED BY THE
STATE-OF-THE-ART AND THE PROPOSED METHODS CONSIDERING SIX DIFFERENT ATTRIBUTES (UNIVERSITY OF PAVIA DATA SET)

EAPyanual EAPNR EAPyp EAPgg E APBproposed

Attributes 95 15 25 35 15 25 35 15 25 35 15 25 35
OA 99.13 87.01 89.55 9254 | 93.13 9932 99.33 | 90.02 98.85 99.40 98.00 99.74  99.77
A kappa 0.988 0.824 0.860 0.901 0.908  0.991 0.991 0.866 0.985 0.992 0.976 0.997 0.997
OA_std 0.055 0.072 0.121 0.112 | 0.090 0.054 0.051 0.132 0.075 0.036 0.117 0.038  0.032
OA 99.19 86.81 88.88 91.42 89.26  96.72  99.55 88.67 95.02 99.31 95.64 99.18 99.72
DBB kappa 0.989 0.822 0.850 0.885 0.856 0.956 0.994 | 0.847 0.934 0.991 0.940 0.989  0.996
OA_std 0.042 0.090 0.104 0.088 0.131 0.094  0.033 0.202 0.109 0.028 0.095 0.048 0.037
OA 98.04 86.88 88.98 91.64 89.29 97.29  99.57 88.67 96.06 99.36 97.84 98.03 98.05
SD kappa 0.973 0.822 0.852 0.888 | 0.856 0.964 0.994 | 0.847 0.948 0.991 0.971 0973 0974
OA_std 0.061 0.166 0.157 0.111 0.077 0.082  0.040 | 0.089 0.060 0.056 0.083 0.061 0.064
OA 99.76 86.99 8941 9234 | 93.02 99.34 99.34 | 90.22 98.81 99.41 96.22 99.62 99.79
DEC kappa 0.996 0.824  0.858 0.898 0.907 0.991 0.991 0.869 0.984 0.992 | 0.949 0.996 0.997
OA _std 0.036 0.093 0.099 0.133 0.081 0.040 0.056 | 0.115 0.054 0.057 0.073 0.055  0.035
OA 99.10 86.85 88.89 9149 | 9047 98.44  99.57 89.95 97.71 99.32 97.25 99.68 99.78
ACH kappa 0.988 0.822 0.850 0.886 | 0.872 0.979 0994 | 0.865 0.970 0.991 0.964 0.995 0.997
OA_std 0.048 0.137 0.148 0.116 | 0.214 0.086 0.045 | 0.169 0.092 0.058 0.089 0.036 0.023
OA 99.39 87.26  89.39 92.73 89.22 9378 98.93 88.75 93.29 98.59 97.42 99.70  99.65
PER kappa 0.992 0.828 0.857 0.903 | 0.855 0917 0986 | 0.848 0.911 0.981 0.965 0.997 0.996
OA_std 0.057 0.134  0.154 0.063 0.136  0.109 0.039 | 0.134 0.071 0.050 0.063 0.036  0.030

The best results among the proposed and the state-of-the-art methods are highlighted in boldface.
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Fig. 9.  First three threshold values detected by the proposed method on the

TCF curves constructed for the first PC of the University of Houston data set
considering attributes (a) Diagonal of bounding box and (b) Standard deviation.
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Fig. 10.  First three threshold values detected by the proposed method on the

TCEF curves constructed for the first PC of the Indian Pines dataset considering
attributes (a) Diagonal of bounding box and (b) Standard deviation.

that the three thresholds detected by the proposed technique are
diverse from each other and cover the unstable portion of the
TCF curves. Thus, the proposed technique is able to filter the
less significant objects by detecting few thresholds. Although the
figures show the TCF curves for only two attributes, it is worth
noting that similar behaviors are observed for other attributes
as well. The effectiveness of the proposed technique is evident
from the classification results obtained for the University of
Pavia, the University of Houston, and the Indian Pines datasets,

as shown in Tables I-III, respectively. The tables present the
classification results obtained for EAP,,anua1, EAPNR, EAPNp,
EAPsg, and EAP ;o054 cOnsidering the attributes A, DBB, SD,
DEC, ACH, and PER. One can observe from these tables that
while comparing the accuracies of the profiles with 15 features,
the EAP,;oposed 18 outperforming the profiles constructed by
the state-of-the-art method for all the attributes. In addition, the
EAProposed With just 15 features has similar (and sometimes
better) accuracies than the EAPyr, EAPnp, and EAPgg with
25 features. Thus, the proposed technique is robust enough
to construct a low-dimensional profile that can contribute to
mitigate the curse of dimensionality problem. Fig. 11 shows
the filtered images obtained considering the first PC of the
University of Pavia for the attributes area, standard deviation,
and area of convex hull employing the first threshold automati-
cally detected by the state-of-the-art and the proposed method. It
is evident from the filtered images that the first threshold detected
by the proposed method can preserve more objects of interest
than the one detected by the state-of-the-art method. This again
confirms that the first automatically detected threshold value by
the proposed method incorporates more discriminative spatial
information than that of the state-of-the-art method. Similarly,
for the profiles with feature size 25 and 35, the EAPposed
outperforms all the three respective profiles EAPNg, EAPxp, and
EAPsc. Moreover, the results obtained by the EAP,.op0sea With
a small number of features are also similar or better than those
obtained by the high-dimensional EAP ;4.1 This confirms the
robustness of the proposed method.

C. Results on the Standard/Fixed Training and Test Sets

In this experiment, we compare the proposed technique with
several recent spectral-spatial classification techniques reported
in [25]. For these experiments, the same training and test sets
as used in [25] are considered. These standard training and
test sets are generated by the remote sensing community for
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TABLE II
AVERAGE OVERALL ACCURACY (OA), RELATED STANDARD DEVIATION (OA_STD), AND KAPPA COEFFICIENT (KAPPA) FOR PROFILES CONSTRUCTED BY THE
STATE-OF-THE-ART AND THE PROPOSED METHODS CONSIDERING SIX DIFFERENT ATTRIBUTES (UNIVERSITY OF HOUSTON DATA SET)
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EAPManual EAPNR EAPNP EAPSG EAPproposed

Attributes 95 15 25 35 15 25 35 15 25 35 15 25 35
OA 96.28 86.58 88.73 9154 | 91.37 9692 97.57 | 90.33 9535 96.83 | 9455 97.88  98.01
A kappa 0.960 0.855 0.878 0.909 | 0.907 0.967 0974 | 0.8905 0950 0.966 | 0.940 0.978 0.978
OA_std 0.087 0296 0340 0.188 | 0.207 0.187 0.186 | 0.203 0270 0.283 | 0.341 0.131  0.177
OA 95.90 86.41 8856 9093 | 8943 93.68 9736 | 8823 9149 9646 | 93.18 96.17 97.96
DBB kappa 0.956 0.853 0.876 0.902 | 0.886 0.932 0971 | 0.873 0908 0962 | 0927 0960 0.978
OA_std 0.172 0.381 0.181 0.260 | 0.302 0.339 0.158 | 0.184 0211 0.247 | 0.178 0.131 0.159
OA 95.55 86.41 9129 9489 | 91.99 9506 9585 | 87.41 9326 9553 | 93.30 93.27 93.25
SD kappa 0.948 0.853  0.906 0.946 | 0913 0.946 0.955 | 0.864 0.927 0952 | 0.931 0924 0928
OA_std 0.251 0.381 0.212 0.395 | 0.227 0.227 0267 | 0.257 0.158 0.205 | 0266 0.277 0.224
OA 97.27 86.66 8849 9128 | 91.34 96.96 97.60 | 90.08 9532 96.88 | 93.33 96.84  98.07
DEC kappa 0.967 0.856 0.875 0.906 | 0.906 0.967 0974 | 0.893 0949 0966 | 0931 0964 0.978
OA_std 0.257 0412 0312 0.293 | 0304 0.199 0221 | 0334 0.128 0.163 | 0.219 0242 0.115
OA 96.11 86.74 89.10 9127 | 9046 9537 97.77 | 8839 91.66 96.46 | 94.65 97.15 97.88
ACH kappa 0.956 0.857 0.882 0.906 | 0.897 0.950 0976 | 0.874 0910 0962 | 0945 0971 0.977
OA_std 0.223 0.404 0274 0303 | 0.217 0.261 0240 | 0.126 0213 0.186 | 0.193 0.179 0.198
OA 96.38 86.84 88.80 91.34 | 89.98 93.63 96.74 | 89.24 9321 96.62 | 9413 9540 96.25
PER kappa 0.962 0.858 0.879 0.906 | 0.892 0.931 0.965 | 0.884 0.926 0.963 | 0.936 0.949 0.962
OA_std 0.225 0.158 0.230 0423 | 0.141 0.250 0.171 | 0.368 0.247 0.168 | 0.161 0.252 0.216

The best results among the proposed and the state-of-the-art methods are highlighted in boldface.

TABLE III
AVERAGE OVERALL ACCURACY (OA), RELATED STANDARD DEVIATION (OA_STD), AND KAPPA COEFFICIENT (KAPPA) FOR PROFILES CONSTRUCTED BY THE
STATE-OF-THE-ART AND THE PROPOSED METHODS CONSIDERING SIX DIFFERENT ATTRIBUTES (INDIAN PINES DATASET)

EAPManual EAPNR EAPNP EAPSG EAPproposcd

Attributes 95 15 25 35 15 25 35 15 25 35 15 25 35
OA 96.36 80.73  83.26  88.20 | 85.88 96.07  96.09 85.27 95.88  96.05 94.51 95.48 95.80
A kappa 0.960 0.779  0.809 0.865 | 0.839 0.955  0.955 0.832  0.953 0.955 0.942 0.950  0.953
OA_std 0.195 0.309 0417 0312 | 0306 0334  0.175 0.295 0.216 0.246 0.233 0.243 0.230
OA 96.86 80.80  82.20 87.19 | 82.73  93.25 96.24 81.78  89.20 95.92 92.42 95.86  96.12
DBB kappa 0.964 0.780 0.796  0.854 | 0.802 0.923 0.957 0.792  0.877 0.953 0.912 0.953 0957
OA_std 0.247 0.242 0.292 0442 | 0304 0212 0.232 0418 0.381 0.185 0.192 0.323 0.251
OA 9291 80.76  86.28  93.15 | 92.58 9496  94.55 89.32  94.10 9435 92.70 94.66  95.12
SD kappa 0.920 0.780 0.843 0922 | 0915 0942 0.938 0.878 0.933  0.935 | 0.904 0.947 0.945
OA_std 0.284 0.353 0415 0.294 | 0297 0302  0.370 0.429 0.320 0.200 0.504 0.454  0.246
OA 96.54 80.86 8336 87.96 | 85.87 96.15  96.19 84.71 95.85 95.93 94.19 95.73 96.07
DEC kappa 0.960 0.781 0.810 0.862 | 0.838 0.956 0.957 | 0.825 0953 0.954 0.934 0.948 0.960
OA_std 0.292 0.376 0404 0435 | 0439 0219  0.205 0.345 0.172  0.154 0.263 0.336  0.289
OA 96.74 80.73  82.17 86.72 | 83.45 9535 9630 | 82.15 9373 96.14 94.39 9549 95.61
ACH kappa 0.963 0.779  0.796  0.848 | 0.811 0947 0.958 0.796  0.928  0.956 0938 0946 0.947
OA_std 0.192 0.580 0.538 0481 | 0.126 0.279  0.225 0.467 0.282  0.268 0.439 0.323 0.355
OA 96.30 80.99 8525 9239 | 83.13 8948 96.29 | 82.19 8821 9585 94.59 95.39 9521
PER kappa 0.958 0.782 0.831 0913 | 0.807 0.880 0958 | 0.796 0.865 0.953 0.939 0.942  0.942
OA_std 0.201 0.378 0426 0236 | 0295 0404 0.164 | 0372 0368 0.158 | 0.176 0.353  0.306

The best results among the proposed and the state-of-the-art methods are highlighted in boldface.

spectral-spatial classification of the abovementioned datasets.
Note that the number of training samples in these datasets is
much smaller than the one used in the previous experiments.
For a fair comparison, the profiles constructed by the proposed
technique are classified using the same classifier as applied in
[25] (i.e., random forest classifier with 200 trees). The classi-
fication results are reported in terms of overall accuracy (OA),
average accuracy (AA), and kappa coefficient (kappa).

The different spectral-spatial techniques considered in these
experiments include profiles constructed based on binary par-
tition tree with o = 0.5 (BPT o = 0.5) [2], methods based
on sparse representation (i.e., unmixing with sparse represen-
tation classifier (USRC) [9], fixed region-based model (JSRC)

[10], extended multi-AP used with sparse representation classi-
fier (EMAP+SRC) [11], superpixel-based sparse representation
classifier (SBSDM) [12], and shape adaptive sparse(SAS) [13]),
and methods based on convolution neural networks (i.e., CNN
[16] and PCA-CNN [15]). Table IV reports the results obtained
by the EAP}oposea having 35 features considering six differ-
ent attributes and those of the aforementioned techniques for
University of Pavia, University of Houston, and Indian Pines
datasets, respectively. One can observe from the table that in
most of the cases the proposed technique considering separately
each of six different attributes is able to produce better results
than the other spectral-spatial classification techniques in the
literature for all the three datasets. Therefore, we can conclude
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(a)

Fig. 11.
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Filtered images obtained using the automatically detected first threshold value for first PC of the University of Pavia dataset by the state-of-the-art

method (considering attributes (a) area, (b) standard deviation, (c) area of convex hull) and by the proposed method (considering attributes (d) area, (e) standard

deviation, (f) area of convex hull).

TABLE IV
CLASSIFICATION RESULTS OBTAINED FOR PROPOSED METHOD AND DIFFERENT SPECTRAL-SPATIAL METHODS IN [25] BASED ON STANDARD TRAINING
AND TEST SETS

Accu- Proposed spectral-spatial technique Spectral-spatial techniques in literature

Datasets racies | Area DBB SD DEC ACH PER BPT USRC JSRC EMAP SBSDM SAS CNN PCA
a=0.5 +SRC -CNN

University OA 9320 91.17 87.77 9328 9298 91.59 | 85.74 75.05 71.78  69.49 72.00 68.95 87.01 88.93
of Pavia AA 9343 90.64 89.60 9396 93.08 9245 | 93.96 80.88 79.3 74.2 76.63 7148 87.15 86.37
kappa | 0.908 0.879 0.838 0909 0905 0.885 | 0.818 0.682 0.638  0.618 0.639 0.602 0.831 0.854

University OA 8429 8324 78.64 8395 84.81 84.48 | 83.78 70.49 7635 71.44 75.66 75.72 8275 83.22
of Houston AA 86.43 8578 8175 8634 87.02 86.77 | 85.34 78.35 74.66  76.56 78.26 78.08  84.04 85.61
kappa | 0.830 0.818 0.770 0.826 0.835 0.832 | 0.824 0.680 0.745  0.691 0.737 0.738 0.806 0.816

Indian OA 91.40 9229 90.77 9238 9142 91.21 | 84.36 75.03 88.24  80.43 89.9 90.61 91.53 91.99
Pines AA 9393 9444 9363 9449 9380 94.11 | 91.61 83.34 91.23 8543 94.1 94.3 95.24 9498
kappa | 0901 0911 0.894 0913 0901 0.899 | 0.822 0.717 0.866  0.778 0.885 0.893  0.901  0.906

The best results among the proposed and the state-of-the-art methods are highlighted in boldface.
TABLE V

that the proposed method is promising for spectral-spatial clas-
sification of HSI.

D. Analysis of Computational Time

To assess the efficiency of the proposed method the compu-
tational time (in seconds) required by both the proposed and
the recent state-of-the-art method are compared as shown in
Table V. The time required for constructing EAPng, EAPxp,
EAPsg, and EAPp oposea are referred as Tyr, Inp, Tsc, and
Toroposed, Tespectively. From the table, one can observe that for
all the datasets and all the attributes, the T},;oposed 18 at least 15
times faster than those of T\gr, Inp, and Tsg. This confirms that
the proposed method is more efficient than the state-of-the-art
method for constructing spectral-spatial profiles by detecting
threshold values automatically. Note that, the methods initially
exploit the tree representation and store the evaluated attribute
values for further processing. The state-of-the-art method creates
GCF after computing a measure of interest considering each
attribute value as a candidate threshold, whereas the TCF stores
the attribute values as it is. Furthermore, the state-of-the-art
method employs regression to approximate the GCF curves.
The time required for regression is proportional to the size of the
GCEF. In contrast, the proposed technique requires only two scans
of the TCF curve to detect each threshold. For these reasons, the
proposed method is significantly faster than the state-of-the-art
method.

COMPUTATIONAL TIME (IN SECONDS) REQUIRED FOR CONSTRUCTING
SPECTRAL-SPATIAL PROFILE WITH 35 FEATURES BY THE STATE-OF-THE-ART
AND THE PROPOSED METHODS

| Datasets | Awribute [ Tne | Tne | Tsg | Tproposed |
Area 3979 4148 4156 135
DBB 3636 2686 3646 137
University SD 795807 802349 816577 153
of Pavia DEC 4100 4143 4164 136
ACH 5601 5587 5444 139
PER 2508 2490 2488 132
Area 8066 8258 8253 289
DBB 7525 6181 7632 295
University SD 1097565 | 1007517 | 1087365 387
of Houston DEC 8388 8559 8499 290
ACH 10703 10793 10740 299
PER 4240 4321 4316 269
Area 874 869 854 22
DBB 384 377 393 22
Indian SD 30859 31349 31442 23
Pines DEC 852 842 856 22
ACH 716 722 718 23
PER 519 521 528 21

VI. CONCLUSION

APs are a rich source of spectral-spatial information for
classification of HSIs. For an effective characterization of the
spectral and spatial information present in the APs, it is impor-
tant to identify optimal threshold values. In the literature, the
threshold values have mostly been chosen manually. Recently
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few works have addressed the issue of detecting the thresh-
old values automatically but have limitations. The most recent
state-of-the-art method overcomes these limitations but is com-
putationally demanding and detects threshold values that may
incorporate redundant information. This article has presented a
novel technique for automatically detecting the threshold values
to construct informative (less redundant) APs in considerably
less amount of time. To this end, a tree representation is ex-
ploited where each node represents a connected component of
the image and a TCF is created by considering attribute values
at each node of the tree. The TCF curve is analyzed using
a novel criterion to detect the threshold values automatically.
The first detected threshold is able to characterize a significant
portion of the image and, thus, captures remarkable contextual
information on filtering. Using the detected threshold values
for each component image in reduced representation of HSI,
separate APs are constructed and concatenated to form an EAP,
which is highly informative, class discriminative, and compact
in size.

To demonstrate the effectiveness of the proposed method
experiments have been conducted on three real hyperspectral
datasets considering six different attributes. From the classifica-
tion results it is observed that the proposed method outperforms
the state-of-the-art method. The computational times required
by the methods are also compared to confirm that the pro-
posed method is significantly faster than the state-of-the-art one.
Moreover, the proposed method is also compared with different
spectral-spatial classification methods in the literature to show
its potentiality. The proposed method can be summarized to have
the following advantages:

1) It automatically detects a set of informative threshold

values based on the tree representation of an image.

2) The initial few threshold values detected by the proposed
technique are enough to capture sufficient spatial infor-
mation. As a result, it generates low-dimensional profiles,
which are informative (less redundant) and capable to
mitigate the curse of dimensionality problem; and

3) It is computationally efficient.

In this article, the proposed method has been tested using
a subtractive filtering rule on the considered images. Even if
we do not anticipate any difference in the performance of our
technique, we plan as a future work to study the performance of
the proposed method over different tree representations.

ACKNOWLEDGMENT

The authors would like to thank Dr. S. Prasad for providing
University of Houston dataset and Dr. P. Ghamisi for provid-
ing standard training and test sets of the datasets used in the
experiments.

REFERENCES

[1] Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, “SVM-and
MRF-based method for accurate classification of hyperspectral images,”
IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.

[2] S. Valero, P. Salembier, and J. Chanussot, “Hyperspectral image repre-
sentation and processing with binary partition trees,” IEEE Trans. Image
Process., vol. 22, no. 4, pp. 1430-1443, Apr. 2012.

1383

[3] P. Ghamisi, M. S. Couceiro, M. Fauvel, and J. A. Benediktsson, “In-
tegration of segmentation techniques for classification of hyperspectral
images,” IEEE Geosci. Remote Sens. Lett., vol. 11, no. 1, pp. 342-346, Jan.
2014.

[4] S. Jia, X. Deng, J. Zhu, M. Xu, J. Zhou, and X. Jia, “Collaborative
representation-based multiscale superpixel fusion for hyperspectral im-
age classification,” IEEE Trans. Geosci. Remote Sens., vol. 57, no. 10,
pp. 7770-7784, Oct. 2019.

[5] X. Kang, S. Li, L. Fang, and J. A. Benediktsson, “Intrinsic image de-
composition for feature extraction of hyperspectral images,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 4, pp. 2241-2253, Apr. 2015.

[6] X. Kang, S. Li, and J. A. Benediktsson, “Spectral—spatial hyperspectral
image classification with edge-preserving filtering,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 5, pp. 2666-2677, May 2014.

[71 Z.Zhu, S.Jia, S. He, Y. Sun, Z. Ji, and L. Shen, “Three-dimensional Gabor
feature extraction for hyperspectral imagery classification using a memetic
framework,” Inf. Sci., vol. 298, pp. 274-287, 2015.

[8] S.lJia,Z. Lin, B. Deng, J. Zhu, and Q. Li, “Cascade superpixel regularized
gabor feature fusion for hyperspectral image classification,” IEEE Trans.
Neural Netw. Learn. Syst., Jul. 2019, doi: 10.1109/TNNLS.2019.2921564.

[91 M.-D. Iordache, J. M. Bioucas-Dias, and A. Plaza, “Sparse unmixing of
hyperspectral data,” IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6,
pp. 2014-2039, Jun. 2011.

[10] Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Hyperspectral image classifi-
cation using dictionary-based sparse representation,” IEEE Trans. Geosci.
Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.

[11] B. Song et al., “Remotely sensed image classification using sparse rep-
resentations of morphological attribute profiles,” IEEE Trans. Geosci.
Remote Sens., vol. 52, no. 8, pp. 5122-5136, Aug. 2013.

[12] L. Fang, S. Li, X. Kang, and J. A. Benediktsson, “Spectral-spatial clas-
sification of hyperspectral images with a superpixel-based discrimina-
tive sparse model,” IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8,
pp. 41864201, Aug. 2015.

[13] W. Fu, S. Li, L. Fang, X. Kang, and J. A. Benediktsson, “Hyperspectral
image classification via shape-adaptive joint sparse representation,” [EEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 2, pp. 556-567,
Feb. 2016.

[14] Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.

[15] J. Yue, W. Zhao, S. Mao, and H. Liu, “Spectral-spatial classification of
hyperspectral images using deep convolutional neural networks,” Remote
Sens. Lett., vol. 6, no. 6, pp. 468-477, 2015.

[16] Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, “Deep feature extrac-
tion and classification of hyperspectral images based on convolutional
neural networks,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10,
pp. 6232-6251, Oct. 2016.

[17] S. Hao, W. Wang, Y. Ye, E. Li, and L. Bruzzone, “A deep network
architecture for super-resolution-aided hyperspectral image classification
with classwise loss,” IEEE Trans. Geosci. Remote Sens., vol. 56, no. 8,
pp. 46504663, Aug. 2018.

[18] S. Hao, W. Wang, Y. Ye, T. Nie, and L. Bruzzone, “Two-stream deep
architecture for hyperspectral image classification,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 4, pp. 2349-2361, Apr. 2018.

[19] J. A. Benediktsson, J. A. Palmason, and J. R. Sveinsson, “Classification
of hyperspectral data from urban areas based on extended morphological
profiles,” IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 480-491,
Mar. 2005.

[20] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Ex-
tended profiles with morphological attribute filters for the analysis of
hyperspectral data,” Int. J. Remote Sens., vol. 31, no. 22, pp. 5975-5991,
2010.

[21] M. Dalla Mura, J. A. Benediktsson, B. Waske, and L. Bruzzone, “Morpho-
logical attribute profiles for the analysis of very high resolution images,”
IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3747-3762,
Oct. 2010.

[22] P.Ghamisi, M. Dalla Mura, and J. A. Benediktsson, “A survey on spectral—
spatial classification techniques based on attribute profiles,” IEEE Trans.
Geosci. Remote Sens., vol. 53, no. 5, pp. 2335-2353, May 2015.

[23] P. Ghamisi, R. Souza, J. A. Benediktsson, L. Rittner, R. Lotufo, and
X. X. Zhu, “Hyperspectral data classification using extended extinction
profiles,” IEEE Geosci. Remote Sens. Lett., vol. 13,no. 11, pp. 1641-1645,
Nov. 2016.

[24] K. Bhardwaj, S. Patra, and L. Bruzzone, “Threshold-free attribute profile
for classification of hyperspectral images,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 10, pp. 7731-7742, Oct. 2019.


https://dx.doi.org/10.1109/TNNLS.2019.2921564

1384

[25] P. Ghamisi et al., “New frontiers in spectral-spatial hyperspectral image
classification: The latest advances based on mathematical morphology,
Markov random fields, segmentation, sparse representation, and deep
learning,” IEEE Geosci. Remote Sens. Mag., vol. 6, no. 3, pp. 1043,
Sep. 2018.

J. A. Benediktsson, M. Pesaresi, and K. Amason, “Classification and
feature extraction for remote sensing images from urban areas based
on morphological transformations,” /[EEE Trans. Geosci. Remote Sens.,
vol. 41, no. 9, pp. 1940-1949, Sep. 2003.

E. J. Breen and R. Jones, “Attribute openings, thinnings, and granulome-
tries,” Comput. Vis. Image Understanding, vol. 64, no. 3, pp. 377-389,
1996.

P. Salembier, A. Oliveras, and L. Garrido, “Antiextensive connected op-
erators for image and sequence processing,” IEEE Trans. Image Process.,
vol. 7, no. 4, pp. 555-570, Apr. 1998.

M. Pedergnana, P. R. Marpu, M. Dalla Mura, J. A. Benediktsson, and
L. Bruzzone, “A novel technique for optimal feature selection in attribute
profiles based on genetic algorithms,” IEEE Trans. Geosci. Remote Sens.,
vol. 51, no. 6, pp. 3514-3528, Jun. 2013.

K. Bhardwaj and S. Patra, “An unsupervised technique for optimal fea-
ture selection in attribute profiles for spectral-spatial classification of
hyperspectral images,” ISPRS J. Photogrammetry Remote Sens., vol. 138,
pp. 139-150, 2018.

Z. Mahmood, G. Thoonen, and P. Scheunders, “Automatic threshold
selection for morphological attribute profiles,” in Proc. IEEE Int. Geosci.
Remote Sens. Symp., 2012, pp. 4946—4949.

P. R. Marpu, M. Pedergnana, M. Dalla Mura, J. A. Benediktsson, and L.
Bruzzone, “Automatic generation of standard deviation attribute profiles
for spectral—spatial classification of remote sensing data,” IEEE Geosci.
Remote Sens. Lett., vol. 10, no. 2, pp. 293-297, Mar. 2013.

P. Ghamisi, J. A. Benediktsson, and J. R. Sveinsson, “Automatic spectral—
spatial classification framework based on attribute profiles and supervised
feature extraction,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9,
pp. 5771-5782, Sep. 2014.

G. Cavallaro, N. Falco, M. Dalla Mura, and J. A. Benediktsson, “Au-
tomatic attribute profiles,” IEEE Trans. Image Process., vol. 26, no. 4,
pp. 1859-1872, Apr. 2017.

E. Carlinet and T. Géraud, “MToS: A tree of shapes for multivariate
images,” IEEE Trans. Image Process., vol. 24, no. 12, pp. 5330-5342,
Dec. 2015.

M. Dalla Mura, J. A. Benediktsson, and L. Bruzzone, “Self-dual attribute
profiles for the analysis of remote sensing images,” in Proc. Int. Symp.
Math. Morphol. Its Appl. Signal Image Process., 2011, pp. 320-330.

P. Salembier and L. Garrido, “Binary partition tree as an efficient repre-
sentation for image processing, segmentation, and information retrieval,”
IEEE Trans. Image Process., vol. 9, no. 4, pp. 561-576, Apr. 2000.

J. Xia, M. Dalla Mura, J. Chanussot, P. Du, and X. He, “Random subspace
ensembles for hyperspectral image classification with extended morpho-
logical attribute profiles,” IEEE Trans. Geosci. Remote Sens.,vol.53,10.9,
pp. 47684786, Sep. 2015.

B. Demir and L. Bruzzone, “Histogram-based attribute profiles for clas-
sification of very high resolution remote sensing images,” IEEE Trans.
Geosci. Remote Sens., vol. 54, no. 4, pp. 2096-2107, Apr. 2016.

1. Jolliffe, Principal Component Analysis. Hoboken, NJ, USA: Wiley,
2002.

E. R. Urbach, J. B. Roerdink, and M. H. Wilkinson, “Connected shape-
size pattern spectra for rotation and scale-invariant classification of gray-
scale images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2,
pp. 272-285, Feb. 2007.

C.-C. Chang and C.-J. Lin, “LIBSVM: A library for support vec-
tor machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, 2011,
Art. no. 27.

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

Arundhati Das received the B.E. and M.Tech. de-
grees in computer science and engineering from
GIMT, Guwabhati, India and NIT Agartala, Tripura,
India, in 2013 and 2016, respectively. She is currently
working toward the Ph.D. degree in engineering with
the Department of Computer Science and Engineer-
ing, Tezpur University, Tezpur, India.

Her research interests include machine learning,
mathematical morphology, and remote sensing image
analysis.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Kaushal Bhardwaj (Member, IEEE) received the
M.Tech degree in 2013 in information technology
from Tezpur University, Tezpur, India, where he is
currently working toward the Ph.D. degree in engi-
neering with the Department of Computer Science
and Engineering.

His research interests include machine learning,
mathematical morphology, and remote sensing image
analysis.

Mr. Bhardwaj is a Reviewer for journals, includ-
ing the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING, the IEEE TRANSACTIONS ON IMAGE PROCESSING, and the
International Journal of Remote Sensing.

Swarnajyoti Patra (Member, IEEE) received the
B.Sc. and the M.C.A. degrees in computer science
from Vidyasagar University, Midnapur, India, in 1999
and 2003, respectively, and the Ph.D. degree in engi-
neering from Jadavpur University, Kolkata, India, in
2009.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Tezpur University, Tezpur, India. His research in-
terests include feature extraction, feature selection,
mathematical morphology, pattern recognition, and
remote sensing image analysis.

Lorenzo Bruzzone (Fellow, IEEE) received the Lau-
rea (M.S.) degree (summa cum laude) in electronic
engineering and the Ph.D. degree in telecommunica-
tions from the University of Genoa, Genoa, Italy, in
1993 and 1998, respectively.

He is currently a Full Professor of telecommuni-
cations with the University of Trento, Trento, Italy,
where he teaches remote sensing, radar, and digital
communications. He is the Founder and the Direc-
tor of the Remote Sensing Laboratory, Department
of Information Engineering and Computer Science,
University of Trento. His research interests include remote sensing, radar and
SAR, signal processing, machine learning, and pattern recognition. He promotes
and supervises research on these topics within the frameworks of many national
and international projects.

Dr. Bruzzone was ranked the First Place in the Student Prize Paper Compe-
tition of the 1998 IEEE International Geoscience and Remote Sensing Sym-
posium (IGARSS), Seattle, July 1998. Since 2009, has been a member of the
Administrative Committee of the IEEE Geoscience and Remote Sensing Society
(GRSS), where he has been the Vice President for Professional Activities since
2019. Since that, he was a recipient of many international and national honors
and awards, including the recent IEEE GRSS 2015 Outstanding Service Award,
the 2017 IEEE IGARSS Symposium Prize Paper Award, and the 2018 IEEE
IGARSS Symposium Prize Paper Award. Since 2003, he has been the Chair
of the SPIE Conference on Image and Signal Processing for Remote Sensing.
He is the Principal Investigator of many research projects. Among the others,
he is currently the Principal Investigator of the Radar for icy Moon exploration
(RIME) instrument in the framework of the JUpiter ICy moons Explorer (JUICE)
mission of the European Space Agency (ESA) and the Science Lead for the High
Resolution Land Cover Project in the framework of the Climate Change Initiative
of ESA. His papers are highly cited, as proven from the total number of citations
(more than 32 000) and the value of the h-index (84) (source: Google Scholar).
He was invited as keynote speaker in more than 32 international conferences and
workshops. He was a Guest Co-Editor of many Special Issues of international
journals. He is the Co-Founder of the IEEE International Workshop on the
Analysis of Multi-Temporal Remote-Sensing Images (MultiTemp) series and
is currently a member of the Permanent Steering Committee of this series of
workshops. He is the Founder of the IEEE Geoscience and Remote Sensing
Magazine for which he has been the Editor-in-Chief from 2013 to 2017. He is
currently an Associate Editor for the IEEE TRANSACTIONS ON GEOSCIENCE AND
REMOTE SENSING. He has been a Distinguished Speaker of the IEEE Geoscience
and Remote Sensing Society from 2012 to 2016.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


