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Hyperspectral Image Classification Based on
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Abstract—Convolutional neural networks (CNN) have led to
a successful breakthrough for hyperspectral image classification
(HSIC). Due to the intrinsic spatial-spectral specificities of a hyper-
spectral cube, feature extraction with 3-D convolution operation
is a straightforward way for HSIC. However, the overwhelming
features obtained from the original 3-D CNN network suffers from
the overfitting and more training cost problem. To address this
issue, in this article, a novel HSIC framework based on a simplified
2D-3D CNN is implemented by the cooperation between a 2-D CNN
and a 3-D convolution layer. First, the 2-D convolution block aims to
extract the spatial features abundantly involved spectral informa-
tion as a training channel. Then, the 3-D CNN approach primarily
concentrates on exploiting band co-relation data by using a reduced
kernel. The proposed architecture achieves the spatial and spectral
features simultaneously based on a joint 2D-3D pattern to achieve
superior fused feature for the subsequent classification. Further-
more, a deconvolution layer intends to enhance the robustness of the
deep features is utilized in the proposed CNN network. The results
and analysis of extensive real HSIC experiments demonstrate that
the proposed light-weighted 2D-3D CNN network can effectively
extract refined features and improve the classification accuracy.

Index Terms—Convolution, convolutional neural networks
(CNN), feature extraction, hyperspectral image classification
(HSIC).

I. INTRODUCTION

HYPERSPECTRAL remote sense imaging continuously
furnishes a variety of information, such as radiation,

space, and spectrum of features, which has an insurmountable
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advantage in the domain of feature recognition and classifica-
tion [1]–[6]. Hyperspectral image classification (HSIC) aims
to divide the multiple dimensional feature space into different
regions with the same terrain, and has become one of the most
rapid developments in earth science and remote sensing field. In
the last two decades, CNNs automatically extract deep features
with a hierarchical architecture which have been proven to be
very successful on a series of visual application and tasks, such as
image denoising [7]–[9], image detection [10]–[12], and classifi-
cation [13], [14]. Nowadays, the existing classification methods
based on the CNN framework provide rich solutions for HSIC
tasks [4], [15]–[35]. In general, there are three categories of the
convolution operation in the existed CNN HSIC frameworks
including 1-D CNN, 2-D CNN, and 3-D CNN, respectively.

The network architecture of 1-D CNN is designed to use the
pixel vector along the radiometric dimension as a training sample
to extract deep feature [17]–[19], which is called spectral-based
classification approach conceptually. In [17], it was the first time
to employ CNN with multiple layers for HSIC directly in the
spectral domain. A novel RNN model [18] was proposed to
effectively analyze hyperspectral pixels as sequential data to
capture the intrinsic feature, which designed a new activation
function to train the network without the risk of divergence.

The 2-D CNN model for HSIC is called spatial-based clas-
sification approach that tried to learn spatial features [20]–[24]
by utilizing the similar approach for traditional images of RGB,
which brought out an inevitable drawback caused by the ignore
the united spectral–spatial attributes of the specific hypercube.
In [21], Hao and Wang designed the super-resolution aided
with class-wise loss (SRCL) model for HSIC, which explored
a super-resolution-aided way to construct a spatially enhanced
image. In [22], a CNN-MRF model was proposed to integrate
spectral and spatial information in a unified Bayesian framework
by learning the posterior class distributions. Li and Xie [23]
introduced a CNN model to reconstruct an enhanced image cube
by bands selection with a new spatial feature-based strategy.

Since the hyperspectral image is originally 3-D hypercube
with the spectral and spatial continuity, the HSIC methods
integrated both spectral and spatial information have gained
more popularity [25]–[29]. Handling the hyperspectral CNN
classification with 3-D convolutions is a straightforward way,
which is also called the spectral–spatial classification approach.
In this way, 3D- regions with joint spatial–spectral information
can be processed simultaneously. An automatic design of CNN

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-9260-6629
https://orcid.org/0000-0002-4489-5470
https://orcid.org/0000-0002-5450-4891
mailto:yucy@dlmu.edu.cn
mailto:269899266@qq.com
mailto:smping@163.com
mailto:liu_caiyu@163.com
mailto:cchang@umbc.edu


2486 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

for the HSIC framework is explored in [27], which designed
1-D Auto-CNN and 3-D Auto-CNN to automatically extract
spectral and spectral information from the original cube. Feng
and Yu proposed a multiclass spatial–spectral GAN method to
utilize generators for the samples production and the discrim-
inator for the joint spatial–spectral feature extraction. In [29],
a semi-supervised 3-D convolutional neural network (CNN)
for the spectral–spatial HSIC is proposed by engaging adap-
tive dimensionality reduction to deal with the problem of the
curse of dimensionality. Recently, a series of popular deep
learning-based methods have been exploited for spatial–spectral
classification. In [30], generative adversarial networks (GAN)
was employed for discriminative features extraction, 1-D GAN
as a spectral classifier and a robust 3-D GAN as a spectral–spatial
classifier were proposed for HSI classification respectively. In
[31], a cascaded RNN model was designed to explore the re-
dundant and complementary information of HSIs by utilizing
two RNN layers. In [32], the multiscale hierarchical recurrent
neural network was proven to be efficient in hyperspectral image
classification, which learns the multiscale local feature by 3-D
CNNs and learns the spatial dependency of nonadjacent image
patches in the spatial domain by RNN. CSA-MSO3DCNN [33]
was developed to optimize the discriminative features with at-
tention modules and reduce the redundancy with a three-layer’s
octave 3-D convolution. However, there are two main limitations
revealed with the 3D convolution model. On one hand, with
the increasing number of the 3-D kernels, the complexity and
time cost get higher, on the other hand, the overwhelming deep
features bring out the overfitting problem and the classification
accuracy is not high actual as expected.

To alleviate the mentioned issue, in this article, a new deep 2D-
3D CNN network with the spectral–spatial fusion is explored by
simplifying the original 3-D network structure, which extracted
the fusion feature by jointing the spatial and spectral information
simultaneously. The proposed deep network is mainly composed
of two convolutional blocks for feature extraction. The first
block is denoted as 2-D CNN which aims to spatial information
extraction with the spectral channels involved. The second block
is called the 3-D CNN model which focuses on integrating band
information through spectral convolution to generate spectral–
spatial representations of the HSI cubes with a reduced size
of 1 × 1 × L filter kernel. In this framework, the proposed
model extracted both spectral features and spatial neighborhood
information simultaneously to improve the distinguishing ability
of the fusion feature. Besides, we also adopted a deconvolution
layer to solve the drawbacks of the different feature sizes and
limited representation.

According to the investigation, this article introduced the new
2D-3D structure for the HSIC for the first time, which adopted
the efficient model to realize the classification with spectral-
spatial feature fusion. The specific contributions are listed as
follows.

1) The proposed framework performs joint learning of
3-D spatial–spectral representations with the flexibility of
two types of kernels to achieve refined characteristics for
classification. Specifically, the 3-D convolution with the
kernel size of m × m × L is utilized to mine hidden feature

effectively in the situation for the improvement of the
classification accuracy, whereas, the simplified kernel size
of 1 × 1 × L is adopted to reduce the spatial redundancy
with less parameters. The relationship between the two
models is the first time to clarify that the classification
performance is related to both the size of the kernel and the
experimental parameters, generally, the standard kernel
performs well with more parameters and the simplified
kernel is advantage for the efficiency.

2) To our knowledge, the network is enabled to supply an im-
plementation with the depth-wise separable convolution
way for HSIC equipped with the simplified 3-D kernel.
Specifically, a 3-D convolution with the kernel size of 1 ×
1 × L is explored for the first time to implement the fusion
extraction of spectral information between bands. In this
way, the spectral information is extracted by the merge of
the neighbor band data, and the spatial and spectral feature
is fused simultaneously at the same time.

3) To improve the efficiency of the proposed model, we
employed only two convolution blocks instead of a very
deep network structure. The spatial information convo-
lution is implemented in the 2-D convolution layer with
a bunch of filter kernels to expand the spatial features,
and the 3-D block relies on only one 3-D convolution
kernel to increase the convolution speed and overcome
the overfitting problems.

4) Especially, we reveal the intrinsic relationship between the
proposed model with simplified 3-D kernel and the 1-D
CNN on HSIC, and the comparisons between our model
and 1D-2D CNN network are explained in this article,
which will offer a systematic reference for the learning of
the 1-D, 2-D, and 3-D CNN HSIC. Besides, we conduct
experiments to exhaustively exploit the performance of
different structures based on the proposed network, which
will inspire the design of other CNN framework for hy-
perspectral applications.

The rest of this the article is organized as follows. The detail
of the proposed 2D-3D CNN classification network is given in
Section II. Experimental results and analysis are illustrated in
Section III and conclusion is drawn in Section IV.

II. CLASSIFICATION METHOD BASED ON 2D-3D
CNN NETWORK

A. Network Structure of the Proposed Framework

The main task of hyperspectral image processing of CNN
architecture is handling spatial and spectral information si-
multaneously via adjacent layers. In this article, we proposed
the spatial–spectral joint CNN network which contained seven
layers, Fig. 1 showed the hierarchical structure diagram of
the proposed 2D-3D-D CNN classification framework with the
specific parameters. Specifically, the proposed CNN architecture
consists of two convolution blocks (2-D CNN, 3-D CNN), the
rich spatial convolutional features are obtained by the 2-D CNN
model, the 3-D CNN model accomplished the spectral feature
processing by fusing with the neighbor band information, an
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Fig. 1. Hierarchical structure diagram of the convolution neural network.

activator is implemented by the pooling layer in each convolu-
tion part which aims to reduce data variance and improve the
nonlinearity of the feature. To maintain a good performance
of the fusion of the extracted feature, a deconvolution layer is
followed in the 3-D CNN part to reconstruct the feature map.
Two full connection layers (FC1, FC2) are used separately to
reassemble the obtained local features for the output layer. The
proposed 2D-3D CNN method has the two following distinctive
advantages. First, the 2-D CNN extracted rich spatial feature
maps with the channel information involved. Second, we utilized
a 3-D CNN to mine the integrated spectral–spatial characteristic.
Specially, we design a simplified one filter with the size of
1 × 1 × L to exploit the spectral information in the 3-D CNN
network effectively. The proposed network integrated the spatial
and spectral information simultaneously with the strategy of
3-D convolution. The more details of the CNN framework are
introduced in the following sections.

B. 2-D CNN With Intraband Information

The training of the 2-D CNN block includes two layers, the
first layer is a 2-D convolution layer to mine the given HSI data
slice in a local perception mechanism. Assume that the sample of
a hyperspectral image is denoted as X with dimension of m×
n× u, here X ∈ Rm×n×u

0 is a 3-D tensor, m× n means the
size of the training sample, u represents the number of spectral
bands,X(i) denotes the spatial domain on the ith band ofX . The
spatial–spatial feature extraction using 2-D CNN is obtained by
the following formula:

X2D = C2D(X(i)) =
1

u

u∑

i=1

t1∑

j=1

X(i)Θw2D
j + b2Dj . (1)

Fig. 2. Illustration of intraband 2-D CNN approach.

Herew2D
j and b2Dj represent the parameters and bias of the jth

filter of size a1 × b1 × t1,Θmeans the 2-D convolution operator.
The 2-D convolution operator is usually applied to extract fea-

tures in the spatial domain. To strength the feature representation
ability, the spectral feature is utilized as channel information to
participate in the production of feature extraction. Fig. 2 shows
the illustration of the intraband 2-D CNN approach, we can
observe that all the spectral bands are utilized to participate
in the calculation of convolution, which can yield rich spatial
features for the subsequent layer.

The second layer is called pooling layer, after the convolution
layer, the nonlinear activation function is utilized as an activator
to generate nonlinear feature in the 2-D CNN model, in this
article, we use zero-padding policy to keep the same size of next
input feature for the following convolution layer, the specific
equation of activator is listed as follows:

X ′
2D = max

⎛

⎝0,
t2∑

j=1

X2DΘw′
j + b′j

⎞

⎠ . (2)

Here the size of the filter kernel is a2 × b2 × t2, w′
j and b′j

represents the parameter and bias of the filter. In this module,
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Fig. 3. Illustration of the 3-D CNN. (a) With 1 × 1 × L (L = 8) kernel.
(b) With 3 × 3 × 3 kernel.

the spatial feature is captured with the intraband information
involved, which is expressed in the feature quantification not
only in the spatial region but also in the band domain.

C. 3-D CNN for Spectral Feature Fusion

The 3-D CNN block is designed to complete spatial–spectral
information fusion after the 2-D CNN part. In this section, we
consider the regular convolution layer for a 3-D hyperspectral
image represented by a 4-D tensor Y ∈ R1

nh×nw×lh×kc in the
Tensorflow framework, where nh × nw × lh is the size of the
input data, kcdenotes the number of the channel, respectively,
in this article, we set the channel number kc to 1 in the im-
plementation framework. The refined feature through 3-D CNN
is denoted as Y3D which is obtained by the 3-D filter with the
size kh × kw × kn applied to the input data by the following
equation:

Y3D = C3D(X
′
2D) =

N∑

j=1

X ′
2D � w3D + b3D. (3)

Here the symbol�denotes the 3-D convolution operator,w3D

and b3D represent the parameter and bias of the 3-D filter, N is
the number of the 3-D kernel. The 3-D convolution operation
is illustrated in Fig. 3, which is applied to a 3-D block for
the capture of the integration of spatial–spectral patch with a
3-D kernel, the calculation of convolution is implemented in
a sequential manner, e.g., from top to bottom, from left to
right. Clearly, the complexity becomes progressively large as
the parameters increase, which caused more training time and
overfitting problems.

Different from the original 3-D convolution, we designed a
simplified 3-D CNN with a filter kernel size of 1 × 1 × L to
reduce approximately kh × kw times of the original parame-
ters. According to the simplified structure, the 3-D CNN block
focuses on integrating the characteristic information of adjacent
bands with the strike step. In this case, the 3-D CNN model
captured the spectral fusion features with faster speed. The key
roles of the 1 × 1 × L kernel reflected in the two aspects,
on one side, the implementation achieves an action to reduce
the band dimension with a fusion way, on the other side, the
operation performs exceptionally more nonlinear information

for the feature extraction. Next, the activator function of ReLu
to generate the nonlinear and sparse features of the CNN network
is listed as follows:

Y ′
3D = max(0, Y3D � w′

3D + b′3D). (4)

Here w′
3D and b′3D represents the parameter and bias of the

pooling layer.
Compared with the regular CNN implementation, the pro-

posed classification network for hyperspectral image consists of
two steps separately, the 2-D CNN performs spatial convolution
independently including band information, followed by the 3-D
CNN convolution projecting the output of the spectral channels
onto a new fusion feature to generate a powerful representation
capability.

D. Remarks on the 1 × 1 × L kernel

In the 3-D CNN part, it is worth noting that the 3-D con-
volution operation with the kernel size fixed as 1 × 1 × L
becomes to the 1-D convolution conducted in 3-D space. In
this section, the analysis of the 3-D operation with 1 × 1 ×
L kernel is conducted in two aspects. On one hand, due to the
fact that the traditional 1-D CNN approaches for HSIC deal
with the classification application in a pixel-wise way, the 1-D
CNN HSIC model usually needs to transform the sample training
cube into a vector in a pixel-wise way first, and all the refined
features have to combine to an integrated 3-D patch after the
convolution operation, which increased the time cost obviously
with the data conversion back and forth. While with the 1 × 1 ×
L kernel, the 3-D convolution operation can easily be done by the
setting of the filters and the channel number. On the other hand,
compared with the existing 1D-2D CNN architectures, the key
to our proposed HSIC framework is to use 2D-1D networks to
explicitly learn spectral and spatial feature jointly. Specific, the
traditional 1D-2D CNN extracted the features from 1-D CNN
and 2-D CNN in parallel part and the features are fused in a fully
connected layer usually, which means that the implementation
of feature extraction actually is produced separately. Instead of
producing feature maps independently, we employ the 2-D CNN
to extract abundant spatial features first and the subsequent 1-D
CNN block (3-D with 1 × 1 × L kernel) aims to further refine
the feature in the spectral domain. The proposed CNN attempts
to perform the feature extraction with spectral and spatial infor-
mation simultaneously to enhance the feature representation.

E. Optimization Details of the Proposed CNN Architecture

Furthermore, we adopted a series of optimization policy to
improve the performance of the CNN Network in this article.
First, in the preprocessing period, the mirroring strategy is used
to enhance the classification accuracy of the pixels around the
borders. The specific operation means to keep the border pixel
be the center of the modified sample by expanding the original
image. Second, we used the Root Mean Square prop (RMSprop)
[36] as the optimization algorithm for the proposed network
training, which is attenuated through a certain ratio by introduc-
ing an attenuation coefficient. Lastly, in the CNN network, the
detailed structure of the feature is usually weakened or smoothed
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Fig. 4. Ground truth image of Purdue Indiana Indian Pines Scene.

out, in order to enhance the expression of the extracted feature,
we utilize deconvolution operation to expand the feature map
as identical as the size of the input sample. A deconvolution
operation aims to increase the size of the feature map, which
is inverse to convolution operation and plays an important role
in FCN and GAN networks to map low-resolution input into
a high-resolution feature. The option can be implemented by
upsampling to enlarge the feature map with convolution kernel
and padding, which has better effectiveness because it is a
learning-based upsampling operation. For example, the size of
input data is 5 × 5, the extended feature map is 7 × 7 after
zero-padding and the deconvolution procedure with a kernel size
of 3× 3. In our article, the deconvolution layer has a kernel filter
with a size of 3 × 3, and the length of the deconvolution filter is
set to 39.

III. EXPERIMENT AND RESULT ANALYSIS

A. Data Description

In this article, we have employed four well-known hyperspec-
tral image datasets in the experiments.

1) Purdue Indiana Indian Pines Scene: The first one namely
Purdue Indiana Indian Pines Scene is an AVIRIS image, which
was collected over North-western Indiana. The image is char-
acterized by 145 × 145 pixels with 220 spectral bands in the
range of 0.4–2.5 µm. As shown in Fig. 4, the Purdue Indian
Pines Scene consists of 16 classes available in the ground truth
image.

2) Salinas Valley: The second dataset is the Salinas Valley
scene captured by the AVIRIS sensor over the Salinas Valley in
Southern California. The data contain 224 bands and the spatial
resolution is 512 × 217. According to the ground truth image
shown in Fig. 5, there are 16 categories of classes labeled in
different colors.

3) Kennedy Space Center (KSC): The third dataset used for
the experiment is called KSC data, which was collected by
AVIRIS in the range of 0.4–2.5 µm of Kennedy Space Center

Fig. 5. Ground truth image of Salinas valley.

Fig. 6. Ground truth image of KSC.

located in Florida. After removing water absorption and low
SNR bands, the subimage with the size of 512 × 614 remains
176 bands for the analysis. The scene contains various land
cover types represented by 13 classes labeled 1–13 as shown
in Fig. 6.

4) University of Pavia: The last dataset used in the following
experiment is the University of Pavia acquired by the ROSIS-03
satellite sensor. This scene has 103 spectral bands and 610 ×
340 pixels with a spatial resolution of 1.3 m. Fig. 7 shows the
Ground truth image of the University of Pavia with nine classes
of interest.

B. Experimental Configuration

In this section, the hyperspectral image classification methods
based on the three datasets were performed to evaluate the
proposed CNN model. The experiments were run on a computer
with Intel (R) Core (TM) i7-7820X CPU, 3.60 Ghz, Nvidia
Geforce GTX 1050Ti, RAM 32.0 GB for the Salinas data, GTX
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Fig. 7. Ground truth image of the University of Pavia.

TABLE I
HYPERPARAMETERS SETTING OF THE PROPOSED MODELS

1060Ti, RAM 16.0 GB for the other three datasets, the platform
is python 3.6 of the Tensorflow framework. We evaluate the
proposed architecture with classification performances in terms
of Overall Accuracy (OA), here OA measures the number of
samples is classified correctly.

We also exploited a series of other CNN models for com-
parison with the proposed architecture, here denoted the abbre-
viation symbols of the compared CNN networks. The network
proposed in the article is called as 2D-3D-D model, the 3-D
part with simplified kernel is denoted 2D-3D-D-S, the 2-D
CNN methods has only one 2-D convolution layer, one pooling
layer, and two fully connected layers, the 2D+D CNN network
plus one deconvolution layer and the 2-D+3-D CNN model
include one 2-D convolution layer, one 3-D convolution layer,
one pooling layer, and two fully connected layers. The hyper-
parameters setting of the proposed 2D-3D-D models are listed
in Table I. The other compared existing methods include SVM
[37], EPF [38], LCMV [39], MFASR [40]. In addition, in our
experiment for the CNN networks, the batch size is initialized
to 100, the iteration number of training is fixed to 5000. All the
other CNN networks mentioned for comparison have the same
parameters as 2D-3D-D architecture. Each execution of all the
CNN networks has been repeated 5 times and the classification
accuracy reported in our experiment is averaged by the results,
which is represented in the form of mean ± standard deviation.

Furthermore, it is noted that the existing challenging problems
of HSIC are the few-shot learning and the unbalanced sample,
therefore the data augmentation is usually a necessary operation
to generate the samples before the training launch. In the prepro-
cessing phase, we expand the training dataset by augmentation
in this article. The specific types of addition are listed as follows:

TABLE II
NUMBER OF SAMPLES IN THE TRAINING SET OF THE PURDUE INDIANA INDIAN

PINES SCENE USED IN 2D-3D-D CNN METHODS

TABLE III
NUMBER OF SAMPLES IN THE TRAINING SET OF THE SALINAS VALLEY USED IN

2D-3D-D CNN METHODS

1) reverse the original data from up to down;
2) reverse the training sample from left to right,
3) increase data by adding random Gaussian noise to the

training sample.
For a specific class, we gather the data augmentation accord-

ing to the number of the total samples of the ground truth image,
specifically, when the number of total samples is less than 200,
the percentage number of augmentation is set to 1/3 and the
augmentation percentage is set to 1/5 for other situation. During
the preprocessing phase, the training data is randomly selected
from the original datasets and is expanded with the above ways
randomly, where the mean value of Gaussian noise is set to 0 and
the variance is 0.05. The specific numbers of the training sample
of the three data sets are reported in Tables II–V, which included
the number selected randomly from every class and the number
generated by the augmentation method, and the number in the
column of Augmentation denotes the sum number of selected
and extended sample
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Fig. 8. Classification results of the Purdue Indiana Indian Pines Scene with compared methods. (a) SVM. (b) EPF. (c) LCMV. (d) MFASR. (e) 2DCNN.
(f) 2D+D. (g) 2D+3D. (h) 2D-3D-D-S. (i) 2D-3D-D.

TABLE IV
NUMBER OF SAMPLES IN THE TRAINING SET OF THE KENNEDY SPACE CENTER

USED IN 2D-3D-D CNN METHODS

TABLE V
NUMBER OF SAMPLES IN THE TRAINING SET OF UNIVERSITY OF PAVIA

USED IN 2D-3D-D METHODS

C. Results and Analysis

The training sample percentage of the Purdue Indiana Indian
Pines Scene is set to 10% randomly, the dropout rate is initialized
to 0.3 for 2D-3D-D-S and 0.8 for 2D-3D-D, the sample size is

fixed as 13 × 13. Fig. 8 illustrated the classification maps of the
dataset with each classifier mentioned above, the performance
of the proposed 2D-3D-D CNN network is much better than
the compared models. Moreover, the accuracy of each class is
demonstrated individually in Table VI and the OA of the Purdue
data is shown in the last line. According to the listed value, it
can be observed that our proposed 2D-3D-D-S model achieves
the overall accuracy of 97.98%, and the second (97.49%) OA
is implemented by the MFASR model. It is 0.49% and 0.88%
higher than 2D+D and 2D+3D model, respectively, and the
best OA is 98.33% with the 2D-3D-D framework. Compared
with the OA 94.88% of the 2-D model, it is obtained that the
deconvolution layer and 3-D convolution operations have an
important positive effect on the feature refined under the same
conditions of other network structure parameters. Also, it also
can be seen that the proposed method generates the best accuracy
of class 4, and class 7. Besides, we can also observe that the
accuracy of each class of the proposed model is relatively high,
it can be concluded that the overall classification performance
is more stable in the proposed framework, and there is no case
where the accuracy is much higher or lower for different classes.

The colorful classification maps of each method for the Sali-
nas Valley are illustrated in Fig. 9, in this experiment, the training
sample percentage is set to 5%, the setting of the dropout rate
and the size of the training data is 0.3 for 2D-3D-D-S and
0.8 for 2D-3D-D and 13 × 13, respectively. Table VII lists
the accuracy of each class and OA of the Salinas data. As
the Salinas data have a rich sample size and relatively regular
spatial distribution, several network structures generate good
performance with almost the same overall accuracy. Objectively,
it is clearly to be seen that the 2D-3D-D model obtained the
best experimental results with an overall accuracy of 99.07%. In
contrast, both the MFASR model and the 2D+D model showed
good results with an overall accuracy of 97.91% and 97.90%,
respectively. Also, our proposed model is relatively 0.3% higher
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TABLE VI
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF PURDUE INDIANA INDIAN PINES SCENE WITH ALL THE COMPARED METHODS (10%)

Fig. 9. Classification results of the Salinas valley with compared methods. (a) SVM. (b) EPF. (c) LCMV. (d) MFASR. (e) 2DCNN. (f) 2D+D. (g) 2-D+3-D.
(h) 2D-3D-D-S. (i) 2D-3D-D.

than the 2-D+3-D model. According to the obtained value of the
different classes, the proposed network can obtain a more stable
accuracy.

In the experiment for the KSC data, we fix the training sample
percentage as 10%, and the data size and the dropout rate are
set to 0.3, the kernel numbers of FC1 and FC2 for 2D-3D-D are
600 and 150. Fig. 10 demonstrates the classification results with
the compared methods. The accuracy of each class and OA is

illustrated in Table VIII objectively, it can be seen from the table
that our CNN architecture yielded an overall accuracy of 97.14%
and 97.47%. The MFASR model based on sparsity generates the
results of 98.31%, followed by 2-D+D and 2-D+3-D models
with the OA of 96.30% and 93.58%, respectively. Due to the
super sparsity of the KSC data itself, the MFASR has the better
experimental result than our proposed method, although, for the
class 5, the OA is only 79.86% in MFASR, while the OA of
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TABLE VII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF SALINAS VALLEY WITH ALL THE COMPARED METHODS (5%)

Fig. 10. Classification results of the KSC data with compared methods. (a) SVM. (b) EPF. (c) LCMV. (d) MFASR. (e) 2DCNN. (f) 2-D+D. (g) 2-D+3-D.
(h) 2D-3D-D-S. (i) 2D-3D-D.

TABLE VIII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF KENNEDY SPACE CENTER WITH ALL THE COMPARED METHODS (10%)

our proposed network is 84.59% and 94.10%, it can be analyzed
that our network still has more stable performance for each class
than other classifiers in the KSC data.

For the experiment of the University of Pavia, the training
sample percentage is 5%, the training size of the dataset is fixed
as 13 × 13, and the drop out rate is set to 0.3 for 2D-3D-D-S

and 0.8 for 2D-3D-D. Fig. 11 illustrates the classification results
with the mentioned HSIC methods, the accuracy of each class
and OA of Pavia data is shown in Table IX objectively. As
can be observed, the 2D-3D-D model wins the other compared
classification methods in terms of the OA criterion, the proposed
architecture achieves the best OA of 99.54% and the highest OA
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Fig. 11. Classification results of the University of Pavia with compared methods. (a) SVM. (b) EPF. (c) LCMV. (d) MFASR. (e) 2DCNN. (f) 2D+D. (g) 2D+3D.
(h) 2D-3D-D-S. (i) 2D-3D-D.

TABLE IX
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF UNIVERSITY OF PAVIA WITH ALL THE COMPARED METHODS (5%)

of class No. 2, 4, 5, and 9 especially, which are 99.93%, 99.88%,
99.97%, and 99.96%.

Since the parameters play a significant role in the 3-D part of
the model, for fair comparison with the same number of neurons
of fully connection layers, a series of experiments are conducted
for all the four datasets to show the difference of the proposed
2D-3D-D-S and 2D-3D-D methods. All the classification results
by the average of 5-times execution are listed in Table X, where
the “FC-A” denotes the number of FC1 and FC2 is 200 and 150,
the “FC-B” describes the circumstance with the number of FC1
and FC2 is 600 and 150, respectively. In the last raw, the OA with

FC-A is illustrated in the color of light orange and the OA with
FC-B is performed in the color of light green. It can be observed
that the 2D-3D-D-S has better performance with all the data sets
in the situation of FC-A, while 2D-3D-D is more outstanding
in the FC-B environment. Due to the fact listed below, all the
results are reasonable and plausible. For one thing, the 2D-3D-D
is adopted to learn the feature with numerous parameters, which
is a disadvantage to the classification performance due to the
fewer kernels in the fully connection layers. For the other thing,
the complex model performs better and reveals that 2D-3D-D
extracted more efficient feature maps with more parameters.
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TABLE X
OA CALCULATED OF THE FOUR DATASETS WITH THE PROPOSED METHOD WITH DIFFERENT FC PARAMETERS

Fig. 12. Training loss of the proposed CNN framework. (a) 2D-3D-D-S.
(b) 2D-3D-D.

That is to say, the 2D-3D-D-S in FC-A outperform the 2D-3D-D
model, while the 2D-3D-D model is more challenging in the
condition of the FC-B.

In order to fully demonstrate all the aspects of the proposed
network, we also recorded the convergence curves and the
changing trend of the training loss of the four datasets with
the above parameters. The loss curve is shown in Fig. 12,
respectively, the vertical axis reflects the evolution of the error,
the number of the iteration is listed on the horizontal axis, and the
shadow represents the stand deviation of the curve fitting. It can
be concluded there is a very little difference in the curve between
the Purdue Indiana Indian Pines Scene and the KSC data, the
loss values tend to be zero after 2000 iteration demonstrates that
the proposed CNN model converges well, and the reasonable
and similar training loss curves also show that our method is
effective with the RMSprop optimization. As mentioned, we
chose 5000 times as the final number of training iterations to
obtain better precision results in the experiments. In the training
phase, the training loss is feedback to the machine for back

TABLE XI
TRAINING TIME OF THE ABOVE CNN FRAMEWORKS (SECONDS)

propagation, which reflects the training state of the network. The
2D-3D-D model used 3-D kernel for the spectral–spatial feature
extraction, which generated more spatial redundancy than the
2D-3D-D-S model especially for the sparse data. Due to fact
that the KSC data is too sparse as shown in the ground truth
image, it is more sensitive to the feature representation ability,
therefore, the convergence of the curve of KSC data is slower
than other datasets as shown in Fig. 12(b) for the redundancy
caused by the 2D-3D-D architecture.

The training time of the proposed model with a comparison
of the other CNN networks on the three hyperspectral data sets
is listed in Table XI. The computational cost is related to the size
of the image, the numbers of the total layers, and the training
sample, we can observe that CNND [41] has the longest time
cost for the Salinas data, while the Purdue data have the smallest
training time for our proposed framework. Also, it can be seen
that with the same seven layers, our proposed 2D-3D-D-S model
is quicker than the CNN model for the Purdue data, Pavia data,
and Salinas data, and has quite the same cost on the KSC data, the
2D-3D-D network has more cost than the 2D-3D-D-S due to the
3-D kernel in 2D-3D-D is more complex than the 2D-3D-D-S
model.

D. Comparison With the State-of-the-Art CNN Architectures

To demonstrate the effectiveness of the proposed framework,
we compared the 2D-3D-D model with the other five state-of-
the-art CNN models on the Purdue Indiana Indian Pines Scene.
The approaches included in the comparison are summarized



2496 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE XII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE PURDUE INDIANA INDIAN PINES SCENE WITH THE COMPARED METHODS

as follows. CNN-MRF model [22] adopted CNN to learn the
posterior class distributions for better spatial information ex-
traction, which included two convolution layers with the kernel
size of 5 × 5 and 3 × 3, the numbers of the kernel of two
fully connected layers are set to 200 and 100. The learning
rate is 0.001 and the batch size is set as 100. The SS-3DCNN
[29] is a semi-supervised 3-D CNN for deep feature extraction,
in the model, the size of the input sample is 25 × 25 × 12,
the learning rate is 0.005 and the training epoch is set to 150,
respectively. In SRCL [21], Hao et al. proposed deep network
architecture for a super-resolution aided HSIC with class-wise
loss, the size of the convolution kernel is set to 9 × 9, 1 × 1, and
5 × 5, respectively, the filter size of the pooling layer is fixed
to 2 × 2. In [27], the 3-D auto model, the author designed 1-D
Auto-CNN and 3-D Auto-CNN for spectral and spectral-spatial
HSI classifiers, 3× 3 and 5× 5 separable convolution, 3× 3 and
5 × 5 dilated separable convolution, 3 × 3 average pooling and
3 × 3 max-pooling are used in the 3-D auto model. The training
epoch for the 1-D Auto-CNN and 3-D Auto-CNN-Cutout is set
to 300 and 100. In 3-D SP DNN [26], the model exploits the
3-D spectral–spatial information via super pixel-based neural
networks. The sizes of filter are set 4× 4× 63 and 3× 3× 62, the
numbers of the filter are set to 6 and 12, the kernel size is set to 2×
2 × 2 for the max-pooling process. The 3-D CNN [42] model is
composed of two 3-D convolution blocks (C1 and C2) followed
by a fully connection layer (F1), the size of the 3-D convolutional
kernel of C1 is 3 × 3 × 7, the number is set to 2, and the size of
kernel is 3× 3× 3, the number of filters is 4 for C2, respectively.
FLCNN [43] is designed to learn sensor-specific spatial–spectral
features with five-layers CNN, which can be implemented the
HSIC in both unsupervised and supervised way, the size of
input sample is 3 × 3 and 5 × 5, the number of kernel is 20
in the convolution layer and the number of sigmoid neuron
nodes in the fully connection layer is set to 100. A 3-D CNN
network [44] captured the spatial and spectral context, which
is consisted of seven convolution layers with 3-D kernel and
one full connection layer, the kernel sizes of the 3-D operation
included 3 × 3 × 3, 1 × 1 × 3, and 1 × 1 × 2 specifically.

In [45], the DC-CNN utilized 2-D CNN the hierarchical feature
extraction, the 1-D CNN channel and 2D channel extract the
features with the 1-D and 2-D convolution operation. The 1-D
unit contains two pairs of convolutional layers, it has 300 and
2 convolutional kernels for the sequential convolutional layer,
the 2-D CNN contains two pairs of convolutional layers, the
size of the convolutional layer is fixed to 3 × 3. Tables XII–XV
expressed the comparison of classification accuracy obtained
by the CNN models for comparison, we compare the detailed
classification performance on each class for the four datasets.
As can be seen, for the Purdue Indiana Indian Pines Scene data,
the 3-D CNN method achieves the highest classification OA
than the other models, however, we investigate that the 3-D
CNN acquired OA of 99.07% with the training percentage of
70%, while the proposed 2D-3D-D yields OA of 98.33% with
only 10% training sample. For fair comparison, we have done
the experiment on the KSC dataset with the same ratio, the
classification results are listed in the last column in Table XV, it
can be seen that the better performance of our model generates
the OA of 99.95%. For the Salinas valley and the University of
Pavia, the proposed framework generates the best classification
performance as shown in Tables XIII and XIV, and Table XV
shows that the proposed CNN almost get the best OA with 40%
training sample for the Kennedy Space Center. Furthermore,
to evaluate the performance of our network objectively, we also
have done a series of the experiment of the classification without
sample augmentation for all the four datasets, each execution of
the CNN network has been repeated 3 times in this part, and we
reported the accuracy averaged by the results in Table XVI. It is
easy to be observed that the 2D-3D-D is effective without data
expansion and the OA is stable for all the datasets. To sum up,
from the above results and analysis, we can conclude that the
proposed architecture achieves better classification performance
compared with state-of-the-art approaches.

E. Comparison of the Different Size of the Training Sample

In this part, the impact with different training size of the three
datasets is evaluated with the proposed 2D-3D-D CNN network.
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TABLE XIII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE PAVIA UNIVERSITY WITH THE COMPARED METHODS

TABLE XIV
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE SALINAS VALLEY WITH THE COMPARED METHODS

TABLE XV
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE KSC DATASET WITH THE COMPARED METHODS

TABLE XVI
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE FOUR DATA SETS WITH THE 2D-3D-D METHOD WITHOUT AUGMENTATION
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Fig. 13. OA (%) obtained by the proposed network with the different patch
size of training samples on three data sets. (a) 2D-3D-D-S. (b) 2D-3D-D.

For the Purdue Indiana Indian Pines Scene and the KSC training
sets, the patch sizes of input data are set to 9 × 9, 11 × 11, 13
× 13, 15 × 15, 17 × 17, 19 × 19, respectively, and we select
9 × 9, 10 × 10, 11 × 11, 12 × 12, and 13 × 13, 14 × 14
as the size of the input sample for the Salinas data set and the
Pavia data. The dropout rate for all the three datasets is fixed
to 0.3, and the percentage of the Purdue and KSC data is set to
10%, and the portion for the Salinas data is 5%, Fig. 13 shows
the OA expression with the histogram obtained by our proposed
network on three datasets. It can be observed that OA varies
as the size of the training sample varies. The accuracy of the
three datasets generally shows an increasing trend with the size
of the space increase, among them, the KSC dataset has the
most obvious promotion with the size is enlarged. As shown in
Fig. 13(a), it can be observed that the best results are generated
with the size of 19 × 19 for the Purdue and KSC datasets in
the two 2D-3D-D models. When the sample size is set to 9 ×
9, the lowest value of OA is 94.53% for the Purdue data with
the simplified kernel, 96.02% for the Salinas data, and 92.79%
for the KSC data separately. For the 2D-3D-D model, the lowest
OA value is 97.15%, 97.08%, and 91.12% for the Purdue data,
the Salinas data, and the KSC data with the smallest size of the
training patch, while the size is 13 × 13, the proposed model
yields the lowest OA is 98.84%. To be noticed, the larger size
of the space contributes to the extraction of spatial features of
the dataset, and the overall accuracy tends to be stable after
17 × 17.

F. Effect of Different Numbers of Training Samples

Next, we explore the effect of the different percentages of the
training sample with the proposed CNN network in this part.
For the Purdue and KSC data, 1% to 10% with 1% interval of
the total sample is set in this experiment, for the Salinas image,
the portion changes from 1% to 5% with the 0.5% step. The
dropout rate of the three sets are all set to 0.3, the sample size of
the Purdue and KSC datasets is fixed as 19 × 19, and the sample
size of the Salinas data is 13 × 13. Fig. 14 presents the average
OA results of the different portions of the training sample
which are executed five times separately. It can be seen that
the proposed CNN network generates robust performance even
the percentage is set to 1%. The performances of the Purdue and
KSC generally improve with the increase of sample percentage,
while for the Salinas Valley data, the OA is more stable because

Fig. 14. OA (%) obtained by the proposed network with different percentages
of training samples on three data sets. (a) 2D-3D-D-S. (b) 2D-3D-D.

Fig. 15. OA (%) obtained by the 2D-3D-D network with the different dropout
rates of training samples on three data sets. (a) 2D-3D-D-S. (b) 2D-3D-D.

of the characteristic of the rich spatial information. Especially, in
the simplified 2D-3D-D model, the lowest OA is 96.65% when
the percentage is 3.5% for the Salinas dataset, and the best OA
can reach 97.98% and 97.14% when the percentage is 10% for
the Purdue and the KSC data specific. The 2D-3D-D network
generates the best OA of 98.51% with the ratio as 9% for the
Purdue data, the more percentage brings the better performance
for the rest three datasets with the value of 99.07%, 97.47%, and
99.54%, for the Salinas data, the KSC data, and the Pavia data.

G. Comparison of the Dropout Rate

Lastly, the effectiveness of the setting of the dropout rate is
analyzed in this section. The proposed 2D-3D-D networks are
compared with different dropout percentages. The size and the
percentage of the training sample Purdue data and the KSC data
is set to 19 × 19 and 10%, and for Salinas Valley, they are
set to 13 × 13 and 5%. OA obtained by the 2D-3D-D network
with different dropout rates on three datasets is demonstrated
in Fig. 15, it can be observed that OA varies with the different
dropout rate in the 2D-3D-D-S, it leads the best OA for the
Purdue data to be 97.98% when the rate is 0.3, the best OA of
Salinas data is 98.80% when the value is set to 0.8, and for the
KSC data, the OA of 97.32% when the dropout rate is 0.2. On
the contrary, the proposed framework generates the lowest value
for Purdue data when the rate is 0.8, for the Salinas data with
the rate of 0.6, and for the KSC data when the drop rate is 0.9,
it generates the worst OA. The best OA in the 2D-3D-D model
for the Purdue data and the Salinas data are 98.33% and 99.07%
when the rate is 0.8, and when the dropout rate is 0.3, the model
generates the best OA of 97.48%, and the best OA is 99.58% for
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TABLE XVII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF PURDUE INDIANA

INDIAN PINES SCENE WITH DIFFERENT MODULES OF THE PROPOSED METHOD

WITH DIFFERENT MODULES

TABLE XVIII
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF THE SALINAS

VALLEY WITH DIFFERENT MODULES OF THE PROPOSED METHOD WITH

DIFFERENT MODULES

the Pavia data with a rate of 0.4. It also can be concluded that
the dropout rate will not always improve the performance of the
training procedure. We also noted that, due to the simplification
of the model, the proposed model can achieve relatively great
overall accuracy with the bigger dropout rates.

H. Analysis of Number of the Modules

To further analyze the influence of the number of the
2D-3D-D module, we complete a series of experiments to
compare the classification performance and the running time of
the proposed method with different modules, the programming
environment is Nvidia Geforce GTX 1060Ti, RAM 32.0 GB
for the four datasets. In this section, one 2-D block and one 3-D
block is described as one module. To conduct a fair evaluation,
the experiments are implemented on all the four datasets and
Tables XVII–XX list the classification accuracy of each class.

TABLE XIX
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF KENNEDY SPACE

CENTER WITH DIFFERENT MODULES OF THE PROPOSED METHOD WITH

DIFFERENT MODULES

TABLE XX
OA CALCULATED FROM THE CLASSIFICATION RESULTS OF UNIVERSITY OF

PAVIA WITH DIFFERENT MODULES OF THE PROPOSED METHOD WITH

DIFFERENT MODULES

TABLE XXI
TRAINING TIME OF THE PROPOSED CNN FRAMEWORKS WITH DIFFERENT

MODULES OF THE FOUR DATA SETS (SECONDS)

According to the reported results in Tables XVII–XX, the
proposed networks with different modules achieve stable per-
formance for every dataset. Table XXI shows the training time
of the proposed frameworks (both simplified 3-D kernel and 3-D
kernel) with three different modules separately, and it can be seen
that the more modules consume more time cost. Moreover, as can
be seen in Figs. 16 and 17, with the same setting of the hyperpa-
rameters, the proposed architecture with one module obtains the
best OA value with the four datasets. It can be concluded that the
proposed CNN network with one module is superior to the other
modules in terms of classification performance and quantitative
time cost.
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Fig. 16. OA (%) obtained by the proposed 2D-3D-D-S networks with different
modules of the four datasets.

Fig. 17. OA (%) obtained by the proposed 2D-3D-D networks with different
modules of the four datasets.

V. CONCLUSION

In this study, we propose a new network model for hyperspec-
tral image classification based on the cooperation between 2-D
CNN and simplified 3-D convolution layer. The 2-D CNN part
focuses on the extraction of rich spectral–spatial features from
the available HSI. Subsequently, the 3-D block mainly deals with
the reconstruction of the refined spectral feature with neighbor
bands information involved. In this way, the proposed model can
generate the fusion refined feature to enhance the representation
and description of the deep map. The key role of this framework
is that the 3-D block depends on only one convolution kernel
with a size of 1 × 1 × L to increase the convolution speed and
overcome the fitting problem. The proposed model explored an
implementation with the depth-wise separable convolution way
for HSIC for the first time. The real hyperspectral image exper-
imental results proved that the proposed architecture achieves a
great performance on the four popular testing datasets. Notice
that the band information is crucial for feature refinement in
the CNN network for HSIC, one of our future works will focus
on design band selection and augmentation network to extract
contextual feature hierarchically.
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