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A New Benchmark and an Attribute-Guided
Multilevel Feature Representation Network for
Fine-Grained Ship Classification in Optical
Remote Sensing Images

Xiaohan Zhang ", Yafei Lv

Abstract—Maritime activities are essential aspects of human
society. Accurate classification of ships is vital for maritime surveil-
lance and meaningful to numerous civil and military applications.
However, most studies conducted are limited to the coarse-grained
ship classification. Few studies on fine-grained ship classification
have been undertaken despite its accuracy and practicability. In
this study, we construct a new benchmark for fine-grained ship
classification which consists of 23 fine-grained categories of ships.
Besides the category label, the benchmark contains several other at-
tribute information. To solve the problem of interclass similarity, an
attribute-guided multilevel enhanced feature representation net-
work (AMEFRN) is proposed. Concretely, a multilevel enhanced
visual feature representation is designed to fuse the reweighted
regional features in order to focus more on the silent region and
suppress the other regions. Further to this, considering the com-
plementary role of attribute information in ship identification,
an attribute-guided feature extraction branch is proposed, which
extracts the auxiliary attribute features by utilizing the attribute
information as supervision. Finally, the attribute features and the
enhanced visual features jointly function as a feature represen-
tation for classification. Compared to other existing classification
models, AMEFRN has better performance with an overall accuracy
rate of 93.58% on the established fine-grained ship classification
dataset. Moreover, it can be easily embedded into most CNN models
as well as trained end-to-end.

Index Terms—Attribute information, fine-grained classification,
multilevel features, optical remote sensing image, ship
classification.

1. INTRODUCTION

ARITIME activities, for instance, maritime transporta-
tion, commercial trades, maritime security, and anti-
illegal activities, are important to the human society, as they
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Fig. 1. Three-level ship classification task.

impact economic and social development. Daily, numerous ships
of different types cruise the sea and the classification of ships
through optical remote sensing images constitutes one of the
basic technologies for marine surveillance [1], [2]. Hence, this
technology has numerous civil and military applications [3].

Based on practical demands, there are three levels of ship clas-
sification [4]. In level-1 classification, the meta-classification,
ships and nonship objects are separated. In level-2 classification,
the coarse-grained classification, ships are classified according
to some criteria into coarse categories, i.e., warship or civilian
ship. Level-3 classification refers to the fine-grained classifica-
tion where ships are distinguished into their precise categories.
The differences in the three-level classification are shown in
Fig. 1. The complexity in classification increases from one
level to the next. A significant number of studies conducted
mainly address the first two levels of classification, with only
a few methods and datasets proposed for the fine-grained ship
classification. More precise and detailed classification in this
level can be more practical and valuable compared to the other
two levels of classifications in many applications [5].

There is growing attention on ship classification in the remote
sensing field with numerous methods proposed to solve this
task. The existing techniques are primarily categorized into
handcrafted feature-based and deep learning-based approaches.
The handcrafted feature-based methods are further divided into
global feature-based methods and local feature-based methods.
Previously, low-level global features such as geometric features,
i.e., scale, aspect ratio, and shape, aided in ship classification
[6]. However, these features were only used in simple cases.
Explorations of some local features such as the location of the
mast were found to be more discriminative in ship classification
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Fig.2. Two groups of ship samples. (a) Destroyer versus cruiser. (b) Container
ship versus cargo.

[71, [8]. Further, other extracted local features, including scale-
invariant feature transform (SIFT) [9], local binary patterns
(LBP) [10], and hierarchical multiscale LBP (HMLBP) [11],
effectively improve the classification performances at varying
degrees. Both the global and local features have been combined
in multiple feature frameworks, such as the Gabor-based multi-
scale completed LBP (MS-CLBP) [12], the joint feature-based
model [13], and MSHOG feature-based task-driven dictionary
learning [14]. Recently, deep learning-based methods provided
impressive results in multiple tasks of computer vision and
object classification. In the task of ship classification in remote
sensing images, Shi ef al. [15] used two-branch CNN to extract
features based on two-dimensional (2-D) discrete fractional
Fourier transform (2D-DFrFT). Multiple traditional features
obtained by Gabor filter, LBP (CLBP), 2D-DFrFT, and deep
CNN were adopted and applied to extract high-level abstract
features automatically [16]. This method achieved state-of-the-
art performance on a four-category ship classification dataset
[9]. Compared with the handcrafted feature-based methods,
deep-learning-based features provide more discriminative high-
level visual features. These features more effectively bridge the
semantic gap existing between the hand-crafted feature repre-
sentation and the content of remote sensing images.

There still exist some limitations in the use of deep learning-
based features despite their strong discriminative ability in nat-
ural image classification and high potential in fine-grained ship
classification.

1) Lack of annotated data. Few datasets are constructed with
the fine-grained ship category labels due to challenges in
remote sensing images’ collection and data annotation.
The existing datasets [9], [17] are mainly constructed for
level-1 and level-2 classification tasks.

2) Interclass similarity. As is shown in Fig. 2, ships of differ-
ent types may have similar appearance features and ships
of the same type may appear differently under different
conditions which causes difficulties in discriminating both
similar and different ships.

3) The particularity of ship classification. Discriminative
visual features are usually used decisively in the classi-
fication of common objects, especially from the dominant
performances acquired by deep CNNS.
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Regarding the ship identification, which belongs to rigid
body target, some attributes can be simple but effective features
in the differentiation of similar subcategories. For instance, a
destroyer can be easily classified with a fishing ship and an oil
tanker following its larger aspect ratio without considering the
visual features’ differences. Therefore, attributes which usually
describe some unique features of ships can provide adequate
auxiliary information for ship classification.

In this article, the challenging level-3 ship classification task is
explored. First, a new benchmark consisting of high-resolution
optical remote sensing images for fine-grained ship classification
is established. After that, an attribute-guided multilevel en-
hanced feature representation network (AMEFRN) is proposed
for fine-grained ship classification. Specifically, a CNN with
a multilevel enhanced local feature representation module is
adopted to obtain the discriminative visual features, while a
novel attribute-guided branch is designed to obtain auxiliary
attribute features. Finally, the enhanced visual features and
attribute features are fused up as the feature representation for
the fine-grained classification. Comprehensive experiments on
the new benchmark validate its usefulness and the effectiveness
of AMEFRN. In summary, this study’s contributions entail the
following.

1) The challenging task of fine-grained ship classification
in remote sensing image is explored. A fine-grained ship
classification dataset containing 23 categories with high-
resolution optical remote sensing images is established.
Besides the labels of ship category, the attributes of ship
aspect ratio and angles are also annotated in this dataset.

2) A novel AMEFRN is proposed for the fine-grained ship
classification. Based on the generic CNN model, multi-
level enhanced visual features are extracted, where an
RNN-based attention mechanism is used to reweigh the
importance of features in different regions. Moreover, a
new branch for attribute feature learning supervised by
the attribute information is designed to enhance normal
category supervised learning. These two schemes can
be easily embedded into most CNN frameworks and be
trained end-to-end.

3) Numerous experiments are conducted on the new bench-
mark and the effectiveness of the proposed method is fully
verified. Compared with other methods, this framework
shows state-of-the-art performance on the constructed
dataset. Besides, some baseline models are evaluated on
the benchmark.

The rest of this article is organized as follows. Section II gives

a detailed introduction to the FGSC-23. Section III contains the
proposed classification framework. Section IV gives details of
the experiments and result analysis while Section V points out
the conclusions.

II. NEW BENCHMARK FOR FINE-GRAINED SHIP
CLASSIFICATION

A. Ship Classification Datasets in Previous Works

Several object detection and classification datasets [4], [9],
[18], [19] in remote sensing have been established in previ-
ous works. The information of some datasets related to ship
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TABLE I
COMPARING OUR BENCHMARK WITH OTHER SHIP CLASSIFICATION DATASETS

Image Classification Category Ship
Dataset Data source Image type Categories
amount task level balance orientation
Microsoft Bing ) Arbitrary-orien
MASATI Color image 6212 2/7 Level-1 Unbalance
maps ted
Electro-Optical . Arbitrary-orien
BT1000 ) Greyscale image 2000 2 Level-2 Balanced
(EO) satellite ted
Electro-Optical Arbitrary-orien
CCT250 X Greyscale image 750 3 Level-2 Balanced
(EO) satellite ted
Electro-Optical . Arbitrary-orien
BCCT200 . Greyscale image 800 4 Level-2 Balanced
(EO) satellite ted
Electro-Optical
BCCT200-resize X Greyscale image 800 4 Level-2 Balanced Fixed-oriented
(EO) satellite
. Arbitrary-orien
HRSC2016 Google Earth Color image 1161/2976 4/25 Level-1,2,3 Unbalance d
te
Google Earth, . Arbitrary-orien
FGSC-23(ours) Color image 4080 23 Level-3 Unbalance

GF-1

ted

classification using optical remote sensing images is listed in
Table I. Concretely, the Maritime Satellite Imagery (MASATI)
created by Gallego et al. [19] had two main classes, i.e., ship
and nonship, and the subclasses of ship category included ship,
detail, multi, and coast and ship. Thus, it only met with level-1
classification task. BT1000 [9] divided 2000 ships into bulk car-
riers and tankers; CCT250 [9] divided 750 ships into cargo ships,
container ships, and tankers while BCCT200 [9] added a barge
category based on CCT250. All the three datasets had an equal
number of images per category and met the level-2 classification
task. The ships in these datasets were arbitrary oriented and the
size of the images was different. In the BCCT200-resize dataset
[15], preprocessing was accomplished based on BCCT200 by
fixing the orientations of the ships and resizing the images to
300 x 150. Although these datasets were used in previous works
[15], [16], [20], the ship categories were not abundant enough
for the fine-grained ship classification task. HRSC2016 [4] could
be regarded as the first public fine-grained high-resolution ship
detection dataset, which contained 1161 images, and 2976 ships
were labeled with locations and fine-grained or coarse-grained
categories. Regarding the level-3 classification task, 2285 sam-
ples were labeled with 25 fine-grained categories. However, the
number of samples in 13 categories were less than 100, while
seven categories were with less than ten ships. Besides, as a
ship detection dataset, the fine-grained classification of ships
could only be done based on the correct detection of ships.
Although the dataset was an inspiring work for the fine-grained
ship classification, it was not adequate enough. Thus, in this
study, a collection of high-resolution optical remote sensing ship
images was made and it could be used for fine-grained ship
classification.

B. Collection and Annotations of FGSC-23

FGSC-23 has a total of 22 categories of ships and 4080
chips. Some negative samples which look like ships are labeled
as “nonship” category. Therefore, 23 categories constitute this
dataset. All the ship chips are obtained from Google Earth public

images and GF-1 satellite. The sizes of images are not fixed,
ranging from 40 to 800 pixels. Approximately 1600 chips are
taken from the HRSC2016 dataset. All the ship categories are
labeled by human interpretation. Typical samples of each ship
category are shown in Fig. 3, and the number of each category
is listed in Table II.

Except for the category labels, the attributes of the ship aspect
ratio and the angle between the ship’s central axis and the
image’s horizontal axis are also annotated. The illustrations of
the two attribute labels are shown in Fig. 4.

C. Properties of FGSC-23

The FGSC-23 has the following properties.

1) Category diversity: FGSC-23 divides ships into fine-
grained categories. For example, for a coarse category of
cargo ship, it is divided into container ship, bulk carrier,
car carrier, oil tanker, and liquefied gas ship fine-grained
categories.

Image diversity: As is shown in Fig. 3, ships under dif-
ferent illumination conditions, with onshore or offshore
backgrounds and with arbitrary-oriented distributions are
involved in this dataset. Moreover, the resolutions of im-
ages are not fixed, ranging from 0.4 to 2m. On the one
hand, the diversity of data places higher requirements on
classification algorithms. Still, on the other hand, it is ben-
eficial to train a model with stronger learning capability
and better generalization.

Label diversity: Each sample of the dataset is annotated
with three labels—ship category, ship aspect ratio, and the
distribution direction. Therefore, this dataset can also be
used for other tasks such as ratio and direction estimation.
Category imbalance: There exists an issue of category
imbalance in FGSC-23, as is shown in Table II: In the
real world, specific ships, such as the medical ship, are
much less than others. Therefore, category imbalance
is unavoidable to some degree. This necessitates further
improvements to provide a solution to this issue.

2)

3)

4)
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13 Auxiliary ship

17 Bulk carrier

20 Passenger ship

21 Liquefied gas ship

Fig. 3.
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6 Cruiser

14 Container ship

18 Oil tanker

19 Fishing boat

22 Barge

Fine-grained categories and ship slice samples of each category in FGSC-23.

TABLE 1T
NUMBER OF EACH CATEGORY IN FGSC-23

Category ID 0 1 2 3 4 5 6 7 8 9 10 11
Amount 484 165 542 108 295 90 293 88 154 89 238 27
Category ID 12 13 14 15 16 17 18 19 20 21 22 Total

Amount 143 225 101 72 120 343 165 102 88 94 54 4080

The correspondence between category ID and category can be found in Fig. 3.

5) Public availability: The dataset is publicly available for
free for scientific research, and the link to the current
version is' (extraction code: n8ra).

III. PROPOSED METHOD
A. Architecture of the Proposed Method

Based on the interclass similarity issue, a discriminative fea-
ture representation is highly required for a fine-grained ship clas-
sification task [21], [22]. In this study, an AMEFRN is designed.
Two schemes, i.e., multilevel visual feature representation and

Thttps://pan.baidu.com/s/ Th_F7c-btLqhOXLT20XHWBg

attribute feature representation are proposed to optimize the
feature representation of general CNN. The overall architecture
of the proposed method is shown in Fig. 5 and the classical
network of VGG16 [23] is taken as an example for illustra-
tion. Multilevel convolutional visual features are extracted from
VGG16 and the local features are weighed by an RNN-based
attention mechanism to get an enhanced visual feature represen-
tation. To obtain the attribute features, a novel attribute-guided
branch trained by additional attribute supervision information is
designed. Consequently, the visual features and attribute features
are associated together as classification features and fed into
the classifier. Details and analysis of the proposed schemes are
introduced in the following sections.
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Attribute 1: aspect ratio (/W) Attribute 2: ¢

(a) (b)

Fig. 4. Tllustration of the two attribute labels in FGSC-23. (a) Aspect ratio r
(r =|L/W]). (b) Angle 6 € [0, 180°].

B. Multilevel Enhanced Feature Representation

Local features play an important role in distinguishing the
fine-grained categories of ships. Some specific local features
might become a “symbol” of a particular category of the ships.
For instance, as is shown in Fig. 6, a symbol of a red cross
on a ship signifies a medical ship, while a special shape of
the bow, aircrafts on the deck, and a flight runway illustrate an
aircraft carrier. The difference in cargos is an essential element
to distinguish a container ship from a bulk carrier. Compared
with features extracted from other regions, these specific local
features are crucial for better classification performance and re-
quire more attention. However, since the focus areas in different
images are varied, the classification network should be guided
to weigh the features of multilevel areas automatically.

Generally, in CNN frameworks, the high-level convolutional
features from the last convolutional block are usually translated
to a feature vector by flattening or pooling operation. The feature
vector merges all areas of the image; hence, it can be considered
as a global feature vector with senior semantic information.
However, the global feature vector fails to distinguish the fea-
tures of different areas in the image. Thus, in this framework,
a multilevel feature representation is proposed to make up for
the deficiencies. Classical VGG16 is taken as an example for
illustration. The input of the network is resized to 224 x 224 x
3, and after a series of pooling operations, the last convolutional
feature map drops to 7 x 7 x 512. It is treated as a collection
of local feature vectors: Fi; = {0912, 0312 ... 0212}, where
v21? denotes the features of the corresponding area in the original
image. Then, an average pooling operation with a kernel size 2 x
2 is conducted and the second-level feature collection of enlarged
local areas is obtained by Fr» = {wi'?, w3? ... w33} Fur-
ther to this, a global average pooling operation with kernel size 7
x 71s done to translate features into the third-level global feature
vector Fr3 = fglz. The illustration of the three-level visual
feature representation and the visualization effects is shown in
Fig. 7. The number of feature levels is not fixed and can be
adjusted according to actual requirements.

The feature vectors in F,; and F» which denote features of
different local areas are accorded with different weights. When
we scan an image, our eyes move in turns, and we will pay
more attention to some salient parts which is acquired through
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contextual comparison. Based on this fact, these feature vectors
are regarded as a set of ordered sequences, and spatially adja-
cent vectors usually share more semantic associations, which
inspires us to use the RNN network in learning their importance
weights. One of our previous works, an RNN-based attention
module [24], is adopted here to weigh these feature vectors. For
the ith level feature map Fp, = {f{'2, f312, ..., f21%}, the k
regional feature vectors { f7'*}(j = 1,2, ..., k)are entered into
the gated recurrent units (GRU) [25] in turns, which outputs
sequences H = {hy,ho,...,hy}. H is treated as a learned
revised regional feature representation considering context in-
formation. After that, two fully connected (FC) layers are con-
nected and the attention weight map of the regional features
A; ={a1,aq9,...,a;}isacquired. Fr; is revised by weight map
A Fr =A{f;} ={a1 x P2 a0 x f312 00 ag x f2'?}. The
weighted feature vectors in F} ; and F7} , are summed up, respec-
tively, to obtain the local feature vector fr; and fro as follows:

k

k
S SR m
J j=1

—

Together with the global feature vector f2!2, the three fea-

ture vectors { f2!2, f212, f25%} form a three-level visual feature
representation.

C. Attribute-Guided Feature Extraction Branch

As discussed in Section I, some inherent attributes of ships,
i.e., scale and aspect ratio, are effective auxiliary information
helpful for fine-grained ship classification. Inspired by the self-
supervised learning [26], [27] where the feature representation
learning is achieved by predicting the image rotations, the at-
tribute information of ships might be used as the supervision
information as well, which can enhance the feature represen-
tation learning. The learned feature supervised by the attribute
information is regarded as an attribute feature and is the auxiliary
feature to visual features extracted in Section III-B. The attribute
of the ship’s aspect ratio is not affected by the image resolution;
besides, it is easy to acquire as the ship detection technology
with oriented bounding boxes is quite mature [28], [29]. Thus,
it is adopted as the supervision information to construct an
attribute-guided feature extraction branch for the attribute fea-
ture representation.

The attribute-guided feature extraction branch is built based
on the general CNN structure and its architecture is shown in
Fig. 5. The input of the original network is fed into this branch,
and after five blocks of convolution-pooling layers, features of
this branch are fed into two FC layers. A ReLU function is then
used in predicting the aspect ratio attribute. The backbone of
this branch is similar to the structure of VGG16 and its detailed
composition is shown in Fig. 8.

To guide this branch learning the attribute of aspect ratio
automatically, a supervised L1 loss is adopted which is shown
as follows:

Lattr = |ﬁa - ga| (2)

where p,, is the attribute prediction of the network and g, is the
ground truth.
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Fig. 5. Framework of the proposed network.
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Fig. 6.
bulk carrier. (c) Special local information of aircraft carrier.

The output of the last FC layer is a 512-dimesional feature
vector f312 which is directly used for attribute prediction.
Naturally, it holds much geometric attribute information, which
is beneficial for category classification. Therefore, it is fused
with the multilevel visual features extracted for subsequent cat-
egory classification. Hence, the whole network obtains attribute
supervision information and category supervision information,
and the attribute features are extracted as auxiliary features to
multilevel version features. This enhances the learning capabil-

ity of the network for a fine-grained classification task.

D. Training and Inference

Using the framework mentioned above, attribute feature 512
and multilevel visual features { f21%, f212, f21?} are acquired.

They are concatenated together and then, two FC layers follow

Samples of salient regions for fine-grained ship classification. (a) Important symbol of medical ship. (b) Local features to distinguish container ship and

to reduce the dimension and further modify the feature. The
classification feature vector f192¢ achieved in this way is then
entered to Softmax classifier for output prediction. Category
labels are used for supervised learning and cross-entropy loss

described in formula (2) is adopted for training

M
Leat = — Y yelog(pe) 3)
c=1

where M is the categorynumber, p. is the category prediction,
and y. is the ground truth. The overall training loss of the whole

network constitutes the summary of L, and Leat
L= Lcat + Lattr- (4)

During the end-to-end training, Softmax function is adopted
for classification. In inference, following [24], classifier of linear
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Fig. 8.  Architecture of attribute-guided branch.

SVM is adopted to replace the Softmax function due to its power-
ful classification ability. The SVM is trained with classification
vector Cl]gié as input and category of the target as output.

IV. EXPERIMENTS AND RESULT ANALYSIS

In this section, extensive experiments are conducted on the
FGSC-23 dataset to validate the effectiveness of the proposed
method.

A. Experimental Setup

In this section, some details about the experiment, including
the dataset setting, image preprocess method, evaluation metrics,
and experiment environment, are presented as follows.

1) Dataset Setting: The FGSC-23 is separated into training
set and testing set. From each category, 20% images are ran-
domly selected for testing and the rest for training. Due to the
issue of sample imbalance, data augmentation is done to enlarge
the number of images of some categories in the training set, and
the methods include changing the image lightness in the range
of [0.5, 1.5], image scaling in the range of [0.8, 1.2], image
flip, and random cropping. For the categories with less than 200
ships in the training set, the images are selected randomly and the
augmentation means mentioned above are conducted to enlarge
the training images to 200. Therefore, there are 825 chips in
testing set, and the 3255-sample training set is enlarged to 5165
samples.

2) Image Preprocess: The CNN models with FC layers for
the classification tasks require the inputs with a fixed size.
Therefore, images of different shapes need resizing. However,
the general operation [30] of resizing an image to a fixed size
by interpolation or downsampling changes the aspect ratios of
objects in the nonsquare images, which has a negative influence
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in the training of the attribution-aware branch. To solve this
issue, an image resizing operation of zero padding is proposed to
maintain the aspect ratios of objects. The inputs require resizing
to 224 x 224 x 3. The longer side of the image is first upsampled
or downsampled to 224. Upsampling or downsampling on the
shorter side of the image with the same ratio follows. The rest
of the image area is then padded with zeros. This maintains the
attribute of the ship’s aspect ratio. The resizing results of the gen-
eral operation and zero-padding-based operation are compared
in Fig. 9. Besides, experiments are conducted to examine the
influences of the two image preprocessing means on detection.

3) Evaluation Metrics: Three indicators, i.e., accuracy rate
(AR) of each category, overall accuracy (OA), and the confusion
matrix (CM) [24], are adopted to evaluate the classification re-
sults in the experiments. The AR measures the ratio of correctly
classified images and total testing images among a category,
while the OA measures the ratio of correctly classified images
and total testing images regardless of categories. The CM is
the visualization of the classification matrix, which records the
detailed classification results for every category. Each element
amn in CM denotes the proportion of the chips predicted to be
the nth category while it actually belongs to the mth category.

4) Experiment Environment: The experiments are conducted
using Keras framework on a 64-b computer under Ubuntu 16.06
with one NVIDIA GTX 1080Ti GPU for acceleration. During
training, a batch size of 32 is set and an initial learning rate of
0.0001. All the models are trained for 100 epochs.

B. Establishment of Baselines

The proposed schemes, i.e., multilevel enhanced feature rep-
resentation and the attribute-guided branch in AMEFRN, can
be conveniently embedded into most CNN models. Thus, two
representative models, VGG16 and ResNet50 [31], are adopted
as baseline feature extractors to test the effects of the proposed
method in the experiments. Due to the relatively small scale of
our dataset, pretrained parameters on ImageNet [32] are used
to initialize the baseline models. Here, comparisons are made
between classifiers of Softmax and the linear SVM, as well as
image preprocessing methods of general resizing operation and
the proposed zero-padding method. VGG16 and ResNet50 are
trained with resized data and zero-padded data, respectively.
Softmax function is used in the end-to-end training of both
VGG16 and ResNet50. But during testing, Softmax function
and linear SVM are adopted in turn on the trained VGGI16
and ResNet50 to compare their classification performances. The
classification feature vector f1724 extracted by trained VGG16
and ResNet50 is used as an input to SVM, and all the images
in the training set are used to train the SVM. The OAs of these
eight models are listed in Table III, and the visualizations of
respective CMs are shown in Fig. 10.

The above-mentioned results reveal that under the same con-
ditions, SVM provides a better classification performance on
both VGG16 and ResNet50. The effects of the zero-padding
method are validated as it behaves better than the general image
resizing method. Thus, in the subsequent experiments, the zero-
padding method is used for image preprocessing. VGG16 with
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Fig. 10. CM of each model in baseline establishment.

SVM and ResNet50 with SVM are adopted as baselines in our
experiments, namely, baselinel and baseline2, respectively.

C. Ablation Study

In this section, ablation studies are conducted to verify the
effects of the proposed AMEFRN. The experiments are divided
into three parts. First, the effect of the attribute-guided branch
used alone on the two baselines is validated. Then, different local
feature levels are tested to find the best setting of the proposed
multilevel enhanced feature representation on the baselines.
Finally, the two schemes are applied jointly to test the compound
influence to the two baselines.

1) Effects of the Attribute-Guided Branch: The proposed
attribute-guided branch (named scheme1) is applied to baselinel
and baseline2, respectively. The proposed zero-padding method
isused to modify the input images. Each category’s classification
result, as well as the OA of the testing set, is shown in Table IV.

Predicted label

ResNet50+Zero-padded datatSVM

Predicted label

ResNet50+Zero-padded data+Softmax

From the results above, we can see that the attribute-guided
branch added to baseline models definitely improves the OA of
both VGG16 and ResNet50, improving by 1.93% and 0.86%,
respectively. Here, ResNet50-based models show better perfor-
mance than VGG16-based models, implying that ResNet50 has
a better feature representation capability compared to VGG16.
However, the addition of our attribute-guided branch narrows
the gap between the two baseline models to some degree.

2) Effects of Multilevel Enhanced Feature Representation:
In this section, the effects of multilevel enhanced feature repre-
sentation (named scheme?2) are verified on both baselinel and
baseline2. Specially, different feature representation levels for
ship classification are tested. Four conditions are considered,
i.e., using 1-level features, 2-level features, 3-level features,
and 4-level features, respectively, in the classification. Con-
cretely, the 1-level feature representation has only global feature
vector (f2'? described in Section III-B); the 2-level feature
representation contains the global feature vector and enhanced
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TABLE III
OA (%) OF EACH MODEL IN BASELINE ESTABLISHMENT

Resized Zero-
Models esize padded  Softmax  SVM 0A
data
data
VGG N, - N, - 77.82
16 J ] ; J 81.09
- J N, - 79.64
- J - N, 81.95
v - v - 81.21
ResNet v - - N 84.00
50 - J J - 83.03
- J N, 84.60

The portions in bold represent the best performance.

TABLE IV
AP (%) AND OA (%) OF THE BASELINES WITH SCHEME 1

. Baselinel . Baseline2
Result  Baselinel +Schemel Baseline2 +Schemel
ARy 84.54 84.54 85.57 88.66
AR, 90.74 85.29 91.18 85.29
AR, 83.33 93.52 87.96 93.52
AR;3 90.91 86.36 77.27 86.36
ARy 91.53 84.75 93.22 91.53
ARs 66.67 72.22 83.33 77.78
ARg 81.36 83.05 79.66 83.05
AR7 88.89 88.89 77.78 88.89
ARg 87.10 87.10 83.87 96.77
ARy 72.22 66.67 77.78 61.11
ARy 87.50 87.50 89.58 89.58
ARy 90.00 100.00 100.00 100.00
ARy 82.76 93.10 93.10 86.21
AR3 77.78 77.78 82.22 80.00
ARy4 80.00 90.00 80.00 90.00
AR5 85.71 78.57 92.86 92.86
ARjs 100 95.83 100 100
ARy 71.01 72.46 75.36 72.46
ARy3 60.61 78.79 72.73 78.79
ARy 60.00 55.00 65.00 55.00
ARy 55.56 66.67 66.67 61.11
ARy 90.00 95.00 100 95.00
AR2 90.91 90.91 90.91 90.91
OA 81.95 83.88 84.60 85.46

The portions in bold represent the best performance.

local 3 x 3-subregion feature vector (f2!'?and f7* described
in Section III-B); the 3-level feature representation contains
global feature vector, enhanced local 3 x 3-sub-region feature
vector and local 7 x 7-subregion feature vector (f2'%,f212,
and f71? described in Section III-B); and for 4-level feature
representation, except for these feature vectors, an additional 14
X 14-subregion feature vector is contained, which is achieved
from the feature map of the second-last convolutional block.
The four feature representations are embedded into baselinel

and baseline2, respectively, and the classification results are
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shown in Table V. The visualizations of CMs for the models
are shown in Fig. 11, which provide a more intuitive reflection
of the classification results.

Here, the 1-level feature representation is achieved by global
pooling operation to the last convolutional feature layer of the
CNN model, which is similar to that of general CNNs. The clas-
sification results of 1-level feature representation are also sim-
ilar to their baselines. Further, the multilevel enhanced feature
representations share significant improvements to classification
performance than the baselines. Among them, 3-level feature
representation achieves the best performance on both baselinel
and baseline2. The 4-level features do not perform optimally like
the 3-level features, which is due to lower-level feature maps
being used in 4-level feature representation to achieve higher
resolution regional features, which is not semantic enough for
the classification task. Therefore, 3-level feature representation
is the best setting for FGSC-23. In subsequent experiments, this
setting is adopted.

Besides, we find out that the proposed scheme?2 significantly
improves the performance of baselinel and narrows the OA
gaps between baselinel and baseline2. The best performance in
this group of experiments is achieved by baselinel with 3-level
feature representation. More classification details are reflected
in the CM of each model.

3) Compound Effects of Proposed Schemes: In this section,
the proposed schemel and scheme?2 are used jointly to test their
compound influence on the classification performance of the two
baselines. A 3-level feature representation is used for scheme?2.
For a more intuitive comparison, in Table VI, we present the
classification performances of the baselines with the schemes
used alone. Besides, the CMs for each model in this group are
visualized and shown in Fig. 12.

From the results, it can be seen that schemel improves the
baselinel by 1.93%, scheme?2 improves it by 9.2%, and schemel
and scheme? jointly improve it by 11.63%. For baseline2, these
schemes improve it by 0.86%, 5.7%, and 8.49%, respectively.
The improvements caused by a combination of the two schemes
are even larger than the sum of the improvements achieved by in-
dividual schemes, indicating that the two schemes are more pow-
erful when used jointly in classification models. When it comes
to the detailed performances in each category, the schemes also
improve the classification accuracy in most categories. Notably,
the combination of the two schemes yields the best ARs of the
two baselines in 19 categories out of 23 categories. Evidently,
our proposed method effectively improves the accuracy of CNN
models in fine-grained ship classification task.

Besides, we find that our schemes seem to have a larger
influence on VGG16 than ResNet50, especially scheme?2.

The VGG16 has fewer layers and simpler structure compared
with ResNet50, and ResNet50 is proved to have stronger feature
representation capability in Section IV-B. The output of the
last convolutional layer of VGG16 is a feature map of 7 x
7x 512, while the output of the last convolutional layer of
ResNet50 is a 7 x 7x 2048 feature map. Thus, the 3-level
feature representation of scheme2 forms a 6144-dimensional
concatenated visual feature vector in ResNet50, much larger
than the 1356-dimensional concatenated visual feature vector in
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TABLE V

Baselinel Baselinel Baselinel Baselinel Baseline2 Baseline2 Baseline2 Baseline2
Result +1-level +2-level +3-level +4-level +1-level +2-level +3-level +4-level
features features features features features features features features
ARy 77.32 87.63 90.72 91.75 86.60 91.75 92.78 92.78
AR, 91.18 94.12 88.24 94.12 88.24 91.18 94.12 94.12
AR, 89.81 95.37 96.30 94.44 87.96 96.30 99.07 95.37
AR; 90.91 81.82 86.36 81.82 77.27 77.27 86.36 77.27
ARy 86.44 94912 96.61 93.22 89.83 96.61 96.61 94.92
AR5 88.89 83.33 83.33 72.22 66.67 83.33 72.22 77.78
ARg 86.44 89.83 88.13 84.75 81.36 88.13 88.13 89.83
ARy 83.33 83.33 83.33 88.88 77.78 88.89 83.33 83.33
ARg 90.32 90.32 93.55 93.55 93.55 90.32 96.77 96.77
ARy 72.22 72.22 83.33 66.67 72.22 77.78 77.78 66.67
AR 87.50 93.75 93.75 93.75 91.67 93.75 95.83 95.83
ARy, 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ARp» 93.10 93.10 96.55 96.55 89.66 86.21 96.55 96.55
ARy3 73.3 80.00 91.11 77.78 71.11 80.00 86.67 77.78
ARy 80.00 90.00 95.00 90.00 85.00 90.00 80.00 90.00
ARjs 92.86 92.86 92.86 100.00 92.86 100.00 92.86 100.00
AR¢ 95.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ARy7 71.01 78.26 86.96 81.16 71.01 79.71 82.61 82.61
ARjs 69.70 78.79 84.85 78.79 75.76 87.88 78.79 78.79
ARy 55.00 40.00 75.00 70.00 55.00 55.00 65.00 80.00
ARy 66.67 77.78 83.33 77.78 72.22 77.78 77.78 83.33
ARy 95.00 100.00 95.00 100.00 100.00 100.00 100.00 100.00
AR» 100.00 90.91 100.00 90.91 90.91 90.91 90.91 90.91
OA 83.15 87.64 91.15 88.48 83.52 88.97 90.30 89.82

The portions in bold represent the best performance.

VGG16, which means that there are more parameters to train in
the following FC layers in baseline2. However, the FGSC-23 is
still a small-scale dataset, and cannot train well a model which is
too complex. Thus, using VGG16 with the two schemes seems
to be more suitable for ship classification task in FGSC-23.

4) Efficiency of the Proposed Schemes: The results and anal-
ysis presented above highlight the classification effects of dif-
ferent models on FGSC-23. Here, a further discussion is made
to analyze the efficiency of the proposed method.

The two schemes unavoidably reduce the processing speed as
they add extra layers and parameters to the original CNN model.
To explore the efficiency of our method, the training and testing
time of the eight models in Section IV-B is recorded as shown
in Table VII. The aspects of time included are the total training
time per epoch, average training time on a single image, total
testing time, and the average testing time per image. For each
model, the testing time is measured ten times and the average
testing time is recorded.

The data shown in the table reveal that compared with the
baselinel, the training time of our AMEFRN increases by about
77% and the testing time increases by about 39%; compared with
baseline2, the training time and testing time of our AMEFRN
increase by 58% and 18%, respectively. Besides, schemel seems

more time-consuming than scheme2. The average testing time
perimage is about 7.1 ms on baselinel and 7.43 ms on baseline2.
In general, the absolute time of our method can be accepted in
real applications.

D. Comparison With Other Classification Methods

In this section, our proposed model is compared with other
classification models on the FGSC-23. Studies have shown that
models based on deep CNN-based features are more effective
than most traditional handcrafted feature-based methods for
object classification [33], [34]. On this basis, we compare our
method only with deep CNN-based methods. They involve
representative CNN models proposed in recent years includ-
ing Inception-v3 [35], DenseNet121 [36], MobileNet [37], and
Xception [38], fine-grained classification models for remote
sensing images including ME-CNN [16], FDN [15], LGFFE
[24], as well as fine-grained object classification models for
natural scene images, i.e., B-CNN [39] and DCN [40]. Among
them, for ME-CNN, FDN, LGFFE, and DCN, the settings with
the best performance reported in their works are adopted. The
parameters of the rest five models are tuned for times and the
best classification performances are reported. Best performances
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Fig. 12.  CMs of models in ablation study.

obtained from these models are then compared with the best per-
formance achieved by our method. The AP and OA percentages
of these models as well as the average training and testing time
per image are listed in Table VIII, and the CM of each model is
shown in Fig. 13.
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00

These results show that among the four deep CNN baselines,
the Xception model, which integrates the advantages of ResNet
series and Inception series, performs better than the other three
models, while the MobileNet runs the fastest. FDN and ME-
CNN are two models designed for ship classification in satellite
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TABLE VI
AP (%) AND OA (%) OF ABLATION STUDY
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, Baselinel+ Baselinel+ D2sclnel® , Baseline2+ Baseline2+ D2scine2t
Result Baselinel schemel+  Baseline2 schemel+
schemel scheme2 schemel scheme2
scheme2 scheme2
ARy 84.54 84.54 90.72 98.97 85.57 88.66 92.78 97.94
AR, 90.74 85.29 88.24 94.12 91.18 85.29 94.12 94.12
AR, 83.33 93.52 96.30 99.07 87.96 93.52 99.07 98.15
AR; 90.91 86.36 86.36 90.91 77.27 86.36 86.36 77.27
ARy 91.53 84.75 96.61 94.92 93.22 91.53 96.61 96.61
ARs 66.67 72.22 83.33 83.33 83.33 77.78 72.22 94.44
ARg 81.36 83.05 88.13 88.98 79.66 83.05 88.13 89.83
AR; 88.89 88.89 83.33 88.89 77.78 88.89 83.33 83.33
ARg 87.10 87.10 93.55 93.55 83.87 96.77 96.77 100.00
ARy 72.22 66.67 83.33 83.33 77.78 61.11 77.78 88.89
ARy 87.50 87.50 93.75 95.83 89.58 89.58 95.83 95.83
ARy 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
ARy 82.76 93.10 96.55 96.55 93.10 86.21 96.55 100.00
ARy3 77.78 77.78 91.11 86.67 82.22 80.00 86.67 91.11
ARy4 80.00 90.00 95.00 100.00 80.00 90.00 80.00 85.00
AR5 85.71 78.57 92.86 92.86 92.86 92.86 92.86 100.00
ARis 100.00 95.83 100.00 100.00 100.00 100.00 100.00 100.00
ARy7 71.01 72.46 86.96 91.30 75.36 72.46 82.61 89.86
ARy3 60.61 78.79 84.85 87.88 72.73 78.79 78.79 84.85
ARy 60.00 55.00 75.00 70.00 65.00 55.00 65.00 70.00
ARy 55.56 66.67 83.33 88.89 66.67 61.11 77.78 83.33
ARy 90.00 95.00 95.00 100.00 100 95.00 100.00 95.00
AR» 90.91 90.91 100.00 90.91 90.91 90.91 90.91 90.91
OA 81.95 83.88 91.15 93.58 84.60 85.46 90.30 93.09
The portions in bold represent the best performance.
TABLE VII

TRAINING AND TESTING TIME OF EACH MODEL

Total training

Training time per

Model Total testing time(ms) Testing time per image(ms)
time(ms/epoch) image(ms)

Baselinel 31474.22 6.08 4156.35 5.09
Baselinel+schemel 53406.17 10.34 4813.35 5.90
Baselinel+scheme?2 34056.72 6.59 4781.14 5.86

Baselinel+schemel+ scheme2 5576.31 10.79 5791.28 7.10

Baseline2 35530.31 6.88 5122.36 6.28
Baseline2+schemel 55007.25 10.65 5685.98 6.97
Baseline2+scheme?2 36870.86 7.13 5620.42 6.89

Baseline2+schemel+ scheme2 56169.38 10.88 6060.37 743

images. They differ in that FDN extracts features from Fourier
domain of images, while ME-CNN extracts image features by
Gabor filter, LBP operator, and 2-D DFrFT and uses CNN to
further extract classification information. ME-CNN has a better
performance than FDN while it runs slower than FDN. The
LGFFE is also an effective feature representation model and
has shown state-of-the-art performance in many classification
tasks with remote sensing images. These three models are all
proposed for remote sensing classification tasks, and notably,

LGFEFE achieves the best performance among them. B-CNN and
DCN are all designed for fine-grained object recognition task,
and the DCN outperforms B-CNN in classification performance
for FCSC-23. Although not the fastest algorithm, our method
exhibits the best performance, exceeding Xception by 5.82%,
LGFFE by 4.13%, and DCN by 2.92% for OA. Besides, our
method yields the best AR percentages in 15 out of 23 categories.
Evidently, our method displays a state-of-the-art performance in
the fine-grained ship classification task of FGSC-23.
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Fig. 13.

AP (%) AND OA (%) OF DIFFERENT CLASSIFICATION MODELS

TABLE VIII

Inception-  DenseNet VGG16+
Models MobileNet  Xception FDN ME-CNN LGFFE B-CNN DCN
v3 121 AMEFRN
AR, 87.63 86.60 84.54 89.69 85.57 93.81 92.78 84.54 93.81 98.97
AR; 91.18 82.35 88.24 88.24 88.24 91.18 94.12 91.18 94.12 94.12
AR, 89.81 89.81 88.89 91.67 85.19 87.04 95.37 86.11 97.22 99.07
AR; 77.27 72.73 86.36 81.82 81.82 63.64 81.82 90.91 86.36 90.91
AR4 91.53 84.75 88.16 96.61 89.83 86.44 96.61 89.83 94.92 94.92
ARs 83.33 77.78 77.78 88.89 77.78 77.78 83.33 83.33 83.33 83.33
AR 76.27 72.88 86.44 86.44 81.36 76.27 83.05 76.27 86.44 88.98
AR; 94.44 77.78 83.33 83.33 72.22 66.67 72.22 83.33 83.33 88.89
ARg 100.00  100.00  100.00  90.32 77.42 83.87 96.77 96.77  100.00  93.55
AR 55.56 77.78 77.78 94.44 66.67 83.33 83.33 77.78 88.89 83.33
ARjo 89.58 93.75 91.67 93.75 87.50  100.00  97.92 91.67 93.75 95.83
ARy 100.00  100.00  90.00  100.00  90.00  100.00  100.00  100.00  100.00  100.00
AR}, 93.10 93.10 93.10 82.76 93.10 93.10 96.55 93.10 96.55 96.55
ARy 68.89 75.56 75.56 77.78 77.78 82.22 77.78 7333 84.44 86.67
ARy 80.00 85.00 80.00 85.00 75.00 85.00 80.00 80.00 90.00  100.00
AR5 9286  100.00  92.86 92.86 85.71 100.00 9286  100.00  100.00  92.86
ARy 100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00  100.00
ARy; 76.81 75.36 75.36 76.81 73.91 78.26 85.51 72.46 81.16 91.30
ARys 66.67 78.79 69.70 81.82 72.73 81.82 81.82 75.76 87.88 87.88
ARy 40.00 55.00 45.00 70.00 45.00 60.00 65.00 55.00 55.00 70.00
ARy 7222 66.67 55.56 77.78 77.78 66.67 77.78 61.11 83.33 88.89
AR 90.91 100.00  100.00  100.00  100.00  100.00  100.00  100.00  95.00  100.00
AR 87.63 90.91 90.91 90.91 90.91 100.00  90.91 90.91 90.91 90.91
OA 83.88 84.00 84.24 87.76 82.30 85.58 89.45 84.00 90.66 93.58
Training 7.51 7.89 6.08 10.75 10.62 23.96 7.29 12.53 7.91 10.79
time(ms)
Testing 6.89 7.05 5.92 9.17 7.92 19.68 6.85 11.17 7.01 7.10
time(ms)

The portions in bold represent the best performance.

ME-CNN

CMs of models for comparison.

B-CNN

iobel

Proposed method
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V. CONCLUSION

In this article, the task of fine-grained ship classification in
optical remote sensing images is explored. A set of solutions are
proposed to address the challenges of this task. A 23-category
fine-grained ship classification dataset called FGSC-23 is es-
tablished for this investigation, which compensates the lack of
relevant data. To the best of our knowledge, it is the second public
dataset with fine-grained ship categories after HRSC2016 and
with the characters of data diversity, label diversity, and cate-
gory diversity. A novel attribute-guided classification framework
with multilevel enhanced feature representation is proposed for
fine-grained ship classification in remote sensing images. We
attempt to solve the classification task from two perspectives—
enhancing the multilevel visual feature representation of CNN
and adding additional attribute supervision information to the
CNN framework. Concretely, multilevel local and global fea-
tures are extracted and the local features are weighed using
RNN-based attention module to guide the network focus on
silent areas and suppress unimportant areas. Attribute informa-
tion is added to an attribute-aware branch to extract attribute
features, which is auxiliary to the enhanced visual features.
The extra supervision information based on the ship’s attribute
effectively improves the learning capability of classification
models. The two schemes proposed in this study can be easily
embedded into most CNN models and can be trained end-to-end.
Experiments have proven that the two schemes optimize the clas-
sification performance and their benefits are compounded when
they are used jointly. Our AMEFRN presents state-of-the-art
performance on the FGSC-23 dataset, exceeding that of other
baselines and classification models.

Despite the high performance of our AMEFRN, we plan to
further modify the dataset to resolve the issue of category imbal-
ance and explore the fine-grained ship classification algorithms
in other remote sensing images in future work.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their hard work. The authors would also like to thank L. Zikun
et al. for their help with data and the interpretation of part of
ships.

REFERENCES

[1] J. Versteegen et al., “On payload spatial and spectral resolutions for
automatic ship detection in satellite images,” in Proc. 5th Int. Workshop
Earth Observ. Remote Sens. Appl., Xi’an, China, 2018, 1-5.

[2] X. Yang et al., “Automatic ship detection in remote sensing images from
Google Earth of complex scenes based on multiscale rotation dense feature
pyramid networks,” Remote Sens., vol. 10, no. 1, 2018, Art. no. 132.

[3] J. Lan and L. Wan, “Automatic ship target classification based on aerial
images,” Proc. SPIE, vol. 7156, 2008, Art. no. 715612.

[4] Z. Liu et al., “A high resolution optical satellite image dataset for ship
recognition and some new baselines,” in Proc. 6th Int. Conf. Pattern
Recognit. Appl. Methods, 2017, pp. 324-331.

[5] Z. L. Szpak and J. R. Tapamo, “Maritime surveillance: Tracking ships
inside a dynamic background using a fast level-set,” Expert Syst. Appl.,
vol. 38, no. 6, pp. 6669-6680, 2011.

[6] L.J. W. Min and M. Dongping, “Extract ship targets from high spatial
resolution remote sensed imagery with shape feature,” Geomatics Inf. Sci.
Wuhan Univ., vol. 30, no. 8, pp. 685-688, 2005.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

[7] H.U.Jun-Huaet al., “Detection of ships in harbor in remote sensing image
based on local self-similarity,” J. Image Graph., vol. 14,no. 8, pp. 591-597,
20009.

[8] D. X. Zhang et al., “Ship targets detection method based on multi-scale
fractal feature,” Laser Infrared, vol. 39, pp. 315-318, 2009.

[9] K. Rainey and J. Stastny, “Object recognition in ocean imagery using

feature selection and compressive sensing,” in Proc. IEEE Appl. Imagery

Pattern Recognit. Workshop, 2011, pp. 1-6.

S. Zhina, S. Haigang, and W. Yujie, “Automatic ship detection for optical

satellite images based on visual attention model and LBP,” in Proc. IEEE

Workshop Electron., Comput. Appl., May 2014, pp. 722-725.

[11] Z.Guo,L.Zhang, D.Zhang, and X. Mou, “Hierarchical multiscale LBP for
face and palmprint recognition,” in Proc. IEEE Int. Conf. Image Process.,
Hong Kong, Sep. 2010, pp. 4521-4524.

[12] L. Huang, W. Li, C. Chen, F. Zhang, and H. Lang, “Multiple features
learning for ship classification in optical imagery,” Multimedia Tools Appl.,
vol. 77, pp. 13363-13389, 2018.

[13] H. Lang, J. Zhang, X. Zhang, J. Zhang, X. Zhang, and J. Meng, “Ship
classification in SAR image by joint feature and classifier selection,” IEEE
Geosci. Remote Sens. Lett., vol. 13, no. 2, pp. 212-216, Feb. 2016.

[14] H.Lin, S.Song, andJ. Yang, “Ship classification based on MSHOG feature

and task-driven dictionary learning with structured incoherent constraints

in SAR images,” Remote Sens., vol. 10, no. 2, 2018, Art. no. 190.

Q. Shi, W. Li, and R. Tao, “2D-DFrFT based deep network for ship

classification in remote sensing imagery,” in Proc. 10th IAPR Workshop

Pattern Recognit. Remote Sens., Beijing, China, Aug. 2018, pp. 1-5.

Q. Shi ez al., “Ship classification based on multifeature ensemble with con-

volutional neural network,” Remote Sens., vol. 11,n0.4,2019, Art.no. 419.

K. Li et al., “Object detection in optical remote sensing images: A survey

and a new benchmark,” ISPRS J. Photogramm. Remote Sens., vol. 159,

pp- 296-307, 2020.

[18] G. Cheng, P. Zhou, and J. Han, “Learning rotation-invariant convolutional

neural networks for object detection in VHR optical remote sensing im-

ages,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 12, pp. 7405-7415,

Dec. 2016.

A.J. Gallego, A. Pertusa, and P. Gil, “Automatic ship classification from

optical aerial images with convolutional neural networks,” Remote Sens.,

vol. 10, no. 4, 2018, Art. no. 511.

[20] C.M. Ward, J. Harguess, and C. Hilton, “Ship classification from overhead
imagery using synthetic data and domain adaptation,” in Proc. OCEANS
MTS/IEEE, Charleston, SC, USA, 2018, pp. 1-5.

[21] T. Lin, A. RoyChowdhury, and S. Maji, “Bilinear CNN models for fine-
grained visual recognition,” in Proc. IEEE Trans. Pattern Anal. Mach.
Intell., 2015, pp. 1449-1457.

[22] J. Yu, M. Tan, H. Zhang, D. Tao, and Y. Rui, “Hierarchical deep click

feature prediction for fine-grained image recognition,” IEEE Trans. Pattern

Anal. Mach. Intell., early access, doi: 10.1109/TPAMI.2019.2932058.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for

large-scale image recognition,” in Proc of 2015 International Conference

on Learning Representations(ICLR), San Diego, CA, USA, May, 2015.

Y. Lv et al., “An end-to-end local-global-fusion feature extraction network

for remote sensing image scene classification,” Remote Sens., vol. 11,

no. 24, 2019, Art. no. 3006.

K. Cho et al., “Learning phrase representations using RNN encoder—

decoder for statistical machine translation,” in Proc. IEEE Conf. Comput.

Lang., 2014, pp. 1724-1734.

S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation

learning by predicting image rotations,” in Proc. of 6th International

Conference on Learning Representations (ICLR), Vancouver, BC, Canada,

April, 2018.

K. Han et al, “Attribute-aware attention model for fine-grained

representation learning,” in Proc. ACM Multimedia Conf., 2018,

pp. 2040-2048.

[28] W.Liu, L. Ma, and H. Chen, “Arbitrary-oriented ship detection framework
in optical remote-sensing images,” IEEE Geosci. Remote Sens. Lett.,
vol. 15, no. 6, pp. 937-941, Jun. 2018.

[29] J.Ding, N. Xue, Y. Long, G. Xia, and Q. Lu, “Learning Rol transformer for

oriented object detection in aerial images,” in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2019, pp. 2849-2858.

S. Chaib, H. Liu, Y. Gu, and H. Yao, “Deep feature fusion for VHR remote

sensing scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,

no. 8, pp. 4775-4784, Aug. 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun.

2016, pp. 770-778.

[10]

[15]

[16]

[17]

[19]

[23]

[24]

[25]

[26]

[27]

[30]

[31]


https://dx.doi.org/10.1109/TPAMI.2019.2932058

ZHANG et al.: NEW BENCHMARK AND AN ATTRIBUTE-GUIDED MULTILEVEL FEATURE REPRESENTATION NETWORK 1285

[32]

[33]

[34]

[35]

[36]

(371

(38]

[39]

[40]

J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in Proc. IEEE Conf. Computer
Vis. Pattern Recognit., 2009, pp. 248-255.

G. Xia et al., “AID: A benchmark data set for performance evaluation of
aerial scene classification,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 7, pp. 3965-3981, Jul. 2017.

G. Cheng, J. Han, and X. Lu, “Remote sensing image scene classifi-
cation: Benchmark and state of the art,” Proc. IEEE, vol. 105, no. 10,
pp- 1865-1883, Oct. 2017.

C. Szegedy, V. Vanhoucke, S. Toffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.

G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in Proc. IEEE Conf. Computer Vis.
Pattern Recognit., 2007, pp. 2261-2269.

A. G.Howard et al., “MobileNets: Efficient convolutional neural networks
for mobile vision applications,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2017.

F. Chollet, “Xception: Deep learning with depthwise separable convo-
lutions,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp- 1800-1807.

T. Lin, R. Chowdhury, and S. Maji, “Bilinear CNN models for fine-
grained visual recognition,” in Proc. IEEE Int. Conf. Comput. Vis., 2015,
pp. 1449-1457.

Y. Chen, Y. Bai, W. Zhang, and T. Mei, “Destruction and construction
learning for fine-grained image recognition,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Long Beach, CA, USA, 2019, pp. 5157-5166.

Xiaohan Zhang received the B.S. and M.S. degrees
in 2014 and 2017, respectively. She is currently work-
ing toward the Ph.D. degree in information and com-
munication engineering with Naval Aviation Univer-
sity, Yantai, China.

Her research interests include target recognition
and detection in remote sensing and deep learning.

Yafei Lv received the B.S. and M.S. degrees in 2014
and 2017, respectively. He is currently working to-
ward the Ph.D. degree in information and commu-
nication engineering with Naval Aviation University,
Yantai, China.

His research interests include image retrieval
and target association in remote sensing and deep
learning.

Libo Yao received the B.S. and M.S. degrees in 2006
and 2019, respectively.

He is currently an Associate Professor with Naval
Aviation University, Yantai, China. His research in-
terests include satellite remote sensing information
fusion and military big data.

Wei Xiong received the B.S., M..S., and Ph.D. degrees
from Naval Aviation University, Yantai, China, in
1998, 2001, and 2005, respectively.

From 2007 to 2009, he was a Postdoctoral Re-
searcher with the Department of Electronic Infor-
mation Engineering, Tsinghua University, Beijing,
China. He is currently a Full Professor with the Naval
Aviation University, where he teaches random signal
processing and information fusion. He is one of the
Founders and the Directors of the Research Institute
of information Fusion, Naval Aviation University. He

is the Member and Director General of the Information Fusion Branch of the
Chinese Society of Aeronautics and Astronautics. His research interests include
pattern recognition, remote sensing, and multisensor information fusion.

Chunlong Fu received the B.S. degree from the Wuhan University of Surveying
and Mapping, Wuhan, China, in 2000.

He is currently a Senior Engineer with Troops 90139 of PLA, Beijing, China.
His research interests include geographic information systems.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


