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An Object-Based Approach for Mapping Crop
Coverage Using Multiscale Weighted and

Machine Learning Methods
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Abstract—Accurate mapping of crop distribution on Earth’s
surface aids in predicting grain production. Pattern classification
along with remote sensing imagery can facilitate traditional manual
field measurement techniques using machine learning. With the
rapid increase in satellite sensor resolution, the object-based clas-
sification paradigm has increasingly been applied. However, scale
parameter selection is always a difficult part of the object-based
classification. Based on ensemble learning, this study proposes a
classification method using the multiscale object-based weighted
method which includes manual digitizing of crop distribution in the
southern region of Jishan County, Shanxi Province, China, apply-
ing Gaofen-2 (GF-2) images. This method initially uses estimations
of the scale parameter (ESP) tool to select “good” scales, defined
here as “preferred” scales, after which feature subsets are screened
by each preferred scale as the input of multiple classifiers and
classifies. Finally, all classification results are then fused. Our re-
search results indicate that: 1) Feature importance values are sorted
differently at different preferred scales; 2) accuracy differences
become clear when different preferred scales are combined with
different classifiers, and determining the “best” single appropriate
scale is generally difficult; 3) accuracy of the multiscale weighted
classification method is higher compared to the single preferred
scale approach. Furthermore, ensemble learning can be achieved
using this method on multiple scales and on multiple classifiers.
With this method, procedures that necessitate the selection of
segmentation scales and the selection and optimization of classifiers
can be skipped altogether.

Index Terms—Ensemble learning, feature selection, GF-2,
multilayer perceptron (MLP), object-based image analysis (OBIA),
preferred scales, support vector machine (SVM).

I. INTRODUCTION

CROP coverage information on the Earth’s surface is very
important for grain security and crop monitoring [1]–[5].

The accurate and timely mapping of surface crop distribu-
tion as well as the application of sound management policie,
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are helpful for the production and prediction of grain crops
[6], [7].

Many methods have been developed to map the distribution
of crops on the Earth’s surface [8]–[12], wherein methods
that classify crops on the Earth’s surface using remote sens-
ing and machine learning theory have become popular. These
methods greatly reduce the workload of field measurement.
There are primarily two reasons for this: First, the develop-
ment of “big data” and high-performance graphics process-
ing units (GPUs), wherein machine learning has been widely
applied to fields such as expert system, cognitive simulation,
data mining, natural-language understanding, network informa-
tion service (NIS), remote sensing image classification [13],
[14], etc.; second, remote sensing techniques have progres-
sively developed due to the many high-resolution remote sens-
ing satellites that have launched in recent years [5]. Such
developments have greatly increased access to basic agricul-
tural data [15], [16] while reducing the cost of data acquisi-
tion and subsequently popularizing agricultural remote sensing
mapping.

In terms of the unit size of the analysis, methods that clas-
sify earth surface coverage categories comprise two categories:
Pixel-based image analysis (PBIA) and object-based image
analysis (OBIA) [17]. The most significant difference between
the two approaches is the different units they use during image
processing: PBIA uses pixels as units while OBIA uses objects
as units, the latter being homogeneous and consistent in using
the accumulation of pixels as a unit. For a long time, PBIA has
primarily been used for remote sensing image classification, but
OBIA has progressively become more popular in the past ten
years [18], [19]. Hay and Castilla [20] hypothesized that pixels
are not isolated. Objects that comprise of a selection of pixels
subdivide data in maps into homogeneous units representing
actual surface features [21]. Compared to PBIA, OBIA has the
advantage of being able to acquire spatial (location, size, shape,
etc.) information of more objects [5], [18], [20], [22]–[25] and
can effectively reduce the problem of spectrum heterogeneity
[26], [27] and the “salt and pepper effect” following image
classification [28]. Many studies have reported that OBIA is
better at achieving higher classification accuracies compared
to PBIA [29]–[33]. Platt and Rapoza [34] classified surface
coverage of an urban-suburb-agriculture mixed area located in
Gettysburg, Pennsylvania, based on IKONOS satellite images.
The results indicated that the object-based nearest neighbor
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(NN) classifier achieved the best classification result with an
accuracy as high as 78%, but the highest value achieved for
pixel-based classification accuracy was only 64% after the ma-
chine learning classifier (MLC) was used. Duro et al. [17] used
SPOT satellite data to compare OBIA and PBIA results with
different classifiers. The results indicated that the accuracy of
OBIA classification was much higher compared to the accu-
racy of PBIA classification for the decision tree, random forest
(RF) and support-vector machine (SVM) classifiers. Belgiu and
Csillik [35] used Sentinel-2 satellite data to respectively draw
maps of crop coverage in three different study areas using both
PIBA and OIBA time dynamic weighting methods. The three
study areas were respectively located in Romania, Italy and the
USA. The results indicated that OBIA results were on average
2% higher compared to those of PBIA. With the development
of high-resolution imagery, advantages of OBIA technology
will become progressively more clear in earth surface coverage
monitoring.

Image segmentation is not only the core technology of OBIA
[17], it is also the first step of OBIA. Segmentation divides
the image into homogeneous units that exhibit similar spectra
and adjacent spaces [36]. These units show real surface features
which to a certain extent have real meaning. The segmentation
scale parameter determines the size of the object after segmen-
tation. It is often determined according to the trial-and-error
method as well as by subjective perception [25]. Thus, excessive
or insufficient segmentation often results. The features of objects
segmented out cannot describe the attributes of true objects
on the Earth’s surface [37], [38]. Additionally, such features
affect classification accuracy [39], [40]. Thus, many studies
have offered different methods on how to choose the best seg-
mentation scale. These methods are both supervised [41], [42]
and unsupervised [43], [46]. However, these methods still have
certain defects with respect to the selection of the segmentation
scale and final image classification: 1) Most of these methods are
too focused in determining a single optimal scale to segment the
whole image while assuming that the segmentation effect of the
image along with the optimal scale is the best means forward.
Earth’s surface coverage categories are often very complex.
Segmentation scales that correspond to different earth surface
coverage categories may often differ [47]. When using a single
optimal scale, information on a certain land type may promi-
nent, but information on other land types will be unavoidably
damaged; thus, it is very difficult to define a single or an optimal
segmentation scale parameter [45]. Perhaps a better strategy is
to name the “optimal” scale as the “preferred” scale. Different
preferred scales correspond to different semantically significant
regions. These preferred scales can be used to segment images
“well” if not “best”. For image classification, however, it is not
necessary to pay too much attention to scale selection, which
results from immediate process runs, if the final classification
accuracy is high enough or even allows for multiple preferred
scales to appear simultaneously during the classification process.
2) There is too little information regarding the importance in
the performance of classification features of objects at different
segmentation scales. 3) Finally, there is also too little information

regarding the performance of all categories of machine learning
algorithms at different scales.

Based on the above information, the purpose and contextual
structure of this study are as follows: 1) We discuss the impor-
tance of classification features at different preferred scales; 2)
we also discuss all categories of machine learning algorithms at
different preferred scales; 3) we propose the use of a multiscale
object-based weighted classification method which initially uses
segmentation results at multiple preferred scales as the inputs of
classifiers, then obtains weighted values according to classifica-
tion results of each scale and lastly fuses classification results
at different preferred scales according to the weighted value
on a pixel level to obtain the final classification results; 4) we
verify that the accuracy of the multiscale weighted classifica-
tion method is higher than single-scale classification accuracy,
which does not specifically mean that the final segmentation
and classification results will be the “best” when single-scale
accuracy is evaluated as being the “best” as we have previously
affirmed; and 5) we map the main crops in the southern region of
Jishan County, Shanxi Province, China, using Gaofen-2 (GF-2)
image data and the multiscale weighted classification method to
provide decision support for local agricultural management and
sustainable development strategies as well as a reference for the
classification of earth surface coverage categories of agricultural
areas in other regions.

II. MATERIALS AND METHODS

A. Study Area

The study area (35°22′–35°48′ N, 110°48′–111°54′ E; as
shown in Fig. 1) is in Taiyang Township in the southern region of
Jishan County, Shanxi Province, China. It is part of the tributary
basin of the Yellow River, with an elevation of 500 m a.s.l. The
study area is under the influence of a temperate continental
monsoon climate, with an annual average temperature of 13 °C,
namely, −4 °C in January and 27 °C in July. Annual rainfall is
483 mm. The frost period lasts from mid-October to mid-April
of the following year. There are 220 days without frost in
total. The terrain is flat, land is fertile and the average annual
sunshine hoursare up to 2040 h within the study area. The study
area abounds with grain crops and cash crops such as corn,
wheat, walnut, etc., and is renowned as a model county for
leisure agriculture and rural tourism in Shanxi Province. Our
research group set up a test base in this location and established
a large number of quadrats to monitor local agricultural planting
distribution.

B. Images and Samples

Cloudless 4th issue GF-2 images from 2017 (June 20th, July
9th, December 4th , and January 13th) were used as remote
sensing base maps (as shown in Fig. 2). The image selection
takes into account the phenological period of the main crops. The
jointing period of corn is in the middle of June, and the tasseling
period is in the middle of July. The overwintering period of
wheat is in the early December. The spring shoots of walnuts
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Fig. 1. Location of the study area.

Fig. 2. Research flow chart.

slowing down period are between mid-June and mid-July. GF-2
is the first independently researched civil optical remote sensing
satellite issued by China, with a spatial resolution of 0.8 m.
Its observation width is 45 km, which is the highest among
international sub-meter resolution satellites. GF-2 can be widely
applied, namely, for land resource monitoring, exploitation of
mineral resources, urban fine management, reconstruction of
disaster areas, etc. The multispectral sensor carried by GF-2 can
provide images within the four wave bands of red (0.45–0.52
µm), green (0.52–0.59 µm), blue (0.63–0.69 µm) and near-
infrared (0.77–0.89 µm). In this study, we first preprocessed the
16 images (4 periods × 4 bands), including radiation correction,
orthorectification, registration, fusion with the panchromatic
band and clipping, and then stacked them into a time sequence
layer used as the input of image segmentation processing.

Samples from the study area were from data obtained from
a 2017 field investigation. We randomly established quadrats
in the study area each year; thus, there are a great quantity
of sample data for use in our study. These quadrats are in the
form of polygons (not points), and their size corresponds to
actual farmland borders. We also added some samples by visual
interpretation to ensure both adequate and uniform distribution
of samples. In total, there were 893 experimental quadrats.
For cross validation, we randomly and uniformly divided the
samples into sample set A and sample set B.

C. Classification System

The study area mainly comprises of corn, wheat, walnut
and “other crops.” We also added the other land types within
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the study area into our classification system. There are eight
categories in total: corn, wheat, walnut, other crops, building,
thinned forest, grassland, and bare land.

D. Image Segmentation

Preferred scale parameters were selected prior to image seg-
mentation, and we applied the estimation of scale parameter
(ESP) tool, which indicates the object segmentation effect by
calculating the rates of changes (ROC) of local variance (LV)
of image object homogeneity at different segmentation scale
parameters [44], [48]. When the peak value of ROC of LV
(ROC-LV) appears, the segmentation scale corresponding to
the point is considered a “preferred” segmentation scale. The
tool calculates results by setting the initial segmentation scale
and increasing the step length. Given that we wanted to obtain
the segmentation results of multiple scales, we selected n peak
value points for this experiment and defined the scale parameters
corresponding to these peak value points as the “preferred”
scales (not “optimal” scales). This is different from the methods
used by previous studies that only selected one peak value point
[35], [49], [50].

We used multi-resolution algorithm [51] to segment images in
eCognition Developer 9.1 [52] after obtaining n preferred scale
parameters. The algorithm is a top-bottom method, achieving
image segmentation on the basis of the region of merging
technology under the precondition of ensuring minimum av-
erage heterogeneity among objects and maximum homogeneity
among the internal pixels of the objects [52], [53]. The algorithm
is widely believed to be one of the best methods for solving
the OBIA problem [41]. Besides controlling the relative size of
the generated object with a scale parameter, the algorithm also
uses a spectrum parameter and a shape parameter to represent
the homogeneity of the segmented object. The weighted sum
of the two is 1.0. The shape is represented by smoothness and
compactness, whereby the weighted sum is also 1.0.

We respectively set the spectrum parameter and shape param-
eter to 0.7 and 0.3 because spectrum features play a key role in
differentiating different objects in the study process [54], and
the study area mainly comprises of regular shaped farmland.
Given that any detection of differences largely failed when the
compactness parameter was adjusted, we respectively set the
same weight (0.5) to both the compactness and smoothness
parameters. With the ESP tool, scales less than 50 resulted in
obvious excessive segmentation, and scales greater than 140
resulted in obvious insufficient segmentation. Thus, we did not
use scales less than 50 or greater than 140. Accordingly, we set
the preferred scale range from 50 to 140 (initial scale: 50; step
length: 1)

E. Feature Set Construction and Feature Extraction

The object feature can be selected based on user experience
and user recognition [17], [55] or through relevant algorithms
[29], [56] during OBIA. We first selected a large number of
features based on user knowledge to construct an initial feature
set, and then this feature set was screened using an algorithm
to obtain the final feature subsets for classification. Generally,

TABLE I
VEGETATION INDEX FEATURES

TABLE II
TEXTURE FEATURES

there was a great amount of redundancy in the initial feature
sets. Such redundancy greatly impacted the running efficiency
of the program and led to its overfitting and low generalization.
Therefore, it was necessary to select important feature from the
initial feature sets.

Features related to the spectrum, vegetation index, texture
and shape were used to construct the initial feature set of the
image object, wherein the spectrum feature contained the 16
wave bands of the four periods of the input image. Given that
the GF-2 sensor comprises of the blue, green, red and near-
infrared wave bands, and on the basis of results from previous
studies, we selected the four vegetation index features, namely,
the visible atmospherically resistant indices green (VIgreen),
the ratio vegetation index (RVI), the difference vegetation index
(DVI) and the normalized difference vegetation index (NDVI)
(Table I) as well as the most common texture and geometric
features (shown in Tables II and III).

During feature screening, we used the SelectKBest method,
one of the single variable feature selection methods in the Scikit-
learn base to remove 50% of features in the initial feature set.
The principle is as follows: The mutual information score of
each variable is separately calculated by the chi-square test, and
the higher the score is, the more important the feature will be;
and then all features of which the scores are listed after the top
K are subsequently removed.

F. Classifier Model

We used three typical machine learning algorithms, namely,
RF, SVM and multilayer perceptron (MLP) for image object
classification. In the whole flow (Fig. 2), segmentation objects
at each preferred scale were classified using the three algorithms,
and 3∗n times of classification were carried out. All processes
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TABLE III
GEOMETRIC FEATURES

were performed based on python programming. We also used
the same classifier parameters at each preferred scale to verify
that the accuracy of the final classification result using multiple
preferred scales was better than that of the single optimal scale.

The RF classifier randomly establishes multiple decision trees
which subsequently form a decision tree forest, and then the
decision is made through the voting of multiple trees [61].
The classifier of the category must have good robustness [62],
[63]. Its basic procedures are as follows: A plurality of sample
sets is generated by resampling the existing samples and then
used to simulate the randomness in data, and the influence of
the randomness is considered in the final result. This method
not only samples training samples but also samples features. It
sufficiently ensures the independence of all constructed trees
and ensures nonbiased voting results. To train the RF classifier,
the quantity of decision trees (Ntree) and the optimal rate (Mtry)
of the training set and test set are required, which are formed
by dividing the feature variables in forest growth and the quality
function (criterion) for segmentation measurement. We used de-
fault values (Ntree = 100, Mtry = sqrt (n_features), criterion =
gini) in this study.

The SVM was proposed by Vapnik [64]. Its basic procedures
are as follows: Convert the nonlinear problem in the former space
into the linear problem in the new space by introducing feature
transformation. The SVM must choose different parameters
according to different core functions. In this study we used the
default RBF core and optimized its core function width. The
SVM is applicable for the binary classification problem; thus,
we must also set the classification strategy of models in multi-
ple classifications, namely, use the one-vs.-rest or one-vs.-one
strategies. We used the former in this study, which is simple and
quick [65].

The MLP is a feed-forward neural network in which infor-
mation only flows unidirectionally. Forward information moves
from the input layer and then passes through the hidden layer and
output layer [66]. After model testing and optimization, the three
hidden layers were finally set, and each layer comprised of 60

nodes. We used the backpropagation algorithm (BP algorithm)
for training. The objective function of the algorithm is the mean
square error of the prediction output and expectation output of
the neural network on all training samples. Minimization of the
objective function was achieved using the stochastic gradient
descent (SGD) method through the adjustment of weights in all
layers.

G. Multiscale Weighted Model

This study proposes a multiscale weighted model that fuses
the abovementioned 3∗n classification results at the pixel layer
on the basis of the scoring mechanism (Fig. 2). The benefit of
this model is that it skips the need of having to select optimal
scales and classifiers. All processes were performed based on
python programming. Its steps are as follows:

1) Select the classifier results of which the overall accuracy
is the highest at n different scales for voting and scoring
respectively; there are n results.

2) Construct the scoring table (Fig. 2); calculate the classi-
fication accuracy of the eight categories respectively at n
different scales; and for each scale, the category of which
the accuracy is highest is scored as n while the second
highest is scored as n−1, and so on, until reaching the
lowest accuracy, which is scored as 1.

3) For the first pixel of the image, there is one judgment
score for each of the eight attribution categories, and the
judgment score is initialized as 0 (Fig. 3). Assume the
pixel is judged as category C1 at the first scale, determine
the score of the C1 category at the first scale according
to the scoring table, and accumulate the score into the
judgment score table of the C1 category. Traverse the
category attribution of the pixel at n scale classification
results using the same method and determine the final
judgment score of each category according to the scoring
table.

4) Take the category of which the final judgment score of the
pixel is highest as the final attribution.

5) Repeat steps 3 and 4 according to the same method and
judge the final attribution category of each pixel.

H. Experimental Procedures

The experimental flow of the study mainly comprised of the
following seven procedures (Fig. 2):

1) Create input data: Include the time series which are stacked
with images from 16 wave bands of four periods and
sample data.

2) Image segmentation: Choose n preferred scales as the
scale parameter of image segmentation. Segment the im-
age for n times and obtain n segmentation results.

3) Features selection: Determine the initial set of classifica-
tion features of the image object. Filter the initial feature
set and determine the classification feature subset of n
segmentation results.

4) Object classification: Use different classifiers, take sample
set A for training and sample set B for testing to classify
segmentation result objects at multiple scales.
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Fig. 3. Each pixel has a judging table with an initial value of 0. We take the category of which the final judgment score of the pixel is highest as the final attribution
(the category corresponding to the maximum value in x1 to x8).

Fig. 4. Preferred scale results, wherein the red curve is the local variance (LV) and the blue curve is the rates of changes (ROC) of LV (i.e., ROC-LV). The scales
corresponding to the wave peak of the ROC-LV represent potential preferred scales. We selected eight preferred scales, including 52, 61, 67, 81, 86, 104, 121, and
132, according to the peak positions of waves.

5) Scale weighting: Calculate the accuracy of classification
results at different scales with different classifiers. For
each scale, select the optimal classification result of the
scale, and construct a better classification result set. Create
the scoring table and use the weight values in the scoring
table to fuse the result set to act as the final classification
result.

6) Assess the accuracy of the final classification result of
step 5.

7) Exchange sample set A and sample set B; namely, use
sample set B for training and sample set A for testing.
Repeat steps 5 and 6.

III. RESULTS

A. Image Segmentation Results

The preferred results of segmentation scales are shown in
Fig. 4. The ROC-LV curve shows a plurality of wave peaks that

correspond to significant semantic regions [50] and are therefore
potential preferred scales. Assuming an ideal condition whereby
all ground classes correspond to a segmentation scale, we finally
selected eight preferred scales (52, 61, 67, 81, 86, 104, 121, and
132) according to the wave peak position in the ROC-LV curve.

These abovementioned eight scale parameters were used for
multiresolution segmentation from which we obtained the final
segmentation results. Details of two different sites in the study
area were selected and are shown in Fig. 5. As indicated by this
figure, the object number of the image gradually decreased with
an increase in scale. The first segmentation detail in Fig. 5(a)
shows that segmentation results of scales 67 and 81 were good.
Obvious excessive segmentation (such as seen in the black box
of scale 61 in Fig. 5(a)) will occur when segmentation is lower
than the two scales. On the other hand, obvious insufficient
segmentation (such as seen in the black box of scale 132 in
Fig. 5(a)) will occur when segmentation is higher than the two
scales. Although obvious excessive segmentation can be seen
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Fig. 5. Details of image segmentation wherein (a) and (b), respectively represent segmentation details of different parts of the same image. The number in the
lower- left corner of the image represents the scale. The black box of scale 61 in (a) shows obvious excessive segmentation. The black box of scale 132 in (a) shows
obvious insufficient segmentation.

in scales 67 and 81 in Fig. 5(b), the segmentation effects of
scales 121 and 132, which we at first believed were excessive
segmentation scales in Fig. 5(a), were good. Note that these two
segmentation detail sets (i.e., a and b in Fig. 5) are segments
(bands) taken from different parts of the same image.

B. Feature Extraction Results

In the process of constructing the object feature set, we have
established a total of 118 features, including 16 spectrum fea-
tures (4 periods × 4 bands), 6 geometric features, 16 vegetation
index features (4 periods × 4 categories) and 80 texture features
(4 periods × 4 bands × 5 categories). We selected the features
from which the top 60 scores were ranked according to the single
variable feature selection method at each scale and obtained
eight feature subsets as classifier inputs. Here, we only show the
feature selection results of scales 52 and 132 (Fig. 6).

C. Classification Results at Different Scales

This study used a sample set A for training and sample set
B for testing. Additionally, the classification procedure was
repeated 24 times wherein 24 classification results were obtained
with RF, SVM and MLP classifiers, respectively, at eight scales.
To verify the feasibility of the follow-up model, we exchanged
sample sets A and B. Therefore, sample set A was used for
testing and sample set B was used for training using the same
classification procedure (24 repetitions). Classification results
are shown in Figs. 7 and 8, while Table IV shows classification
accuracy (Bolded numerals represent classification accuracy of

TABLE IV
CLASSIFICATION ACCURACY AT EACH PREFERRED SCALE

the optimal classifier at the corresponding scale). Here we should
pay attention to our accuracy assessment method. Our preferred
scale weighting method was carried out by using the pixel as a
unit; thus, our accuracy assessment also applies to the pixel layer.
All classifiers at different scales performed differently. We found
that RF, SVM and MLP classifiers all appeared after counting
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Fig. 6. Feature selection results (a) and (b) respectively show feature selection
results of the segmentation results at scales 52 and 132. Limited by the figure
size, we only show the features from which the top 30 scores were ranked.
“S” represents spectrum features; “T” and its abbreviation represents texture
features; corresponding abbreviations represent vegetation indices. T1, T2, T3
and T4 respectively represent images from June, July, December and January.
B, G, R, and N respectively represent blue, green, red and near-infrared wave
bands.

the classifiers of which accuracy was highest at each preferred
scale; however, the MLP classifier appeared most often, and its
average accuracy was higher than those of the other two (i.e.,
RF and SVM). From a scale aspect, we found that classification
accuracy at 104, 121 and 132 was not ideal for all sample sets
used for training. When sample set A was used for training,
the SVM classifier had the highest accuracy (85.19%) at scale
52, and the SVM classifier had the lowest accuracy (75.27%) at
scale 121. When sample set B was used for training, the MLP
classifier had the highest accuracy (83.35%) at scale 52, and the
RF classifier had the lowest accuracy (76.95%) at scale 132.

D. Final Classification Results

Classification results of the optimal classifiers at the preferred
scales of the eight category sets were counted before the accuracy
of each category in each classifier was calculated. Scoring results
are provided in Tables V and VI according to the weight setting
method described in section 2.7. These scoring tables clearly
show the preferred scale applicable to each category and the
accuracy sequencing of each category at each scale. The final
weighting was conducted according to the accuracy values of
each category at different scales.

The eight classification result sets were weighted at a pixel
scale by the scoring tables, and the results are shown in Figs. 7(i)
and 8(i). Tables VII and VIII were generated after the accuracy

TABLE V
SCORING TABLE (BASED ON SAMPLE SET A USED FOR TRAINING AND SAMPLE

SET B USED FOR TESTING)

TABLE VI
SCORING TABLE (BASED ON SAMPLE SET B USED FOR TRAINING AND SAMPLE

SET A USED FOR TESTING)

assessment of the final fused results. Results showed that the
final accuracy achieved after integrating classification results at
multiple preferred scales in the experiment that used a sample
set A for training and sample set B for testing was as high
as 87.43%, which was higher than classification results from
any single preferred scale. Compared to Table IV, our method
achieved an accuracy 2.24% higher than the SVM classifier at
a single scale of 52 as well as 12.16% higher than the SVM
classifier at a single scale of 121. Moreover, the final accuracy
achieved for the experiment that used sample set B for training
and sample set A for testing also reached 86.20%. Compared
to Table IV, our method achieved an accuracy of 2.85% higher
than the MLP classifier at a single scale of 52 as well as 9.25%
higher than the RF classifier at a single scale of 132.
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Fig. 7. Classification results when sample set A was used for training and sample set B was used for testing. (a) to (h) are respectively the classification results
of the classifiers with the highest accuracy at scales 52, 61, 67, 81, 86, 104, 121, and 132. (i) is the result after (a) to (h) were weighted and fused, i.e., the final
mapping result for different crop and land type distribution within the study area.

TABLE VII
MATRIX OF THE ACCURACY ASSESSMENT OF THE FINAL RESULTS (SAMPLE SET A WAS USED FOR TRAINING AND SAMPLE SET B WAS USED FOR TESTING)

IV. DISCUSSION

A. Preferred Scale and Image Segmentation Effect

We found that the ROC-LV curve had, in fact, multiple obvi-
ous wave peaks during the preferred scale process, which just

proves that one image can be segmented through the usage of
multiple scales. It is unsuitable to selectively select a wave peak
as the optimal scale and assume that the image segmentation
effect at this scale is the best. This is because coverage types on
the Earth’s surface are very diverse. Although one single optimal
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Fig. 8. Classification results when sample set B was used for training and sample set A was used for testing. (a) to (h) are respectively the classification results
of the classifiers with the highest accuracy at scales 52, 61, 67, 81, 86, 104, 121, and 132. (i) is the result after (a) to (h) were weighted and fused.

TABLE VIII
MATRIX OF THE ACCURACY ASSESSMENT OF THE FINAL RESULTS (SAMPLE SET B WAS USED FOR TRAINING AND SAMPLE SET A WAS USED FOR TESTING)

scale can be used to highlight the information of a land type, it
will also inevitably corrupt information of other land types. This
point can be proven by Fig. 5(a) and (b): While the segmentation
effect of scale 67 was good in the former, this same scale resulted
in an excessive segmentation effect in the latter. Thus, we must
emphatically emphasize that the wording of “optimal” scale is

in itself improper. Generally, we can only say that the scales
selected by us can segment the image well. Thus, we refer to
the selected “good” scale as the “preferred” scale, and different
preferred scales, in fact, correspond to different semantically
significant region. Our study selected multiple preferred scales
for the purpose of using the “useful” information of multiple
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scales. It is very similar to ensemble learning in the machine
learning algorithm which uses a plurality of small classification
models to obtain more robust classification results. Here we
use the ESP tool in order to directly accelerate the process of
scale selection. Some previous studies also selected multiple
scales (e.g., [46], [67]–[69]), but most of these methods only
selected scales equidistantly. Thus, there is no guarantee that
each scale is “better”. The information of some scales will be
omitted if the distance is too long because segmentation results
will significantly change even with a minor scale change [48].

B. Feature Importance Performance at Different Scales

In this study, we use two steps to obtain classification features.
The first step is to construct an initial feature set based on the
user knowledge. It is worth noting that this step only provides a
range for important feature selection in the later stage and we do
not use the entire initial feature set as a classified input. For each
image object, the specific values of features were calculated by
eCognition Developer 9.1. Nevertheless, there is a limitation in
the construction of an initial feature set that we cannot guarantee
that all the features are very proper for later classification. The
reasons are as follows: 1) The construction of initial feature set is
relatively subjective, and some useful features may be missed;
2) initial feature set determined the total number of features
in classification processing; and 3) there was some redundancy
in the initial feature sets, which will affect running efficiency
of the program and lead to its over fitting. So, in order to
solve the redundancy problem, the second step is to select
important features from the initial feature set as the classified
input. Feature selection results (Fig. 6) show that there were
differences in our feature score sequences at different scales.
The reason is that the scale parameter controls the final scale
of the image object during image segmentation, and the value
of the classification feature is calculated from all pixels in the
image object. When the scale changes, the former object will
either delete or add pixels to form a new object, and its feature
values will change in succession, which then changes the feature
importance score.

However, after excluding the differences, we found the vege-
tation index feature always ranked in the top no matter the scale
used, followed by the spectrum feature, the texture feature and
the geometric feature. At scale 52, we found that all features
with scores in the top 5 were in fact vegetation index features,
namely, the first texture feature T_Ent_T4_N ranked 19 while
most spectrum features ranked from 10 to 20. Also, at scale
132, we found that all features with scores in the top 5 were
also vegetation index features, while those whose scores ranked
from 10 to 20 were mostly spectrum features, and most texture
features ranked after 20. Only a few geometric features ranked
near the top 60 in the eight feature selection result sets.

Rules that govern sequencing of the classification features at
different scales showed that the vegetation index feature and
the spectrum feature played crucial roles in identifying the
eight land types in the study area. This was followed by the
texture feature, while the geometric feature only played a minor
role. The reasons are as follows: 1) The study area is mainly

comprised of vegetation, and the vegetation index can well
reflect vegetation growth; and 2) vegetation in the study area is
mainly planted on customary farmland where geometric differ-
ences are not significant; thus, the significance of the geometric
feature is generally low. It is important to emphasize that al-
though during this stage we removed approximately 50% of fea-
tures within the initial feature set using the SelectKBest method,
we still cannot guarantee there is no redundancy in residual
features. For parameter selection, the SelectKBest method is
very subjective [70]. However, parameter selection is beyond the
scope of this study. We were more focused on the sequencing
differences in feature importance at different scales.

Differences are shown by specific features. For example,
important scores of the feature of NDVI_T4 ranked differently at
scale 52 and scale 132. However, differences are not obvious for
certain types of features. For example, vegetation index features
always rankedat the top no matter the scale.

C. Performances of All Classifiers at Different Scales

We respectively used RF, SVM and MLP classifiers to classify
input features at eight preferred scales. These classifiers respec-
tively represented three typical machine learning algorithms
of ensemble learning, Vapnik-Chervonenkis (VC) dimension
theory and neural network. Our initial feature set and classifier
model parameter were the same for all preferred scales; thus, it
sufficiently ensured that the change of classification accuracy is
not caused by the change of model parameters.

Table IV shows that the same classifier performs differently
at different scales. For example, when sample set A was used
for training, the RF classifier reached the highest accuracy
(83.57%) at scale 86 but less so (76.78%) at scale 132. The
main reason for this is that different preferred scales results in
different features which subsequently enter the classifier. We
found that in general MLP was better than RF and SVM for
the same scale but different classifiers whether sample set A or
sample set B was used for training. When sample set A was
used for training, we averaged classification accuracy of the
three classifiers at eight preferred scales, and results showed
that MLP achieved the highest accuracy (82.72%) followed by
RF (81.45%) and SVM of (81.05%). Thus, different classifiers
have different classification accuracy [42]. However, this does
not mean that MLP performance was better than the other two
because we cannot guarantee that our classifier parameters are
unquestionably the best.

In summary, the combination of different scales and classifiers
resulted in differences in classification accuracy (as seen in
Table IV). Thus, as it relates to the problem of object-based
classification, final classification results cannot be determined
by one row or one column (Table V). This does not mean that
the final segmentation and classification results are also optimal
when a single scale reaches optimal (as identified by this study).
For example, when sample set A was used for training, we
achieved the highest classification accuracy (83.57%) at scale
86 only when the RF classifier was used and we assumed that
this scale was best; however, this assumption is correct only if
we neglect the fact that higher classification accuracy would be
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obtained at another scale if we used the MLP classifier. Thus, this
study proposes the use of the multiscale weighted classification
method to solve this problem.

D. Multiscale Weighted Classification Model and the Single
Scale Classifier Model

The multiscale weighted classification model avoids the diffi-
culty in both classifier selection and scale selection. It combines
multiple preferred scales and multiple classifiers to achieve
multiple classification results and then fuses these results to
obtain the final result.

In the scoring shown in Table V, the corn category had the
highest scores at scales 81 and 121, which means that the most
suitable scales for the corn category were 81 and 121. The
walnut category had the highest scores at scales 61 and 104,
which means that the most suitable segmentation scales for the
walnut category were 61 and 104. The wheat category always
yielded low scores at all scales, which means no scale is suitable
to segment wheat. The main reason for this is that the wheat
category is scattered within the study area (see Figs. 7 and 8). The
building category yielded high scores at all scales, which means
that the building category is not sensitive to scale, and this also
conforms to the actual conditions of the study area. The study
area is mainly comprised of vegetation, and it is not difficult
to differentiate buildings from all categories of crops. In other
words, it only requires certain simple features to differentiate.
Thus, the accuracy of the building category is always high no
matter how it is segmented. In addition, we found that there
were certain differences and undulations between Tables V and
VI after comparison. For example, the most suitable scale to
use for the other crop categories in Table V was 132, but it was
81 and 86 in Table VI. One reason for this phenomenon is the
differences between sample set A and sample set B, which were
divided from the samples as a whole, while other reasons were
that we selected different classifiers for the two experiments and
there were also accuracy differences among all categories.

In the final results, the accuracy reached 87.43% using the
multiscale weighted classification method (see Table VII). But
the accuracy using single preferred scale method was only
75.27% to 85.19% (see Table IV). Improvements range from
2.24% to 12.16%. The results we obtained were ideal and
verify that the accuracy of the multiscale weighted classification
method is higher than that of single scale classification. In fact,
the multiscale weighted classification method is an ensemble
learning method or can be understood as an image decision-level
fusion process. This method combines multiple scales and clas-
sifiers to obtain a more robust classification result. The ensemble
learning used in this study has two distinct meanings: 1) The
first is an ensemble learning at different scales. A plurality
of preferred scales is used to obtain multiple segmentation
results, and then the useful information of segmentation results
is transferred to the final classification result through the scoring
table. 2) The second is learning on different classifiers. Different
classifiers may perform differently for different study areas, for
different images and for different samples. Both classifier and
parameter selection are always difficult during classification.

The multiscale weighted classification method reinforces the
final classification result with a plurality of classifiers of simple
parameters while avoiding the problems of model parameter
selection and optimization.

V. CONCLUSIONS

This study mapped crop distribution in the southern region
of Jishan County, Shanxi Province, China, using GF-2 high-
resolution images and the multiscale object-based weighted clas-
sification method. We set multiple preferred scales to segment
images during the study with the aim of using the useful informa-
tion of each scale. Excessive computation loads and information
redundancy will be caused if the information from all scales to
be added into the final multiscale weighted classification model;
thus, we primarily selected some scales which can segment
images well using the ESP tool and defined them as “preferred”
scales.

When selecting features, we found that feature importance
scores at different scales sequence differently; thus, features that
are finally inputted into the classifiers also differ. Differences
are shown by specific features but are not clear for features of
a certain category. In the study area we selected, the vegetation
index feature was higher than the spectrum feature, the texture
feature and the geometric feature.

We found significant differences in accuracy in classification
results in the combinations of different preferred scales and
different classifiers; thus, it is extremely difficult to determine
a single suitable scale, namely, the “optimal” scale. Therefore,
when a single scale was identified as optimal and then used by
study, this did not mean that final segmentation and classification
results were also optimal.

Accordingly, the intent of this study was to propose the
multiscale weighted classification model which uses the concept
of ensemble learning. We determined that the final classification
accuracy of this model was higher than that at any single scale.
It has two main advantages: First, it uses ensemble learning at
different scales, and useful information at multiple scales can
be applied; second, it is able to learn using multiple different
classifiers, and the final classification result is reinforced by
multiple classifiers of simple parameters.

The multiscale object-based weighted classification model
provides a new solution for object-based classification. Pro-
cedures that include the selection of segmentation scales and
the selection and optimization of classifiers can be skipped
altogether. In this study, a number of scales were selected rather
than just one for the process as a whole. Decisions were made for
classification results at multiple scales to obtain more suitable re-
sults. However, certain components of the method are defective,
which we intend to resolve in the future; for example, the highly
subjectivity when establishing the methods and parameters for
feature screening. Another uncertainty with this method that
must be resolved is determining the number of suitable classifier
types to use to set each scale. Although the number would be 1 in
a limit state, such a number may omit certain information, while
too many classifiers will result in an overburdened computation
load which would reduce the benefits of using this method.
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