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Estimating and Mapping Mangrove Biomass
Dynamic Change Using WorldView-2

Images and Digital Surface Models
Yuanhui Zhu , Kai Liu , Lin Liu, Soe W. Myint, Shugong Wang, Jingjing Cao, and Zhifeng Wu

Abstract—Mapping and quantification of biomass changes is
critical to understanding mangrove carbon sequestration, conser-
vation, and restoration. Few previous studies have focused on man-
grove biomass changes based on high spatial resolution images, par-
ticularly for disturbed and recovering areas. This study developed
an effective model to estimate and map mangrove aboveground
biomass dynamic change between 2010 and 2016 on Qi’ao Island
in South China. The study area includes native Kandelia candel
(K. candel) and planted Sonneratia apetala (S. apetala) mangrove
species within the largest planted area in China. Models were de-
veloped using WorldView-2 images, digital surface models (DSMs),
and the random forest algorithm. Accuracies of the model were
assessed using multiyear field samples. DSMs were identified as
the most important variable for model accuracy, reducing relative
error by up to 3.14%. Three models were developed: a model for
2010, another model for 2016, and a combined model for 2010
and 2016. Compared with the 2010 (RMSE = 41.03 t/ha, RMSEr
= 24.31%) and 2016 (RMSE = 39.92 t/ha, RMSEr = 23.40%)
models, the combined model (RMSE = 50.99 t/ha, RMSEr =
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30.48%) only increased the relative error by 6.17% and 7.08%,
respectively. Mangrove biomass maps generated from the most
accurate models showed total biomass increased from 23270.43 to
39819.03 tons by up to 71.11% over the study period. K. candel total
biomass decreased by 36.5% due to Derris trifoliata challenge. S.
apetala total biomass increased by 74.79% due to reforestation pro-
grams, achieving aboveground biomass accumulation of 4.17 t/ha
for stands that existed in 2010. This study provides insights into
biomass dynamic change in disturbed and recovering mangrove
areas. Future studies should consider using LiDAR techniques to
obtain actual tree height applied for biomass estimation instead of
DSM.

Index Terms—Biomass change, digital surface models (DSMs),
mangrove species, WorldView-2 images.

I. INTRODUCTION

MANGROVE forests grow in coastal, estuary, and river
intertidal zones in tropical and subtropical regions [1],

[2]. As continental marine transitional ecosystems, they provide
essential ecosystem goods and services. One important function
is global warming mitigation due to highly effective carbon
sequestration compared with other terrestrial ecosystems [3].
Consequently, climate warming mitigation programs often in-
clude mangrove forest programs, such as Reducing Emissions
from Deforestation and Forest Degradation (REDD+) [4], [5],
Payments for Ecosystem Services (PES), and Blue Carbon
[6]. Those require accurate monitoring and mapping for base-
line carbon stock and to validate conservation efforts. Above-
ground biomass (AGB) is a critical carbon metric for mangrove
ecosystems [7].

Previous studies have shown large mangrove ecosystem re-
ductions and conversions into aquaculture, rice cultivation, and
human settlement over the past few decades due to population
pressure and rapid urban growth [8]. This is particularly true
for China, where more than 68.7% of mangrove forests were
depleted before the late 1990s [9]. Since then, many restored
planting schemes have been implemented. Therefore, it is crucial
to map spatio-temporal dynamic changes in mangrove biomass
to assess and understand regional carbon cycles and planting
effects. Moreover, mapping mangroves are essential for coastal
management, spatial planning, and decision making [10].

Few studies have focused on monitoring mangrove forest
AGB changes using high-resolution images due to limitations
in obtaining sample information, mangrove’s tardy growth rate,
and maintaining AGB stability over time [11]–[13]. However, ar-
tificially restored areas (i.e., from planting fast-growing species)
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promoted their rapid changes in AGB distribution spatially and
temporally [14]. Studies that focus on AGB changes in these
areas are required to quantify biomass carbon accumulation and
provide insights into artificial restoration effects. However, pre-
vious studies usually concentrated on field measurements [14],
[15] since remote sensing-based models to assess and monitor
mangrove biomass are significantly constrained by the number
of samples that are usually limited [13]. Therefore, combining
all samples over different years to produce a larger dataset is
critical in building operational and effective AGB models.

Vegetation biomass represents all organic matter produced
from living plants [16] and can often be effectively estimated by
allometric models used to measure tree height, diameter at breast
height (DBH), species type, and growth density in a quadrat [9],
[17]. Optical images can be used to estimate forest biomass
because they quantify vegetation response to electromagnetic
waves, reflecting growth density and vegetation status [17]–[19].
SAR images are more effective in estimating forest biomass due
to their independence of clouds and deriving canopy structure
by actively emitting radiation to detect and measure branches
and trunks [20]. Producing accurate biomass models requires
further key input parameters that can be obtained from images,
such as species type and tree height, to identify variations of
a mangrove forest structure [21]. Species type can be mapped
by supervised classification [22], [23], and tree height can be
obtained by canopy height models (CHM) using LiDAR (e.g.,
satellite LiDAR [24], terrestrial LiDAR [25], airborne LiDAR
[26]), InSAR [26]–[29], or aerial photographs [30]–[33], which
can be successfully applied to estimate forest biomass.

Recent progress enables effective CHMs from 3-D point
clouds using the Structure from Motion (SfM) photogrammetry
algorithm from aerial photographs [34], [35]. SfM is a pho-
togrammetric technique to rebuild 3-D structures from over-
lapping images that is most suited to unmanned aerial vehicle
(UAV) images with their high degree of overlap to capture DSM
of the scene [36]. It is also an adequate low-cost alternative to
obtain tree height compared with LiDAR or InSAR methods
[37]. Previous studies demonstrated the utility of CHM derived
from SfM [25], [38], [39], which has also been applied to
estimate AGB [30]–[33].

CHM is usually calculated from the corresponding digital
surface model (DSM) by subtracting the digital terrain model
(DTM) based on point cloud data. However, CHM for dense
mangrove forests is not yet fully functional since point clouds
from SfM photogrammetry and aerial photographs are incapable
of penetrating dense forest canopies to obtain DTMs [40]. There-
fore, few studies have considered mangrove AGB estimation
using SfM and aerial photographs [40]–[42]. Since mangrove
forests mainly grow over even terrain [40], it can be anticipated
that DSM can effectively estimate mangrove AGB by using
relative mangrove tree heights instead of CHM. However, the
utility of such a method for mangrove AGB remains uncertain.

Mangrove species types should be emphasized to improve
biomass estimation accuracy due to their significant spectral
signature differences [9], [43]. They can be obtained by object-
based or pixel-based classification approaches [44]. Object-
based classification is the process of dividing images into groups

of pixels (objects) with homogeneous and spatially contiguous
regions [45], [46], rather than the pixel-based classification.
Each object is produced by aggregating pixels with a spatial
neighborhood and similar features, thereby reducing the vari-
ability. Previous studies have demonstrated that object-based
classification is better suited to identifying mangrove forests
as they have relative homogeneous canopy for specific species
and usually form discrete units [44], [47], [48]. Different data
sources (e.g., optical or SAR) have used the object-based method
to map mangrove species classification and improved accuracies
compared to the pixel-based method [44], [49].

Statistical models are used in building remote sensing-based
models to retrieve forest biomass, which include multiple linear
regression and machine learning [19]. Machine learning algo-
rithms as a statistical model were commonly used to estimate
biomass due to their fewer assumptions for the data and pro-
cesses and higher estimation accuracies than linear regression
in most cases [50]. The random forest (RF) regression algorithm
as an ensemble learning technique is one of the popular machine
learning algorithms [50]. A major advantage of the RF model is
that it reduces the algorithm’s risk for overfitting due to relative
insensitivity to variations in parameter values. Some studies have
demonstrated that it performs good predictive capabilities for
biomass estimation [13], [51].

Further study is required to estimate and map spatio-temporal
dynamics of mangrove biomass at the species level for mainly
reforested areas. Uncertainty remains regarding the effects of
DSM variables from the SfM algorithm, and combing samples
from different years on the accuracy of biomass estimation.
Therefore, the current study developed an effective model to
estimate biomass and map mangrove biomass dynamic change
from WorldView-2 images and aerial photographs. The specific
objectives are threefold:

1) evaluation of the effectiveness of DSM data from aerial
photographs for mangrove AGB retrieval and mapping;

2) exploration of the effects of combining samples from
different years on AGB estimation;

3) analysis of spatio-temporal mangrove biomass dynamic
change at the species level in an intensively restored area.

II. STUDY AREA AND MATERIALS

A. Study Area

Qi’ao Island (22°23′N–22°27′N, 113°36′E–113°39′E), lo-
cated in the eastern Zhuhai city, Guangdong Province (see Fig. 1)
[44], is a rare mangrove area close to a large city in China
that provides a cross-border channel for migratory birds. The
study area has a subtropical monsoon climate with a mean
annual temperature of 22.4 °C, sunshine hours of 1907.4 h,
and rainfall totaling 1700–2200 mm [52]. Surface seawater
salinity ranges from 0.22% to 32.32% with an annual average of
18.22% [52], with irregular semidiurnal tidal pattern. The soil is
mostly argillaceous sediment. Hence, the island environment is
very suitable for mangrove growth. Mangrove forests mainly
grow in Dawei Bay of northwest Qi’ao Island. This area is
the largest restored conservation area for mangrove forests in
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Fig. 1. Study area and field measurement sites overlaid on a Worldview-2
images (bands 7, 5, and 3 false color combination) in 2016 on Qi’ao Island.

China, covering approximately 700 ha, and was recognized as a
provincial level nature reserve in 2004 [53], [54].

Qi’ao Island previously had large mangrove forest areas due
to its ideal setting and extensive mudflats [43]. However, they
were reduced to only 0.32 km² by 1998 due to intertidal zone
reclamation, and hence, artificial planting was implemented
to restore mangrove forests [43]. Thus, the study area can be
characterized by external disturbances and recovery [55].

The primary mangrove species consisted of Kandelia candel
(K. candel), Sonneratia apetala (S. apetala), Aegiceras cornicu-
latum (A. corniculatum), Acanthus ilicifolius (A. ilicifolius), and
Acrostichum aureum (A. aureum) on Qi’ao Island. We focused
on prevalent mature and native K. candel and restored S. apetala
based on uneven aged mangrove forests. K. candel and S. apetala
are the primary mangrove species on Qi’ao Island. K. candel is
largely concentrated outside the enclosing levee in high tidal
zones. The stand had a mean age over 45 years and tree height
ranging from 5.5 to 7.5 m. The restored S. apetala species
originated in Bangladesh and was first planted on Qi’ao Island
in 1999. The S. apetala species covers almost the entire study
area except around the levee. S. apetala is fast-growing and has
a tree height ranging from 4 to 21 m, with an increasing rate
at approximately 1.5 m each year in early growing stages. The
afforestation sequence was executed from the shore seaward
over time.

B. Field Investigation

Mangrove species types and biomass were gathered by field
investigations in 2010 and 2016. A total of 683 and 722 samples
of mangrove species were collected over the study area by field
investigation and UAV images with 0.12 m resolution. Half of
the samples were used for model training and the remaining
for validation. A total of 91 biomass samples were obtained
in 2010, including 68 restored S. apetala plots and 23 native
mature K. candel plots, whereas 144 samples were collected in
2016, including 133 S. apetala plots and 11 K. candel plots,
respectively. Sampling locations covered most of the study area,
ensuring all biomass variations due to the tree age and crown
cover were evenly represented. Each sample plot was a 10

TABLE I
ALLOMETRIC EQUATIONS OF MANGROVE SPECIES BASED ON

DBH AND HEIGHT

TABLE II
CHARACTERISTICS OF WORLDVIEW-2 IMAGES

× 10 m quadrat. Tree height was measured using a handheld
laser range finder (Trueyard SP-1500H, Trueyard Optical In-
struments Company), and DBH was recorded for each living
tree along with the number of living trees for each plot. Only
trees with DBH above 5 cm were recorded. Submeter accurate
GPS was used to record the quadrat center and vertices of each
sample. We also recorded auxiliary details including distances
to shore and other recognizable features using WorldView-2
images and aerial photographs to locate sites on the images.
The above-ground biomass for each plot was calculated from
species-specific allometric equations for the study area, as listed
in Table I [56].

C. Data Collection and Processing

1) WorldView-2 Images: Two WorldView-2 images were ob-
tained with 2-m spatial resolution for biomass estimation from
11 November 2010 and 29 July 2016, as detailed in Table II.
Both images included eight multispectral bands: four traditional
bands (blue, green, red, and near infrared 1) and four new bands
(coastal, yellow, red-edge, and near-infrared 2).

Preprocessing including geometric correction was performed
using 15 ground control points conformed to a UTM Zone
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Fig. 2. (a) DOM and (b) DSM maps derived from aerial photographs in 2016.

49 map projection followed by a resampling procedure us-
ing the nearest neighbor approach. The root-mean-square error
(RMSE) of geometric correction was less than 0.5 pixel (1 m)
for both images. Radiometric calibration was achieved through
calibration utilities to convert digital numbers into radiance
values, and then surface reflectance was obtained by atmo-
spheric correction using fast line-of-sight atmospheric analysis
of the spectral hypercubes (FLAASH) model with the ENVI
module.

2) UAV Images: We only collected UAV images in 2016 from
a fixed wing UAV with onboard GPS/inertial measurement unit,
80% frontal overlap, and 60% side overlap at 400 m altitude.
The images (RGB, 4912 × 3264 pixel) were captured with
a SONY NEX-5T camera with geolocation (latitude/longitude
with WGS84 horizontal) and altitude (EGM96 vertical datum
for the frame center) embedded in the EXIF data.

The original images were processed to generate DSMs and
digital orthophoto maps (DOMs) using Agisoft PhotoScan Pro-
fessional (64 bit) software (AgiSoft LLC) [57]. Overlapping
photographs were used to generate DSM and DOM maps of the
study area based on the SfM algorithm [39], [58]. The SfM
algorithm acquires a 3-D point cloud similar to those from
LiDAR data by standard automated techniques using computer
vision and traditional stereoscopic photogrammetry [59]. It has
a high level of automation and great ease of use. It has been
reported that the accuracy of photogrammetrically generated
DSMs depends on geometric and physical parameters, such
as the image scale, ground sampling density, and so on [60].
Usually, high-resolution DSMs from UAVs imagery and SfM
algorithm with accuracy better than 10 cm can meet our research
requirement [60].

Agisoft PhotoScan software was used to reconstruct the
ground surface to get the DSMs, including the following steps
[61]. Images were first aligned using a scale-invariant feature
transform algorithm to detect image features, such as edges
or other geometrical features, and reconstruct their movement
through the image sequence [62]. Pixel-based stereo recon-
struction was then executed on the aligned images, and then
fine topographic products were meshed using a texture method.
The resultant DSM and DOM maps were exported at 0.12 m
resolution (see Fig. 2), and geometric correction applied from
ground control points and the nearest neighbor approach. DSMs
were resampled at 2-m resolution to correspond to WorldView-2
images.

Fig. 3. Workflow diagram to estimate mangrove AGB based on WorldView-2
images and DSMs.

III. METHODOLOGY

The RF algorithm was applied to WorldView-2 images to
obtain mangrove forest AGB for 2010 and 2016. An accurate
estimation of AGB requires a range of inputs, including spectral
features, species types, and tree height. Spectral features and
species types were obtained from the WorldView-2 images,
and tree heights from DSMs based on the UAV-SfM algorithm.
Fig. 3 shows the workflow overview, and details are discussed
in subsequent sections.

A. Species Classification and AGB Estimation Algorithm

We used the RF algorithm, an ensemble learning method
that works by constructing multiple decision trees, for species
classification and biomass estimation [50]. The RF algorithm
combines bootstrap aggregating and random feature selection
to construct decision trees (ntree) with controlled variance [50].
Each node of the trees splits using a random subset of input
variables (mtry). RF also corrects for a decision tree overfitting
the training set and has high robustness to outliers and noise.
Out-of-bag (OOB) is used to estimate the generalization error
for the RF model utilizing bootstrap aggregating to subsample
data samples used for training. Usually, the RF algorithm uses
2/3 of the samples as “in-bag data” by random selection to grow
up each tree and build the model, and the remaining samples (1/3
of the samples) as “out-of-bag data” to measure the model’s error
[63], [64]. The RF process involved the following steps.

1) Bootstrap samples from the training datasets were used
to generate n new training datasets of equal size to the
observed datasets by random sampling with replacement
from the original training datasets.
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2) Multiple decision trees (ntree) were constructed based on
the bootstrap samples. Each tree node was split using a
random subset of input variables (mtry). Random predic-
tive variable selection reduces correlation among decision
trees and generalization error [63].

3) The final prediction was determined by averaging the
decision trees. Tuning parameters (ntree and mtry) were
searched using grid search to obtain optimized model
parameters providing the highest accuracy.

Model building, tuning, and accuracy evaluations were per-
formed using the R statistical environment and “randomForest”
package [65]. The importance of each variable was calculated
using the mean decrease in accuracy (MDA), i.e., the OOB
error difference between the original data set and a dataset with
randomly permutated variables.

B. Calculation of Vegetation Indices

Vegetation indices (VIs) and the eight WorldView-2 image
bands were input to the biomass estimation models. In this study,
ρB1 (coastal band), ρB5 (red band), ρB6 (red-edge band), ρB7

(near-infrared-1 band), and ρB8 (near-infrared-2 band) of the
WorldView-2 images were used to calculate nine VIs, including
the normalized difference vegetation index (NDVI), the simple
ratio index (SRI), the difference vegetation index (DVI), red-
edge NDVI (RE-NDVI), red-edge SRI (RE-SRI), and modified
red-edge SRI (mRE-SRI) [9], 66]. These VIs have been proven to
successfully estimate vegetation parameters that could be crucial
for AGB estimation [66]. They are commonly related to canopy
foliage content, vegetation status, and canopy structure [67]. The
indices are computed as follows:

NDVI75 =
ρB7 − ρB5

ρB7 + ρB5
(1)

NDVI85 =
ρB8 − ρB5

ρB8 + ρB5
(2)

SRI75 =
ρB7

ρB5
(3)

SRI85 =
ρB8

ρB5
(4)

DVI75 = ρB7 − ρB5 (5)

DVI85 = ρB8 − ρB5 (6)

RE−NDVI65 =
ρB6 − ρB5

ρB6 + ρB5
(7)

RE− SRI65 =
ρB6

ρB5
(8)

mRE− SRI651 =
ρB6 − ρB1

ρB5 + ρB1
. (9)

C. Mapping Mangrove Species

Species information was treated as a dummy variable to
the AGB estimation models. The built regression models are
easy to interpret when dummy variables are limited to specific
values. Mangrove species classification maps were generated

Fig. 4. Segmentation scales (a) 30, (b) 60, (c) 80, and (d) 100 for WorldView-2
images false color combination (bands 7, 5, and 3).

using an object-based classification and RF algorithm. Due to
their homogeneous distribution, target objects in the study area,
including S. apetala and K. candel, were hard classified with the
RF classifier.

1) Image Segmentation: Image segmentation was required
for object-based mangrove species classification [68]. Image
objects for each scene were generated using a multi-resolution
segmentation algorithm in eCognition Developer 9.0 [69], which
is a bottom-up region merging method. The algorithm requires
a scale parameter to control heterogeneity growth and influence
mean image object size. Other parameters [shape index (0.3),
color index (0.7), compactness index (0.4), and smoothness in-
dex (0.6)] were set to optimize segmentation results. Ideal image
object size should match true surface features without over or
under segmentation. Fig. 4 compares segmentation outcomes for
different scale parameters (30, 60, 80, and 100). We selected a
scale parameter of 80 producing the best visual effect matching
true surface features.

2) Mangrove Species Classification: After image segmenta-
tion, the features of each object were computed as the input
variables to train and build the classifier. The features were
shown as follows.

1) Eight multispectral and 1 panchromatic WorldView-2
bands for each image object.

2) Nine VIs: NDVI75, SRI75, DVI75, NDVI85, SRI85, DVI85,
RE-NDVI65, RE-SRI65, and mRE-SRI651.

3) Eight texture features of panchromatic band: homogene-
ity, contrast, dissimilarity, mean, variance, entropy, en-
ergy, and correlation.

4) Multispectral band transformations: principal component
analysis factors (additive contribution up to 85%) and min-
imum noise fraction (MNF) components (three highest
signal-to-noise ratio components).

Finally, an RF algorithm was applied to classify mangrove
species using the abovementioned input features and samples of
mangrove species.
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D. Biomass Modeling and Accuracy Assessment

The eight bands and nine VIs derived from WorldView-2
images were used as the input variables, and the field mangrove
AGB measurements were used as the output variable to build RF
models. The built RF models were used to predict and map AGB
spatial distribution across the whole image. To analyze the effect
of mangrove biomass samples over different years on estimation
accuracy, two experiments were conducted to build RF models.
One model combined all the samples from the two different
years to provide larger training and testing datasets. The other
two models were built for each individual year to avoid possible
spectral differences between capture years. Furthermore, we
also explored DSM effects for mangrove AGB estimation using
models based on images and samples from 2016.

Model accuracy was calculated using k-fold cross validation
due to the limited number of biomass samples. We employed
iterated fivefold cross validation, partitioning the samples into
five separate datasets of four training samples and one validation
sample rather than the common tenfold cross validation, due to
limited samples. Each dataset was generated using a stratified
random sampling to ensure they contained the whole range of
biomass values. Model results for each fivefold cross validation
(e.g., RMSE) were calculated for the average over each iterated
accuracy estimation. Estimation accuracies were measured by
RMSE and relative RMSE (RMSEr) between the measured and
predicted values for the validation datasets. Their formulas are
as follows:

RMSE =

√∑
(yi − ŷi)

2

n
(10)

RMSEr =
RMSE

ȳ
(11)

where yi (i = 1, 2, …, n) and ŷi represent the measured and pre-
dicted value of AGB at plot i based on fivefold cross validation
data, respectively, and ȳ represents the measured mean of AGB
and n is the number of plots.

IV. RESULTS

A. Mangrove Species Classification

The resulting mangrove species maps for 2010 and 2016 are
shown in Fig. 5, and the corresponding classification accuracies
are shown in Tables III and IV. The overall accuracies of man-
grove species classification were 81.12% and 78.83%, respec-
tively. The accuracy in 2010 is superior due to the more complex
nature of species composition and mixture in 2016. Overall, the
accuracy of the S. apetala plantation is superior to K. candel
since S. apetala was artificially planted and more homogeneous.
Some native K. candel plantations were also covered by Derris
trifoliata (D. trifoliata), leading to more heterogeneity. To meet
requirements for follow-up biomass estimation and prediction,
the classified maps were manually edited by researchers familiar
with the study area based on field investigation, prior knowledge,
and higher resolution data (such as UAV 0.12 m resolution). As
shown in Fig. 5, K. candel plantations were mainly distributed
outside the enclosing levee in high tidal zones with specific strips

Fig. 5. Classified mangrove maps for Qi’ao Island originally obtained maps
in (a) 2010 and (b) 2016, and the edited maps in (c) 2010 and (d) 2016.

TABLE III
CONFUSION MATRIX OF OBJECT-ORIENTED CLASSIFICATION FOR MANGROVE

SPECIES IN 2010

in the study area, whereas S. apetala plantations were located all
over the study area and had the largest area. S. apetala plantations
showed a sharply increased area (increased by 60.91%) between
2010 and 2016 due to restoration planting.

B. Biomass From Field Sampling

Both mangrove species, K. candel and S. apetala, were inves-
tigated by field survey, as listed in Table V. K. candel exhibited
higher density with luxuriant foliage and high canopy closures.
However, more than 90% of the top canopy was covered by
D. trifoliata, with understory plants (e.g., A. ilicifolius), which
are approximately 1 m high. Since the top community was in
late ecological succession, the density of K. candel gradually
reduced by 14.57% between 2010 and 2016. However, average
tree height and DBH were similar during this period. Mean AGB
decreased from 272.97 t/ha in 2010 to 246.46 t/ha in 2016.

The artificially planting mangrove species, S. apetala, grows
quickly and was used to inhibit S. alterniflora, an invasive alien
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TABLE IV
CONFUSION MATRIX OF OBJECT-ORIENTED CLASSIFICATION FOR MANGROVE

SPECIES IN 2016

TABLE V
BIOMASS OF K. CANDEL AND S. APETALA OBTAINED FROM THE FIELD SAMPLES

ON QI’AO ISLAND

species, since 2000. Understory plants included small tree and
shrub species, such as A. ilicifolius, A. aureum, and Pluchea
indica. Tree height and DBH increased by 19.54% and 8.99%
from 2010 to 2016, respectively, but growing density decreased
slightly by 12.74%. Mean AGB increased from 125.49 to 159.70
t/ha between 2010 and 2016.

C. Biomass Estimation Model Accuracies

Biomass estimation models were developed using the RF
algorithm, providing sample biomass output from the various
inputs (bands and VIs of WorldView-2 images, species types,
and DSM). The scatterplots of the predicted versus measured
AGB were presented to show the accuracy of the models by
the RF algorithm and fivefold cross validation (see Fig. 6). The
predicted AGB values of all models were above the 1:1 line
in lower measured values, indicating that AGB values of the
mangrove plantation were overestimated, but they were the op-
posite in the higher measured values. Table VI compares biomass
estimates for different input variables and sample combinations
using mean cross validation RMSE (see Section III-D).

The individual models using separate samples from their
respective years exhibited up to 6.17% and 7.08% (RMSEr)
improved estimation accuracy for 2010 and 2016 compared to
the model using all samples collected in both years (RMSE
= 50.99 t/ha, RMSEr = 30.48%). Including the DSM input
produced superior accuracy (RMSE = 34.16 t/ha, RMSEr =
20.54%) compared with the other models.

Fig. 7 shows the level of importance of the select variables
for AGB estimation in 2010 and 2016 based on 100 replicate RF

Fig. 6. Scatter diagram of RF regression models between field-measured AGB
and predicted AGB. (a) From all samples combined by collection years without
DSM. (b) From samples without DSM in 2010. (c) From samples in 2016 without
DSM. (d) From samples in 2016 with DSM.

TABLE VI
RMSE OF BIOMASS ESTIMATION AMONG DIFFERENT EXPERIMENTS BY USING

WORLDVIEW-2 IMAGES AND RANDOM FORESTS

models. All constructed models had consistent results. The most
important input variables were DSM and species-type variables,
with the red-edge band (B6) and associated VIs (mRE-SRI651)
being the next most important variables. Other variables exhib-
ited inconsistent performance.

D. Spatio-Temporal Distribution of Mangrove Biomass

Fig. 8 shows the spatial distribution of mangrove biomass for
different samples and input features. K. candel had consistently
larger biomass and smaller gradient changes than S. apetala, and
S. apetala also exhibits a biomass gradient from inshore to sea
for models with separate samples [see Fig. 8(a) and (d)] in both
2010 and 2016. However, it was not the case when the samples
from different years were combined [see Fig. 8(b) and (e)]. There
was a more significant biomass trend for those including DSM as
input [see Fig. 8(c)] than for those without DSM (see Fig. 8(d).

Comparing biomass maps from the highest accuracy models
for 2010 and 2016 [see Fig. 8(a) and (c), respectively], it can
be observed that K. candel AGB distribution decreased over the
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Fig. 7. Importance levels of the variables employed in the RF models for
(a) 2010 and (b) 2016.

Fig. 8. Mangrove biomass maps for the study area generated by the biomass
models. (a) 2010 map using 2010 samples only. (b) 2010 map using all samples.
(c) 2016 map using DSM and 2016 samples. (d) 2016 map using only 2016
samples. (e) 2016 map using DSM and all samples.

period. Although previously planted S. apetala in 2010–2016
had higher AGB, newly planted vegetation during this period
was the opposite. Models of combination samples from both
years did not show this trend [see Fig. 8(b) and (e)].

V. DISCUSSION

A. Mangrove Biomass Distributions

Field investigation showed that K. candel AGB was signif-
icantly larger than S. apetala. This finding is consistent with
Wang et al. [70], mainly because the native K. candel had higher
growth density than S. apetala. However, the growth of K. candel
was relatively slow between 2010 and 2016 due to their top
communities and high density. K. candel was also caused to

blight, death, and photosynthesis inhibition from D. trifoliata
cover; hence, AGB and density gradually reduced over the study
period.

S. apetala had the largest growing area in the study area. This
is a fast-growing species achieving a 1.5–3 m height increase in
a year, which is related to AGB growth with age [15]. However,
after approximately five years, the growth slowly stabilizes and
plant density gradually decreases with age, mainly due to space
and resource competition, causing some trees to stop growing
and/or die [15], [71]. In this study, S. apetala mean AGB in
2016 was greater than in 2010, but restoration, i.e., planting,
continued throughout the study period, and S. apetala exhibited a
significant increase in area, although newly planted tree biomass
was smaller than the older trees. Consequently, mean AGB in
2016 was slightly higher than in 2010. The artificially planted
trees (S. apetala) occurred from the middle to low intertidal
zones, and trees in medium tidal zones exhibited greater biomass
compared to those in other locations.

B. Biomass Estimate Models

DSM was identified as the most important variable by the RF
algorithm, and biomass models exhibited up to 3.14% (RMSEr)
improved accuracy when including DSM compared to the equiv-
alent model without DEM. The results were consistent with
previous studies that remote sensing-based models of biomass
including DSM or tree height variables are capable of improving
estimate accuracies [24], [72]–[74]. Compared with the biomass
maps in Fig. 8(c) and (d), the species of K. candel had similar
biomass distribution in 2010 and 2016 [compare Fig. 8(c) and
(d)], whereas S. apetala that was already present in 2010 showed
higher biomass in 2016 and significantly more than new plan-
tations. Models that included DSM input also produced better
agreement with field investigation data. This was mainly because
mangrove forests mainly occurred in intertidal zones without
any undulating terrain conditions, i.e., relatively stable DEM,
and hence, DSM derived from UAV images could effectively
measure relative tree height.

This study found that the red edge band (B6) or the associated
VIs (e.g., mRE-SRI651) were the next-most important variables
over other bands in estimating AGB. The results followed pre-
vious studies [51], [75]. That is mainly because the red edge
band of WorldView-2 images was considered more sensitive
to biomass than other traditional bands (e.g., the near-infrared
band). A slight change of vegetation parameters will lead to
a notable shift in the red edge band. However, optical images
cannot provide tree height, which is one of the most important
factors for estimating vegetation biomass [76]. Models using
optical image spectral features [see Fig. 8(d)] mainly considered
vegetation spectrum differences. However, optical images often
incur saturation, causing underestimated high biomass due to
multiple scattering in the canopy from dense vegetation [51].
Therefore, maps from models excluding DSM did not exhibit
significant increases for existing vegetation between 2010 and
2016.

SfM photogrammetry was still considered an adequate low-
cost technique for measuring forest stands. DSMs derived from
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Fig. 9. Potential uncertainties of predicted AGB maps using the highest
accuracy models in 2010 and 2016 by RMSE.

SFM and UAV photographs have high precision with less than
10 cm error [60]. Previous studies suggested that the uncer-
tainties associated with the sensor calibration were less than
the 2% of variable dynamic range and can be considered satis-
factorily low [77]. However, point clouds from SfM and UAV
photographs cannot penetrate dense forest canopies to get the
actual tree height, which may cause the sources of uncertainties
and error to propagate into the estimation of mangrove biomass.
LiDAR with active remote sensing techniques can penetrate
through the dense canopies and provide the accurate tree height
datasets. Some studies have explored a comparison between
LiDAR and SfM point clouds. The results suggested that both
techniques can be used in relatively low canopy density, but the
SfM photogrammetric technique underperformed LiDAR un-
der increasingly denser canopy cover. Therefore, future studies
should further consider using LiDAR techniques for biomass
estimation [39], [78].

The most accurate AGB models [see Fig. 6(b) and (d)] show
a higher AGB value and display higher RMSEs, indicating a
statistical gradient of RMSE distribution. To get the reliability
of the biomass per pixel, field plots were grouped into several
AGB intervals at a 50 t/ha break using measured values [79].
RMSE was calculated for each interval in order to represent
the uncertainties of the corresponding predicted AGB values
(predicted maps). As shown in Fig. 9, the spatial distribution of
potential AGB uncertainties was provided.

Since filed studies usually face physical obstacles in intertidal
zones, we combined samples from different years to increase
testing and training dataset sizes for developing biomass models.
We compared AGB estimation based on different sample combi-
nations using WorldView-2 images. The resulting models reach
30.48% of RMSEr within an acceptable range, but biomass maps
were not consistent with field investigations and the mangrove
plantation sequence [see Fig. 8(b) and (e)]. K. candel distribution
was more reasonable since it remained relatively stable over
the study period, but S. apetala distribution did not present the
trends shown in more accurate models. This latter issue was due
to seasonal differences between the images acquired in summer
and autumn and S. apetala growth speed, causing large biomass
and spectral feature differences between 2010 and 2016 images.

C. Mangrove Biomass Change Between 2010 and 2016

Table VII describes the mangrove biomass maps for the
different species types from the most accurate models for 2010
and 2016 [see Fig. 8(a) and (c), respectively]. Total AGB in the

TABLE VII
BASIC STATISTICS OF MANGROVE BIOMASS OF THE MAPS GENERATED BY THE

MODELS WITH THE HIGHEST ACCURACIES

study area increased from 23270.43 to 39819.03 tons by up to
71.11% between 2010 and 2016. The K. candel mean and total
AGB decreased due to D. trifoliata incursion [70], and S. apetala
increased 74.79% due to their faster growth rate and active forest
plantation programs.

To further analyze the spatial and temporal changes of AGB
of S. apetala, the species maps of two terms were performed
intersection to extract unchangeable vegetation of S. apetala
during 2010 and 2016. The results showed that the unchangeable
area was 161.36 ha. Mean AGB increased from 121.15 to 146.41
t/ha between 2010 and 2016, i.e., 4.17 t/ha per year. Previous
studies have shown annual AGB accumulation for S. apetala
as high as 20.3 t/ha/y for 4–5-year-old stands, 5.60 t/ha/y for
5–8-year-old stands, and 2.85 t/ha/y for 8–10-year-old stands
[14], [15]. S. apetala plantations have been artificially planted
across the study area since 1999; hence, many stands have low
AGB accumulation due to their higher tree age [14]. However,
other stands were planted since 2008, because Sonneratia case-
olaris plantations suffered from cold damage in 2008 and were
gradually replaced by S. apetala plantings [52]. This study found
mean AGB S. apetala accumulation for even-aged stands over
the study period to be 4.17 t/ha, consistent with previous studies
[14], [15].

VI. CONCLUSION

Estimating and mapping biomass dynamic change for mainly
reforested areas at the species level is critical to accurately
monitor the carbon stock dynamic of the coastal zone. Therefore,
the goal of the study was to develop an effective and low-cost
approach for applying remote sensing images to derive biomass
change. In this study, we constructed AGB models with and
without the consideration of DSM derived from the SfM algo-
rithm applied to aerial photographs to evaluate effects on AGB
estimation accuracy. We also evaluated the efficacy of including
samples from different years to provide larger training and test
datasets. Finally, spatio-temporal change of mangrove biomass
was estimated and mapped based on built optimal models.

This study showed that models incorporating DSM informa-
tion derived with the SfM algorithm exhibited up to 3.14%
(RMSEr) improved accuracy for providing relative mangrove
tree height from DSM data. The combined model from the entire
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period from 2010 to 2016 increased relative error within an
acceptable range, but enlarged training and test datasets. This
method can be applied to estimate biomass changes, especially
for limited samples. Total AGB in the study area increased by
71.11% between 2010 and 2016. Total AGB of native species
decreased by 36.5% due to D. trifoliata coverage, whereas S.
apetala total AGB increased by 74.79%, mostly due to the con-
tinuation of new plantations. AGB accumulation for unchanged
S. apetala stands over the study period was 4.17 t/ha. These
results provide valuable insights into biomass estimation models
and vegetation recovery dynamics. Future studies should further
consider using LiDAR techniques to obtain actual tree height
applied for biomass estimation.

ACKNOWLEDGMENT

The authors would like to thank L. Peng, M. Tan, and X. Li
for their suggestions on designing this study and their help in
the field investigation.

REFERENCES

[1] A. Ishtiaque, S. W. Myint, and C. Wang, “Examining the ecosystem
health and sustainability of the world’s largest mangrove forest using
multi-temporal MODIS products,” Sci. Total Environ., vol. 569–570,
pp. 1241–1254, 2016.

[2] X. Zhang et al., “Mapping mangrove forests using multi-tidal remotely-
sensed data and a decision-tree-based procedure,” Int. J. Appl. Earth
Observ. Geoinf., vol. 62, pp. 201–214, 2017.

[3] D. C. Donato et al., “Mangroves among the most carbon-rich forests in
the tropics,” Nature Geosci., vol. 4, no. 5, pp. 293–297, 2011.

[4] V. Kankare et al., “Retrieval of forest aboveground biomass and stem
volume with airborne scanning LiDAR,” Remote Sens., vol. 5, no. 5,
pp. 2257–2274, 2013.

[5] A. Abdul Aziz et al., “Using REDD+ to balance timber production with
conservation objectives in a mangrove forest in Malaysia,” Ecological
Econ., vol. 120, pp. 108–116, 2015.

[6] N. Kosoy and E. Corbera, “Payments for ecosystem services as commodity
fetishism,” Ecological Econ., vol. 69, pp. 1228–1236, 2010.

[7] J. A. A. Castillo et al., “Estimation and mapping of above-ground biomass
of mangrove forests and their replacement land uses in the Philippines
using Sentinel imagery,” Int. Soc. Photogrammetry Remote Sens. J. Pho-
togrammetry Remote Sens., vol. 134, pp. 70–85, 2017.

[8] C. Giri et al., “Status and distribution of mangrove forests of the world
using earth observation satellite data,” Global Ecol. Biogeography, vol. 20,
no. 1, pp. 154–159, 2011.

[9] Y. Zhu et al., “Retrieval of mangrove aboveground biomass at the individ-
ual species level with worldview-2 images,” Remote Sens., vol. 7, no. 9,
pp. 12192–12214, 2015.

[10] T. Jones et al., “Madagascar’s mangroves: Quantifying nation-wide and
ecosystem specific dynamics, and detailed contemporary mapping of
distinct ecosystems,” Remote Sens., vol. 8, no. 2, pp. 1–31, 2016.

[11] S. D. Sasmito et al., “Remote sensing technique to assess aboveground
biomass dynamics of mangrove ecosystems area in Segara Anakan, Cen-
tral Java, Indonesia,” in Proc. 34th Asian Conf. Remote Sens., 2013,
pp. 4560–4565.

[12] A. S. Ibrahim and T. G. Ngigi, “Assessment of mangrove spatial -temporal
dynamics and biomass by remotely sensed data, case study Kilifi County:
Kenya,” J. Geosci. Geomatics, vol. 5, no. 1, pp. 24–36, 2017.

[13] L. T. H. Pham and L. Brabyn, “Monitoring mangrove biomass change in
Vietnam using SPOT images and an object-based approach combined with
machine learning algorithms,” Int. Soc. Photogrammetry Remote Sens. J.
Photogrammetry Remote Sens., vol. 128, pp. 86–97, 2017.

[14] H. Ren et al., “Biomass accumulation and carbon storage of four differ-
ent aged Sonneratia apetala plantations in Southern China,” Plant Soil,
vol. 327, no. 1/2, pp. 279–291, 2010.

[15] H. Ren et al., “Restoration of mangrove plantations and colonisation by
native species in Leizhou bay, South China,” Ecological Res., vol. 23,
no. 2, pp. 401–407, 2008.

[16] B. F. Clough and K. Scott, “Allometric relationships for estimating above-
ground biomass in six mangrove species,” Forest Ecol. Manage., vol. 27,
no. 2, pp. 117–127, 1989.

[17] A. Aslan et al., “Mapping spatial distribution and biomass of coastal
wetland vegetation in Indonesian Papua by combining active and pas-
sive remotely sensed data,” Remote Sens. Environ., vol. 183, pp. 65–81,
2016.

[18] C. Proisy, P. Couteron, and F. Fromard, “Predicting and mapping man-
grove biomass from canopy grain analysis using Fourier-based textural
ordination of IKONOS images,” Remote Sens. Environ., vol. 109, no. 3,
pp. 379–392, 2007.

[19] N. R. Jachowski et al., “Mangrove biomass estimation in Southwest
Thailand using machine learning,” Appl. Geography, vol. 45, pp. 311–321,
2013.

[20] H. Omar, M. Misman, and A. Kassim, “Synergetic of PALSAR-2 and
Sentinel-1A SAR polarimetry for retrieving aboveground biomass in
dipterocarp forest of Malaysia,” Appl. Sci., vol. 7, no. 7, pp. 1–20, 2017.

[21] T. R. Feldpausch et al., “Tree height integrated into pan-tropical forest
biomass estimates,” Biogeosci. Discuss., vol. 9, no. 3, pp. 2567–2622,
2012.

[22] L. Wang, J. L. Silván-Cárdenas, and W. P. Sousa, “Neural network clas-
sification of mangrove species from multiseasonal IKONOS imagery,”
Photogrammetric Eng. Remote Sens., vol. 74, no. 7, pp. 921–927, 2008.

[23] M. K. Heenkenda et al., “Mangrove species identification: Compar-
ing worldview-2 with aerial photographs,” Remote Sens., vol. 6, no. 7,
pp. 6064–6088, 2014.

[24] S. C. Popescu et al., “Satellite LiDAR vs. small footprint airborne LiDAR:
Comparing the accuracy of aboveground biomass estimates and forest
structure metrics at footprint level,” Remote Sens. Environ., vol. 115,
no. 11, pp. 2786–2797, 2011.

[25] A. Olagoke et al., “Extended biomass allometric equations for large man-
grove trees from terrestrial LiDAR data,” Trees, vol. 30, no. 3, pp. 935–947,
2016.

[26] E. A. Feliciano et al., “Estimating mangrove canopy height and above-
ground biomass in the everglades national park with airborne LiDAR and
TanDEM-X Data,” Remote Sens., vol. 9, no. 7, pp. 1–14, 2017.

[27] T. E. Fatoyinbo and M. Simard, “Height and biomass of mangroves in
Africa from ICESat/GLAS and SRTM,” Int. J. Remote Sens., vol. 34,
no. 2, pp. 668–681, 2013.

[28] T. E. Fatoyinbo et al., “Landscape-scale extent, height, biomass, and car-
bon estimation of Mozambique’s mangrove forests with Landsat ETM+
and shuttle radar topography mission elevation data,” J. Geophysical Res.,
Biogeosci., vol. 113, no. G2, pp. 1–13, 2008.

[29] M. Simard et al., “Mapping height and biomass of mangrove forests in
Everglades National Park with SRTM elevation data,” Photogrammetric
Eng. Remote Sens., vol. 72, no. 3, pp. 299–311, 2006.

[30] J. P. Dandois and E. C. Ellis, “Remote sensing of vegetation structure using
computer vision,” Remote Sens., vol. 2, no. 4, pp. 1157–1176, 2010.

[31] J. P. Dandois and E. C. Ellis, “High spatial resolution three-dimensional
mapping of vegetation spectral dynamics using computer vision,” Remote
Sens. Environ., vol. 136, pp. 259–276, 2013.

[32] J. Lisein et al., “A photogrammetric workflow for the creation of a
forest canopy height model from small unmanned aerial system imagery,”
Forests, vol. 4, no. 4, pp. 922–944, 2013.

[33] R. Jing et al., “Above-bottom biomass retrieval of aquatic plants with
regression models and SfM data acquired by a UAV platform—A case
study in Wild Duck Lake Wetland, Beijing, China,” Int. Soc. Photogram-
metry Remote Sens. J. Photogrammetry Remote Sens., vol. 134, pp. 122–
134,2017.

[34] M. A. Fonstad et al., “Topographic structure from motion: A new de-
velopment in photogrammetric measurement,” Earth Surface Processes
Landforms, vol. 38, no. 4, pp. 421–430, 2013.

[35] M. Maimaitijiang et al., “Unmanned Aerial System (UAS)-based pheno-
typing of soybean using multi-sensor data fusion and extreme learning
machine,” Int. Soc. Photogrammetry Remote Sens. J. Photogrammetry
Remote Sens., vol. 134, pp. 43–58, 2017.

[36] M. J. Westoby et al., “‘Structure-from-Motion’photogrammetry: A low-
cost, effective tool for geoscience applications,” Geomorphology, vol. 179,
pp. 300–314, 2012.

[37] I. Colomina and P. Molina, “Unmanned aerial systems for photogrammetry
and remote sensing: A review,” Int. Soc. Photogrammetry Remote Sens. J.
Photogrammetry Remote Sens., vol. 92, pp. 79–97, 2014.

[38] T. Ota et al., “Aboveground biomass estimation using structure from
motion approach with aerial photographs in a seasonal tropical forest,”
Forests, vol. 6, no. 12, pp. 3882–3898, 2015.



ZHU et al.: ESTIMATING AND MAPPING MANGROVE BIOMASS DYNAMIC CHANGE USING WorldVIEW-2 IMAGES AND DSMs 2133

[39] L. Wallace et al., “Assessment of forest structure using two UAV tech-
niques: A comparison of airborne laser scanning and structure from motion
(SfM) point clouds,” Forests, vol. 7, no. 3, pp. 1–16, 2016.

[40] V. Otero et al., “Managing mangrove forests from the sky: Forest inventory
using field data and unmanned aerial vehicle (UAV) imagery in the Matang
Mangrove Forest Reserve, peninsular Malaysia,” Forest Ecol. Manage.,
vol. 411, pp. 35–45, 2018.

[41] M. Jaud et al., “Potential of UAVs for monitoring mudflat morphodynamics
(Application to the Seine estuary, France),” Int. Soc. Photogrammetry
Remote Sens. Int. J. Geo-Inf., vol. 5, no. 4, pp. 1–20, 2016.

[42] J. Tian et al., “Comparison of UAV and worldview-2 imagery for mapping
leaf area index of mangrove forest,” Int. J. Appl. Earth Observ. Geoinf.,
vol. 61, pp. 22–31, 2017.

[43] X. Li et al., “Regression and analytical models for estimating mangrove
wetland biomass in South China using Radarsat images,” Int. J. Remote
Sens., vol. 28, no. 24, pp. 5567–5582, 2007.

[44] J. Cao et al., “Object-based mangrove species classification using un-
manned aerial vehicle hyperspectral images and digital surface models,”
Remote Sens., vol. 10, no. 1, pp. 1–20, 2018.

[45] D. Flanders, M. Hall-Beyer, and J. Pereverzoff, “Preliminary evalua-
tion of eCognition object-based software for cut block delineation and
feature extraction,” Can. J. Remote Sens., vol. 29, no. 4, pp. 441–452,
2003.

[46] V. Walter, “Object-based classification of remote sensing data for change
detection,” Int. Soc. Photogrammetry Remote Sens. J. Photogrammetry
Remote Sens., vol. 58, no. 3-4, pp. 225–238, 2004.

[47] W. R. Nascimento et al., “Mapping changes in the largest continuous
Amazonian mangrove belt using object-based classification of multisensor
satellite imagery,” Estuarine, Coastal Shelf Sci., vol. 117, pp. 83–93,
2013.

[48] L. Wang, W. Sousa, and P. Gong, “Integration of object-based and pixel-
based classification for mapping mangroves with IKONOS imagery,” Int.
J. Remote Sens., vol. 25, no. 24, pp. 5655–5668, 2004.

[49] H. Zhang et al., “Potential of combining optical and dual polarimetric sar
data for improving mangrove species discrimination using rotation forest,”
Remote Sens., vol. 10, no. 3, pp. 1–15, 2018.

[50] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
2001.

[51] O. Mutanga, E. Adam, and M. A. Cho, “High density biomass estimation
for wetland vegetation using WorldView-2 imagery and random forest
regression algorithm,” Int. J. Appl. Earth Observ. Geoinf., vol. 18, pp. 399–
406, 2012.

[52] K. Liu et al., “Exploring the effects of biophysical parameters on the spatial
pattern of rare cold damage to mangrove forests,” Remote Sens. Environ.,
vol. 150, pp. 20–33, 2014.

[53] S. G. Wang et al., “The change of mangrove wetland ecosystem and
controlling countermeasures in the Qi’ao Island,” Wetland Sci., vol. 3,
pp. 13–20, 2005.

[54] K. Liu et al., “Monitoring mangrove forest changes using remote sensing
and GIS data with decision-tree learning,” Wetlands, vol. 28, no. 2, pp. 336–
346, 2008.

[55] B. W. Liao et al., “Studies on dynamic development of mangrove commu-
nities on Qi’ao Island, Zhuhai,” J. South China Agricultural University,
vol. 29, pp. 59–64, 2008.

[56] Q. J. Zan and Y. J. Wang, “Biomass and net productivity of sonneratia
apetala, s.caseolaris mangrove man-made forest,” J. Wuhan Botanical Res.,
vol. 19, pp. 391–396, 2001.

[57] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski, “A com-
parison and evaluation of multi-view stereo reconstruction algorithms,”
in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2006,
pp. 519–528.

[58] M. Kalacska et al., “Structure from motion will revolutionize analyses of
tidal wetland landscapes,” Remote Sens. Environ., vol. 199, pp. 14–24,
2017.

[59] T. Sankey et al., “UAV LiDAR and hyperspectral fusion for forest monitor-
ing in the southwestern USA,” Remote Sens. Environ., vol. 195, pp. 30–43,
2017.

[60] G. Forlani et al., “Quality assessment of DSMs produced from UAV flights
georeferenced with on-board RTK positioning,” Remote Sens., vol. 10,
no. 2, pp. 1–22, 2018.

[61] F. Mancini et al., “Using unmanned aerial vehicles (UAV) for high-
resolution reconstruction of topography: The structure from motion ap-
proach on coastal environments,” Remote Sens., vol. 5, no. 12, pp. 6880–
6898, 2013.

[62] G. L. David, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[63] V. F. Rodriguez-Galiano et al., “An assessment of the effectiveness of
a random forest classifier for land-cover classification,” Int. Soc. Pho-
togrammetry Remote Sens. J. Photogrammetry Remote Sens., vol. 67,
no. 1, pp. 93–104, 2012.

[64] G. Ridgeway, “Generalized boosted models: A guide to the gbm package,”
Update, vol. 1, no. 1, pp. 1–15, 2007.

[65] A. Liaw and M. Wiener, “Classification and regression by randomForest,”
R News, vol. 2, no. 3, pp. 18–22, 2002.

[66] J. M. Peña-Barragán et al., “Object-based crop identification using multi-
ple vegetation indices, textural features and crop phenology,” Remote Sens.
Environ., vol. 115, no. 6, pp. 1301–1316 2011.

[67] R. Pu and S. Landry, “A comparative analysis of high spatial resolution
IKONOS and WorldView-2 imagery for mapping urban tree species,”
Remote Sens. Environ., vol. 124, pp. 516–533, 2012.

[68] A. Abdul Aziz et al., “Assessing the potential applications of Landsat im-
age archive in the ecological monitoring and management of a production
mangrove forest in Malaysia,” Wetlands Ecol. Manage., vol. 23, no. 6,
pp. 1049–1066, 2015.

[69] Trimble. eCognition developer 9.0.1 reference book. 2014.
[70] Z. Wang et al., “Study on Zhuhai Qi’ao Island main mangrove commu-

nity characteristics,” J. Central South Univ. Forestry Technol., vol. 37,
no. 4, pp. 86–91, 2017.

[71] A. Lunstrum and L. Chen, “Soil carbon stocks and accumulation in young
mangrove forests,” Soil Biol. Biochem., vol. 75, no. 75, pp. 223–232, 2014.

[72] M. L. Clark et al., “Estimation of tropical rain forest aboveground biomass
with small-footprint LiDAR and hyperspectral sensors,” Remote Sens.
Environ., vol. 115, no. 11, pp. 2931–2942, 2011.

[73] G. Vaglio Laurin et al., “Above ground biomass estimation in an African
tropical forest with LiDAR and hyperspectral data,” Int. Soc. Photogram-
metry Remote Sens. J. Photogrammetry Remote Sens., vol. 89, pp. 49–58,
2014.

[74] S. Luo et al., “Fusion of airborne LiDAR data and hyperspectral imagery
for aboveground and belowground forest biomass estimation,” Ecological
Indicators, vol. 73, pp. 378–387, 2017.

[75] S. Adelabu et al., “Spectral discrimination of insect defoliation levels in
mopane woodland using hyperspectral data,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 7, no. 1, pp. 177–186, Jan. 2014.

[76] A. Komiyama, J. E. Ong, and S. Poungparn, “Allometry, biomass, and
productivity of mangrove forests: A review,” Aquatic Botany, vol. 89,
no. 2, pp. 128–137, 2008.

[77] T. Miura, A. R. Huete, and H. Yoshioka, “Evaluation of sensor calibration
uncertainties on vegetation indices for MODIS,” IEEE Trans. Geosci.
Remote Sens., vol. 38, no. 3, pp. 1399–1409, May 2000.

[78] D. S. Cooper et al., “Examination of the potential of terrestrial laser scan-
ning and structure-from-motion photogrammetry for rapid nondestructive
field measurement of grass biomass,” Remote Sens., vol. 9, no. 6, pp. 1–13,
2017.

[79] P. M. Montesano et al., “The uncertainty of biomass estimates from LiDAR
and SAR across a boreal forest structure gradient,” Remote Sens. Environ.,
vol. 154, pp. 398–407, 2014.

Yuanhui Zhu received the Ph.D. degree in cartog-
raphy and geography information system from Sun
Yat-sen University, Guangzhou, China, in 2017.

He is currently doing Postdoctoral research with
the School of Geographical Sciences, Guangzhou
University, Guangzhou, China. He is also with
the Center of GeoInformatics for Public Security,
Guangzhou, China. His research interests include
vegetation remote sensing, concentrating on species
classification, and estimation of biophysical parame-
ters of mangrove wetlands using multispectral remote
sensing images.

Kai Liu received the B.S. degree from the School of
Geology Engineering and Geomatics from Chang’an
University, Xi’an, China, in 2002, and the Ph.D. de-
gree from the Guangzhou Institute of Geochemistry,
Chinese Academy of Sciences, Guangzhou, China, in
2007.

He is currently an Associate Professor with the
School of Geography and Planning, Sun Yat-sen
University, Guangzhou, China. His research interests
include wetlands, especially on mangrove and dyke
pond system by using remote sensing and geographic
information science technologies.



2134 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Lin Liu received the B.S. degree in geography and the
M.S. degree in remote sensing and cartography from
Peking University, Beijing, China, in 1984 and 1987,
respectively, and the Ph.D. degree in geography with
a specialization in geographic information science
(GIS) from The Ohio State University, Columbus,
OH, USA, in 1994.

He is currently a Professor of geography with the
University of Cincinnati, Cincinnati, OH, USA, and
Guangzhou University, Guangzhou, China. He has
authored and co-authored more than 170 articles and

led multiple national and international research projects. His research interests
include GIS, remote sensing, and their applications.

Soe W. Myint received the Ph.D. degree in geography
from Louisiana State University, Baton Rouge, LA,
USA.

He is currently a Professor with the School of
Geographical Sciences and Urban Planning, Arizona
State University, Tempe, AZ, USA. He has more
than 20 years of experience in remote sensing, GIS,
geospatial statistics, spatial modeling, and geospatial
classification algorithm development in an effort to
inform our understanding of land cover land use
(LCLU) change and simulation, drought, land degra-

dation, desertification, agriculture water use, disaster management, assessment,
and mitigation, land configuration, regional climate change, urban environmen-
tal modeling, assessment of deforestation and forest degradation, and coastal
zone mapping.

Shugong Wang receive the Ph.D. degree in physical
geography from Sun Yat-sen University, Guangzhou,
China, in 2015.

He is currently with the School of Earth Sciences
and Engineering, office of Scientific Research &
Development, Sun Yat-sen University, Guangzhou,
China. His research interests include the interdisci-
plinary geochemical research of the earth’s surface,
mainly focusing on the bio-geochemical cycling of
coastal mangrove wetlands.

Jingjing Cao received the M.S. degree in cartog-
raphy and geographic information system from Sun
Yat-sen University, Guangzhou, China, in 2013. She
is currently working toward the Ph.D. degree with
the School of Geography and Planning, Sun Yat-sen
University, Guangzhou, China.

Her current research interests include vegeta-
tion remote sensing, multisource remote sensing,
and coastal environmental studies, concentrating on
mangrove species classification, hyperspectral im-
age analysis, unmanned aerial vehicle (UAV) remote
sensing, and machine learning.

Zhifeng Wu received the Ph.D. degree in cartography
and geography information system from the State Key
Laboratory of Resource and Environmental Informa-
tion System, Chinese Academy of Sciences, Beijing,
China.

He is the Director of the School of Geographical
Science, Guangzhou University, Guangzhou, China.
He is also the Director of the Guangdong Provincial
Engineering Technology Research Center for geo-
graphical conditions monitoring and comprehensive
analysis. His research interests focus on urban remote

sensing and human settlement environment.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


