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Abstract—As a plant organ with the largest surface area, leaves
are the main place where photosynthesis and respiration take place.
High-throughput phenotyping of crop leaves is of great significance
for breeding, growth monitoring, and increasing crop yield. Due
to the highly complex and diversified plant structures, automated
leaf segmentation and phenotypic feature extraction remain to be
challenging tasks. In this article, we propose a novel five-stage
framework that comprises multiview stereo point cloud reconstruc-
tion, preprocessing, stems removal in canopy, leaf segmentation,
and leaf phenotypic feature extraction to carry out leaf phenotyping
on two types of ornamentals—Maranta arundinacea and Dieffen-
bachia picta. The phenotypic traits such as the leaf area, leaf length,
width, and leaf inclination angle for each single leaf are calculated
and compared with ground truths. The experimental results show
that the average accuracy of calculated leaf area of the two species
reached 96.8% and 97.8%, respectively. The average errors of both
the calculated leaf length and width of Maranta arundinacea are
less than 4.0%, and for Dieffenbachia picta, the average errors of
calculated leaf length and width are both no higher than 4.7%. The
average errors of calculated leaf inclination angle for the two plant
species are 2.9° and 3.0°, respectively.

Index Terms—Leaf phenotyping, leaf segmentation, multiview
stereo (MVS), point cloud.

I. INTRODUCTION

PHENOTYPE is a group of biological traits that link the
interaction between genotype and environment. Plant phe-

notypes intuitively reflect the growth state of plants, and observ-
ing the plant phenotypes is the basis of all breeding processes
[1]. Plant phenotyping [2] is the comprehensive assessment of
complex plant traits such as growth, development, tolerance,
resistance, architecture, physiology, ecology, yield, and the basic
measurement of individual quantitative parameters that form
the basis for more complex traits. The quantitative analysis of
plant phenotypes generally comprises the following aspects:
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leaf characteristics, stem characteristics, fruit traits, and root
morphology [3]. As the organ that makes up the largest surface
area of the plant, leaf is the main place where photosynthesis
and respiration take place. Therefore, the leaf area, leaf length,
width, and leaf inclination angle of plants are among the most
critical biological factors [4]. With the growing demand for plant
phenotype analysis, traditional manual measurement methods,
which are often tedious and labor intensive [5], [6], are not ap-
plicable to high-throughput phenotyping tasks. In addition, the
field of precision agriculture industry has been imposing higher
standards on accuracy and precision for plant phenotyping at
different scales [7].

Consequently, there exists a greater interest among academic
communities and the agricultural industry in developing rapid
and nondestructive techniques for high-throughput phenotyping.
Generally, the first step of plant phenotyping requires accurate
measurements of geometric features in specimens. This data
acquisition process is also called plant digitizing [8], methods
of which can be grouped into two classes—contact and con-
tactless. The former class requires a certain form of probe to
touch the surface of the plant for generating a 3-D model of
the measured plant sample [9]–[12]. Despite high accuracy, the
contact approaches rely on sophisticated manual operations and
expertise. Therefore, researchers started to resort to noncontact
techniques and significant progress has been made since then.
At present, Light Detection and Ranging (LiDAR) sensing sys-
tems are widely used for 3-D reconstruction of tall trees [13],
[14], corn [15], [16], cotton [17], and several other cash crops
[18]–[20]. Although LiDAR has a high reconstruction accuracy,
the equipment is so expensive that it is not suitable for the
cost-sensitive agricultural industry. Structured light [21], [22]
and time-of-flight [23] sensors also become popular tools for
plant reconstruction because of their real-time performances
[24], [25]. In addition, in order to further reduce plant digitizing
costs [26]–[29], binocular stereo vision systems are used to
reconstruct and analyze greenhouse plants and economic crops.
However, this technique is only applicable to short plants, and
is not able to handle dense canopies.

3-D reconstruction from multiple images, also referred as
multiview stereo (MVS), has achieved great progress in recent
years [30]. MVS is a low-cost method having high accuracy
and resistance to light changes and imaging noise. By capturing
images from different views and matching feature points, a
complete 3-D model can be reconstructed, which avoids the
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occlusion problem of the single-perspective imaging. Santos
et al. [8] made a survey on plant digitalization, and showed
that the structure from motion (SFM) method (one of the most
important MVS methods) can be used for the phenotypic anal-
ysis of plants. Subsequently, Klodt and Cremers [31] evaluated
the accuracy of MVS reconstruction on barley. Pound et al. [32]
conducted accurate grid reconstruction of rice and wheat using
surface estimation and boundary optimization. Johann et al. [33]
segmented tomato plants at the organ level. In addition, Wang
et al. [34] compared the precision and accuracy of 3-D laser
scanning, MVS reconstruction, and 3-D digitized estimates on
plant phenotyping.

Effective segmentation and feature analysis of 3-D point cloud
is the key to digitization and automatic plant phenotyping. But
how to effectively separate stem part and canopy for plants,
and further, how to segment all leaves separately and extract
phenotypic traits remain to be difficult questions. For dense
crops, the segmentation tasks are even more challenging. In
recent years, many new methods for the segmentation and
analysis of 3-D models of different plants have been proposed.
Paproki et al. [35] realized the separation of the leaves and the
stem system of the cotton plant with a “hybrid” segmentation
pipeline, and fitted leaf sagittal and coronal planes to calculate
leaf length and width. Muller-Linow et al. [36] designed a half-
automated graph-based method to segment individual leaves of
young sugar beet plants. Duan et al. [37] proposed an octree
algorithm to separate point clouds into several primary groups,
and they extracted leaf midribs with local polynomial functions
and leaf width with quantile regression. Itakura et al. [38] used
simple-projection and attribute-expansion methods to segment
leaves and analyzed the segmentation accuracy on six plants.
Jin et al. [39] proposed median normalized vector growth to
segment stems and leaves of maize, and extracted phenotypic
traits at different levels including leaf, stem, and the individual
plant. Su et al. [40] and Li et al. [41] used the Difference of
Normals (DoN) [42] to segment leaves of Magnolia and maize,
respectively; and leaf area index can then be estimated from
segmented leaves. In addition, Zermas et al. [43] used nodes in
3-D skeleton to split corn overlapping leaves in 3-D point clouds.
At the same time, the self-organized map [44] algorithm is used
to carry out meshing on leaf point clouds and to calculate the
leaf area. This method is also robust to certain species that have
holes on leaves.

Most of the current point-cloud-based methods for leaf seg-
mentation or leaf phenotypic analysis are not suitable for species
with dense canopies. Some methods are tailor-made for only one
or a specific class of plants with simple structures. In addition,
existing methods have problems on automation, accuracy, and
even real-time performance, which clearly restrict promotion
and application. Motivated by the above issues, in this article,
we first acquire 3-D point clouds of two types of plants by MVS,
and then apply a stems removal process to obtain stem-free
dense point clouds. After that, a region growing algorithm based
on multiple features is used to segment individual leaves in
the canopy. Finally, the phenotypic traits such as the leaf area,
length, width, and the leaf inclination angle for each single leaf
are extracted by using facet oversegmentation and the minimum

Fig. 1. Two types of potted ornamentals studied in this article. (a) is a sample
plant of Maranta arundinacea, and (b) is a sample of Dieffenbachia picta.

3-D bounding box. Our contributions can be summarized into
the following four aspects:

1) We successfully separate pure leaf parts from nonleaf parts
(stems and background points) with a process designed for
stems removal, which includes DoN thresholding and leaf
point filling back.

2) We design an automatic individual leaf segmentation al-
gorithm that is capable of separating overlapping leaves.
Curvature features are used to remove the overlapped leaf
edges. Second, then the canopy point clouds of two types
of ornamentals are accurately segmented into individual
leaves based on multifeature region growing.

3) We propose an accurate leaf area estimation algorithm
based on facet oversegmentation and Delaunay triangu-
lation for presegmented canopy point cloud. Comparing
with two other methods for leaf area calculation, the
proposed method leads in accuracy, reaching an average
leaf area accuracy of 96.8% for Maranta arundinacea and
97.8% for Dieffenbachia picta, respectively. We also carry
out parameter tuning of leaf area estimation and find the
optimal parameter configuration.

4) Finally, principal component analysis (PCA) is used to
generate the 3-D minimum bounding box for each seg-
mented leaf to rapidly extract phenotypic information
such as leaf length, width, and leaf inclination angle.
Experiments show that both the average errors of leaf
length and width of Maranta arundinacea are both less
than 4.0%, and for Dieffenbachia picta the errors are both
no higher than 4.7%. The average errors of calculated leaf
inclination angle for the two plant species are 2.9° and
3.0°, respectively.

II. MATERIALS AND METHODS

A. Platform and Experimental Subjects

The processing unit is a desktop with an Intel Core i7-4770
CPU, 16 GB RAM, and an NVIDIA GTX 1080Ti GPU. The
software environment includes Microsoft VS2015 with a PCL
library [45] and VisualSFM [46], [47], which are all operated un-
der Windows 10. In experiments, we used the camera (IMX378,
Sony, Tokyo, Japan) from a cell phone (MI 5s, MI, China) to
capture images of our experiment subjects for generating point
clouds.

Two types of potted greenhouse ornamentals, Maranta arund-
inacea and Dieffenbachia picta (Fig. 1), are adopted as research
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Fig. 2. Overview of the proposed method. (a) Top view. (b) Side view. (c) Top view. (d) Side view. (e) Leaf area calculation. (f) Calculation of leaf length, width,
and inclination angle.

subjects in this article. A total of four samples with two in each
plant species are experimented. The leaves of the two types
differ a lot in texture, color, and shape, so that they are good
samples to test the generality of the proposed leaf segmentation
and phenotyping method. Comparing to Dieffenbachia picta,
samples of Maranta arundinacea are taller, and have denser
foliages.

B. Framework

The proposed method can be divided into five stages, and the
diagram of the framework is shown in Fig. 2. The first stage is
to construct accurate 3-D point clouds of plants by utilizing the
MVS technique. In this stage, images of the subject are first cap-
tured from various directions. Then, the scale-invariant feature
transform (SIFT) descriptor [48] is used to detect key matching
points and to search the correspondences among images. Later, a
sparse point cloud can be generated via bundle adjustment [49].
At last, clustering views for multiview stereo (CMVS) [50] is
applied to the sparse model for producing a dense point cloud
of the subject plant. The output point cloud of the first stage
contains a lot of background information and noise that may
interfere with the leaf segmentation step that follows. Therefore,
in the second stage, we preprocess the point clouds by removing
noncanopy areas (e.g., pot and ground) and suppressing noise
points. In the third stage, we design a stems removal process
which employs DoN [42] and Euclidean clustering to remove
the stem system in the canopy. And after DoN, a neighborhood
point search is applied to fill back some leaf points that are
falsely removed together with the stems. In the fourth stage, the
curvature feature of each point in the point cloud is computed
first, and the points whose curvature values are higher than a
threshold are removed from the point cloud because they are very
likely to belong to the overlapping areas among different leaves.
Afterwards, a region growing algorithm based on multifeatures
is applied to segment individual leaves in the canopy. In the last
stage, we measure phenotypic features such as the leaf area, leaf
length, width, and leaf inclination angle for each segmented leaf
of the sample plants in a fully automatic way. For calculating

the leaf area, we apply the facet oversegmentation algorithm
[51] on each single leaflet; then each leaf surface is decomposed
into many 3-D facets that are spatially flat and smooth. PCA
[52] is applied for calculating the normal of each facet, and by
rotating each facet to align its normal with the z-axis (the gravity
direction) in the 3-D coordinate system of the total plant, we
can project the 3-D facet onto the XOY horizontal plane as a
2-D manifold. After applying Delaunay triangulation [53] on
the projected 2-D manifold of each facet, the area of a facet is
approximated by the sum of all triangle areas. Furthermore, the
area of a leaf is then estimated by summing up all its facet areas.
For calculating the length, width, and inclination angle of a leaf,
we construct a 3-D minimum bounding box for each leaf. The
orientation of the bounding box reveals the leaf inclination angle,
and the dimension of the box packages its leaf length and width.

C. 3-D Reconstruction of Plants

SFM [54] is an effective MVS method for constructing a 3-D
point cloud with a series of 2-D images taken around the subject.
In order to generate an accurate point cloud, images should
have a short baseline and incorporate the subject as complete
as possible. An SFM pipeline can be summarized as follows:

1) Detecting the feature points of each image.
2) Pairing the feature points between images.
3) Calculating the intrinsic and extrinsic parameters of the

camera, and generating a sparse 3-D point cloud.
Specifically, the SIFT descriptor is employed to extract fea-

ture points. The approximate nearest neighbor algorithm [55]
is utilized to match feature points under a small amount of
computation, and the feature pairs below a threshold are re-
moved. On remaining feature pairs, the fundamental matrix,
camera parameters, and the projection matrix are estimated by
using RANdom SAmple Consensus [56]. The matched feature
pairs can be further refined in the estimation of the funda-
mental matrix. Bundler adjustment [49] is applied for the final
optimization.

Images are processed one by one in the above pipeline to add
points to the 3-D point cloud. The sparse point cloud generated
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Fig. 3. Camera location distribution for MVS imaging of a sample of Maranta
arundinacea by VisualSFM and several image examples of the sequence.
(a) Camera location for MVS imaging. (b) Image 10. (c) Image 15. (d) Image 20.

by SFM only covers the main skeleton of the object and lacks
surface and texture information. Therefore, we utilize CMVS to
build a dense point cloud based on the main 3-D structure. The
points with strong color and geometric consistencies are added to
the sparse SFM model to produce a dense and texture-rich point
cloud in CMVS. A GUI-based end-to-end 3-D reconstruction
tool—VisualSFM [46], [47], which encapsulates the basic SFM
pipeline and CMVS, can be easily operated to generate a dense
point cloud. In Fig. 3(a), we generate the point cloud of a
sample plant by using VisualSFM, together with the camera
location distribution for capturing the image sequence in the
same coordinate system with the plant model. We also show
several image examples in the image sequence in Fig. 3(b)–(d).
The point cloud generated by MVS is unitless, so we place a
standard box with the plant to scale the point cloud into its
real-world size. The ground plane is treated as the horizontal
plane of the plant coordinate system, and the plane normal is
defined as the gravity direction.

D. Point Cloud Preprocessing

Due to the limitations of the method and the experimental
conditions, the reconstructed plant point cloud is rifle with noise,
outliers, and background points (an example can be seen in the
MVS point cloud in Fig. 2). These points can seriously interfere
with leaf segmentation and plant phenotyping algorithms, re-
sulting in incorrect results. Three filters are sequentially applied
to suppress background points and noise points in the generated
point clouds. We set up a plant coordinate system by referring to
the gravity direction as the Z-axis, and the XOY plane represents
the horizontal plane. The first filter is a spatial region filter that
only keeps the points inside a 0.5 × 0.5 × 0.5 m cube defined in

our plant coordinate system, so that the points from the ground
and the pot can be easily removed by applying this filter. The
second filter uses the color information to remove noncanopy
points. If the color of a point is very close to the bright white
or the pure black, then the point should be removed because it
probably comes from the background or noise. The third filter
is a radius-based outlier filter [45]. If the number of points in
the sphere of radiusR centered at the current point x is lower
than a threshold, then x is considered as an outlier and will be
discarded.

E. Stems Removal

In this subsection, we try to remove the stem points from the
preprocessed point cloud by using normal features. The reasons
for stems removal are two-fold. First, we are only interested in
studying the leaf phenotypic features in this research. Second,
points from stems can easily interfere with the identification and
analysis of leaves in the point cloud. The normal is an important
spatial feature for unorganized point clouds. Normals of points
on a flat surface are smooth everywhere and do not change
abruptly. But for the points on an irregular local structure, their
normals vary greatly. On most plants, leaves are relatively flat
and the normal directions seldom vary on the local region of the
same leaf. But the normals on the stem differ greatly because
of the cylindrical shape of the stem. Therefore, it is possible to
distinguish leaf areas from the stem system in the point cloud
by computing the changes of normals in a local region. DoN is a
multiscale filtering operator that can be used to process massive
3-D point clouds [42]. By calculating the normal difference of
the same point at different scales, we can judge whether the
point is from a flat surface or not. A common approach for
computing normals is to establish a set contains points in a local
neighborhood with a fixed radius for each point, and then carry
out PCA on the set to estimate the point normal. Formally, the
DoN operator Δn for any point pi in a point cloud P is defined
as follows:

Δn(pi, r1, r2) =

∥
∥
∥
∥

n(pi, r1)− n(pi, r2)

2

∥
∥
∥
∥

(1)

where r1 and r2 (r1 is smaller) represent the two different
support radii at point pi, respectively. n(pi, r) is the normal
of pi with the support radius r. Δn(pi, r1, r2) represents the
magnitude of difference between the two normals under support
radii r1 and r2, respectively. Note that for each single plane,
there exists two normal vectors in the opposite directions, and
both are correct. Therefore, to avoid this ambiguity, the angle
between the two normal vectors is calculated first to examine
whether they are at the same side before calculating DoN by
(1). If n(pi, r1) · n(pi, r2) < 0, then one of the normal has to
be reversed. The result of (1) takes the L2-norm because the
magnitude of difference is much more stable than its direction
in calculation. DoN tends to be small for a point lies on a flat
region, but large for a point on a rugged surface. Therefore, we
can separate leaf regions from stem regions in a canopy point
cloud by thresholding the DoN values.
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Fig. 4. Demonstration of the stems removal process with the canopy point cloud of Maranta arundinacea. (a) shows the original preprocessed point cloud of
the sample plant. (b) shows the remaining point cloud after DoN. (c) shows the points removed by thresholding on DoN values, and most of the removed points
are from stems. (d) is the remaining point cloud after Euclidean clustering. (e) is the isolated stem segments that are removed after Euclidean clustering. (f) is the
final canopy point cloud that contains only leaves. It is obtained by filling back the falsely removed leaf points from the previous DoN result of (c). (g) shows
the removed stem system from (a). By performing this process, recall of the leaf points increases dramatically from 19.4% to 97.4%, while the Precision remains
unchanged.

After thresholding on DoN outputs, some stem parts (espe-
cially the ends near leaves) may still remain in the point cloud. A
Euclidean clustering with radius r3 is first performed on the point
cloud after DoN, and all isolated clusters containing less than
200 points are removed to further filter fragments of remaining
stem parts. Some leaf points may be falsely filtered as stem by the
DoN threshold, resulting in false negatives. In order to suppress
false negatives, we carry out a neighborhood point search to fill
back some leaf points that are falsely removed together with
the stems. After that, we traverse each point on the remaining
point cloud, and conduct a search on the removed part of plant
by DoN for points within a radius r4. Once searched, the points
are filled back into the current point cloud, and these points
are actually incorrectly removed by the previous DoN. Fig. 4
shows the full stems removal process for Maranta arundinacea;
it outputs a canopy containing only leaves. After stems removal,
the Maranta arundinacea canopy point cloud contains 637 353
points, the recall rate of leaf points increases from 19.4% (after
DoN) to 97.4% (final canopy). Although multiple parameters
exist in this process, they are not hard to tune, and we provide
our suggestion in Section III-B.

F. Leaf Segmentation

At this point, we have removed the plant stems in the canopy
point cloud and obtained the point cloud containing only leaves.
Since different leaves are now detached from the stem system
that connects them, they can be more easily separated in the
3-D space. Nevertheless, the leaves that are connected and
overlapped with each other are still hard to separate, especially
for those in a dense canopy. The “annoying” overlapping phe-
nomenon among individual leaves seems to be extrinsically
complicated (because leaves can overlap at various different
positions and angles), but the solution is intrinsically simple.
In order to separate overlapping leaves, we first try to recognize
where they overlap by thresholding the curvature of every single
point, and then remove those ambiguous points that have a curva-
ture larger than a value. The curvature of each point is calculated
in three small steps: 1) searching k-nearest neighbors of the

point (k = 20); 2) conducting PCA on the neighborhood, and
compute the three eigenvalues λ1 > λ2 > λ3; 3) the curvature
is calculated as s = λ3/(λ1 + λ2 + λ3). The smaller s means a
smoother neighborhood [57], and the point is less likely to locate
in the overlapping area.

The complete individual leaf segmentation is realized by
applying a region growing algorithm that considers multiple
features including point distance, the normal difference in an-
gle, and curvature difference between the seed point and the
searching point [45]. We demonstrate three common cases of
leaf overlapping from the preprocessed point clouds in Fig. 5 to
help explaining how the proposed segmentation works. On the
second row of Fig. 5, we enlarge the overlapping areas and use
dots and grids to display the real 3-D orientations of the leaves,
respectively. The third row shows the normalized curvature of
each point rendered in different colors, which clearly show
that the points in overlapping areas usually have high curvature
values. After removing the high curvature points, all individual
leaves are correctly segmented with the adopted region growing
technique on the fourth row of Fig. 5.

G. Leaf Phenotypic Feature Extraction

1) Leaf Area Calculation: In our previous work [58], we
attempted to estimate the area of each individual leaf directly
from 3-D point clouds. The Greedy Projection Triangulation
(GPT) algorithm [59] is used to generate the leaf mesh, and then
the leaf area is equivalent to the sum of all meshed triangular
areas. Fig. 6(a) shows the result of GPT for a single Maranta
arundinacea leaf. In order to reduce estimation errors caused by
limited imaging accuracy and noise [the errors result in very
rugged triangle mesh shown in the side view of Fig. 6(b)],
it is necessary to conduct both downsampling and smoothing
before GPT (shown on the rightmost part of Fig. 6). Despite its
advantage in accuracy over traditional methods, the estimated
area by [58] is usually larger than the ground truth, and the
method cannot be applied to a class of plants that have porous
leaves (such as Monstera deliciosa).
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Fig. 5. Three leaf overlapping cases in the sample point clouds and the
corresponding segmentation results of the proposed leaf segmentation technique.
Columns 1 to 3 show the three different overlapping cases, respectively. (a1)
shows two coplanar Maranta arundinacea leaves overlap at the boundary. In
(a2), we enlarge the overlapping area and use dots and grids to show the 3-D
orientations of the two leaves in this area, respectively. The plane of grids stands
for the leaf plane. In (a3), we calculate the normalized curvature of each single
point from the two leaves and demonstrate the values with different colors. It is
straightforward to find that the points near the overlapping boundary have high
curvature values compared to other leaf points. After removing the influence
of high curvature points, the two leaves are segmented in (a4), in which each
leaf is rendered with a different color. (b1) shows three Dieffenbachia picta
leaves connecting with each other. In (b3), we render the curvature values with
different colors. The three leaves are well segmented in (b4). (c1) shows two
Dieffenbachia picta leaves touch with each other from two parallel layers. (c3)
visualizes the curvature values. The final individual leaf segmentation result of
(c1) is given in (c4). The curvature threshold is fixed to 0.3 throughout the article.

Instead of the direct calculation on 3-D structures, Koma et al.
[14] project the leaf boundary onto a 2-D plane perpendicular to
the average leaf normal, and then calculate the leaf area as the
area of 2-D leaf shape. This method is effective for flat leaves,
but fails on curved leaves because the projection of a curved
surface must be smaller than the area of the surface itself. The
method frequently outputs a smaller area than the real case as
most natural leaves are not so flat.

GPT meshing [59] calculates the area from a very small scale
that spans every three nearest local points on the 3-D surface.
Though it enjoys a high precision, the estimated area is sensitive
to local noise. The projection method [14] projects and calculates
the leaf area from a global leaf scale. Though it is robust against
imaging quality and noise, the estimation of area is not as
accurate as [59]. We propose an accurate leaf area estimation
algorithm that combines the benefits of both abovementioned
methods. We first introduce a middle-scale information—the
oversegmented facets, to partition the leaf surface into a set of
facet pieces. Each facet is then projected onto a unique 2-D
plane according to its normal, and the area of each facet is
approximated by the projected 2-D area computed by GPT.
Finally, the leaf area is the summation of areas of all its facets.
Next, we will introduce the four steps of the proposed algorithm
in detail: 1) facet oversegmentation, 2) facet projection, 3)
Delaunay triangulation, and 4) outlier triangle removal.

a) Facet oversegmentation: Li et al. [51] first applied the
facet oversegmentation technique to the problem of leaf seg-
mentation in point clouds. Different from the leaf segmentation

task, in this step, we use this technique to partition the leaf
into middle-scale regions. In oversegmentation, the iterative
principle component analysis is first used to calculate the spatial
features (including normal vectors and smoothness) of each
point. A series of points with large smoothness are selected as
seed points to start the initial growth of the facets. The growth
from seed points must satisfy the following three conditions

1) The distance between candidate points and seed points
should be less than a threshold r.

2) The angle between the candidate point and the seed point
is less than a threshold θ.

3) The distance between the candidate point and the plane
where the seed point locates should be less than a threshold
σ1.

Candidate points that satisfy the above three conditions will
be incorporated into the current facet. If a candidate point is
not assigned to any seed points, it will become a new seed
and participate in the calculation again. Finally, local k-means
clustering is further used to refine the edges of all facets that
have been preliminarily partitioned. The granularity of facets
is mainly related to parameters K and r. K represents the
number of neighborhood points used to calculate the spatial
features, and r represents the minimum radius of a facet allowed
in computation. In Section III-D.3, we will also discuss the
influences of the two parameters on the calculation results.

b) Facet projection: In this step, each facet is projected
onto the XOY plane for calculating its area. The average normal
p of the facet is first estimated by PCA. We now rotate the
average normal to align with the standard normal q = [0, 0, 1]T ,
then the facet is automatically aligned with the XOY plane. In
order to implement the alignment, the three-by-three rotation
matrix R(θ) from p to q should be first calculated according to
Rodrigues Rotation Formula.

R(θ) = I+Ωsinθ +Ω2(1− cosθ) (2)

in which I is the three-by-three identity matrix. θ is the rotation
angle between p and q. ω is the unit vector of the rotation axis
defined as

ω =
p× q

|p| · |q| = [ωx, ωy, ωz]
T . (3)

Ω is the crossproduct matrix of ω

Ω =

⎡

⎣

0
ωz

−ωy

−ωz

0
ωx

ωy

−ωx

0

⎤

⎦ . (4)

By left-multiplying the rotation matrix R(θ) with original
coordinates of all points in the facet, the facet is aligned with
the XOY plane. By unanimously setting the Z-coordinates of all
points on the aligned facet to zero, the facet is projected onto
the exact standard 2-D plane XOY, which greatly facilitates the
further calculation.

c) Delaunay triangulation: In this step, the Delaunay tri-
angulation algorithm is used to reconstruct the projected 2-D
facets, which is also much faster than the 3-D GPT meshing [59]
because it works with only 2-D. The reconstructed 2-D mesh
has three advantages: 1) the boundary of the mesh is convex and
regular; 2) the triangulation result is unique; 3) and generally,
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Fig. 6. Using GPT to mesh the leaf segment and estimate the leaf area. On the leftmost of this figure is a leaf point cloud of Maranta arundinacea directly meshed
by GPT. (a) is a detailed top-view of a small part. Due to the rugged leaf surface caused by noise, the meshed leaf surface displays a diamond-like pattern. (b) is
the side view sketch of the area in (a), and the rugged surface generates crisscrossing triangle meshes. (c) is the side view sketch of the area in (a) after point cloud
downsampling. (d) is the side view sketch of the area in (a) after point cloud smoothing. (e) is the side view sketch of the area in (a) after both downsampling and
smoothing. On the rightmost of this figure is the meshed leaf point cloud after global downsampling and smoothing; and it exhibits a highly regular and flat surface.

Fig. 7. Results of Delaunay triangulation of representative facets after facet oversegmentation. (a) is the result of leaf point cloud after facet oversegmentation,
where the original point cloud is at the bottom and the facet results are at the top. We selected two small facets located at the edge and center, respectively, for
analysis. (b1) and (b2) are the results of Delaunay triangulation subdivision of two small facets selected in (a) after rotating and projection. In (c1) and (c2), the
outlier triangles are removed by the edge length threshold, where the red and green parts are the outlier triangles removed, and the cyan parts are the retained parts.
When calculating leaf area, only cyan parts will be counted.

the triangles in the mesh are not overlapped, which contributes
to an accurate area estimation.

Fig. 7(a) demonstrates the facet oversegmentation process
on a real leaf, and we focus on two representative facets (one
near the boundary, the other is near the center) for showing the
Delaunay triangulation. Fig. 7(b1) and (b2) shows the results of
Delaunay triangulation of the two facets after facet projection,
respectively. Most generated triangles in the two projected areas
are regular and they successfully cover their, respectively, facet.
However, under the influence of noise points at the edges,
several excessively large triangles are generated. Those big and
slender triangles are outliers that should not be counted into the

facet area. In order to eliminate the errors introduced by outlier
triangles, we add an extra outlier removal step after triangulation.

d) Outlier triangle removal: After Delaunay triangulation
algorithm, all side lengths of triangles are ranked. Let smedian

be the median of all side lengths, and λ be a coefficient. If the
three side lengths of a triangle are all shorter than λsmedian, the
triangle area is added to the facet area. Otherwise, the triangle is
removed. This simple thresholding measure adapts itself well to
different plant species and point clouds from different sensors.
Fig. 7(c1) and (c2) shows the results of outlier removal by
painting red and green colors to the removed triangles. Note
that the majority of outliers lies at the boundary of facets. In
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Fig. 8. Demonstration of the proposed leaf phenotypic feature extraction. (a) shows the original point cloud of a plant canopy under the plant (world) coordinate,
in which the Z-axis is on the direction of gravity. A leaf from the canopy is separately studied in (b), the center of mass is shown in a yellow dot. (c) shows the
established leaf coordinate system in which the three orthogonal PCA components on the leaf point set; the red arrow represents the direction of the leaf normal,
while the blue and the green arrows represent the length direction and width direction, respectively. In (d), we use a rotational and translational transformation to
align the leaf with the plant coordinate system. (e) shows the 3-D bounding box constructed by finding the max and min values in all three coordinates, respectively.
(f) shows the bounded leaf transformed back into its original position by the inverse transformation, and the inclination angle is the organ angle between the leaf
normal and the world z-axis.

Section III-D.3, we will further discuss the influence of param-
eter λ on the results of leaf area estimation.

2) Calculations of Leaf Length, Width, and Inclination Angle:
Except from leaf area, the leaf length, width, and its inclination
angle are also important plant phenotypic parameters, which can
directly reflect plant growth. Leaf inclination angle is the angle
between the leaf normal and the zenith axis (z-axis). In fact,
leaf inclination angle is also the angle between the leaf surface
and the horizontal plane XOY. For calculating the leaf length
and width, we try to fit a minimum 3-D bounding box to each
individual leaf point cloud. The height of the box is aligned
with the average normal of the leaf. The length and width of
the bounding box then represent the leaf length and leaf width,
respectively.

In fact, finding the minimum 3-D bounding box for leaves
faces an ambiguity problem. Imagine that even on a 2-D case,
a leaf image can have infinite 2-D bounding boxes centering
at the leaf central point. For computing the 2-D leaf bounding
box, [60] finds the bounding box that has the smallest area by
rotating the bounding box according to the center point of a
leaf image with a small angle at a time. Unfortunately, gener-
alization of this method to the 3-D case is infeasible because
the exhaustive search in 3-D space has a much higher time
complexity than the 2-D case. Considering PCA can calculate
orthogonal principal directions of a data cluster, it seems to
be suitable for the estimation of three principal directions of
the minimum 3-D bounding box because the leaf length, leaf
width, and the leaf normal are regarded as mutually orthogonal.
Generally, a leaf has a flat ellipse-like structure. So the principal
component corresponding to the largest eigenvalue calculated
by PCA can represent the direction of leaf length, and the
second-largest principal component represents leaf width; the
smallest one gives the direction of leaf normal. We obtain

three eigenvalues λ1, λ2, and λ3 in descending order, whose
corresponding eigenvectors areα1,α2, andα3 after doing PCA
on a leaf point cloud. An eigenvector matrix A = [α1,α2,α3]
can be obtained by arranging the eigenvectors in columns. The
coordinate of leaf center c = [xc, yc, zc]

T is defined as center of
mass of leaf in the plant coordinate system. Fig. 8 demonstrates
our leaf phenotypic feature extraction. Fig. 8(a) shows the plants
point cloud in the world coordinate system, where the z-axis of
the coordinate system is the direction of gravity. Fig. 8(b) is one
single leaf point cloud obtained by the previous segmentation
algorithm. In Fig. 8(c), the center of mass of the leaf is first
calculated and marked by a yellow dot, and the three principal
component directions calculated by PCA are also shown. In
order to facilitate the calculation of the minimum bounding box,
we carry out a rotational and translational transformation to the
original leaf point cloud to align the plant coordinate system.
Fig. 8(d) is the transformed leaf point cloud. Now the outline of
the minimum 3-D bounding box can be determined by the points
that have lowest or highest values along each axis. Fig. 8(e)
shows the generated minimum 3-D bounding box of the leaf in
the plant coordinate system. The leaf length is the side length
along the X-axis, and the leaf width is the side length along
the Y-axis. Fig. 8(f) shows the 3-D bounding box after inverse
transformation, the inclination angle is labeled in the orange
color.

The homogeneous rotational and translational matrix V that
transforms the coordinate system of leaf to the plant coordinate
system is given by

V =

[
AT

0
−AT c

1

]

. (5)

Every point xi of the leaf is first changed into the
homogeneous coordinate as xi = [xi, yi, zi, 1]

T , and then
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Fig. 9. Reconstructed point cloud of Maranta arundinacea sample 1 and
several images used in SFM reconstruction. (a) Front view. (b) Top view.
(c) Side view. (d) Image 1. (e) Image 11. (f) Image 21. (g) Image 31. (h) Image 41.
(i) Image 51.

Fig. 10. Reconstructed point cloud of Dieffenbachia picta sample 1 and several
images used in SFM reconstructions. (a) Front view. (b) Top view. (c) Side view.
(d) Image 3. (e) Image 10. (f) Image 18. (g) Image 23. (h) Image 37. (i) Image 46.

left-multiplied by the four-by-four matrix V to generate its
coordinate xw

i = [xw
i , y

w
i , z

w
i , 1]

T in the plant coordinate
system. The transformation pair between the leaf and the plant
coordinate systems is given by

{
xw
i = V · xi

xi = V−1 · xw
i

. (6)

By using (6), we can easily generate a minimum 3-D bounding
box for each single leaf and map it back to the original leaf.

III. RESULTS AND DISCUSSION

A. 3-D Reconstruction Results

We capture 102 images and 73 images at a resolution of
4000 ∗ 3000 for the two sample plants of Maranta arundi-
nacea, respectively. After the feature extraction and matching
by VisualSFM, two dense point cloud with 1 400 333 points
and 770 037 points are constructed by CMVS, respectively. For
the two Dieffenbachia picta sample plants, 58 images and 47
images at the same resolution are captured, respectively. We
then construct two dense point clouds with 691 735 points and
917 327 points, respectively. The original dense point clouds
contain much background information and noise. Three kinds
of preprocessing filters (mentioned in Section II-D) are sequen-
tially applied to effectively remove nonplant and noise points.
After preprocessing, the Maranta arundinacea sample 1 has
688 374 points, and the sample 2 has 331 992 points, while
226 878 points remain in the Dieffenbachia picta sample 1, and
138 226 points remain in sample 2.

Figs. 9 and 10 show the 3-D reconstruction results of Maranta
arundinacea sample 1 and Dieffenbachia picta sample 1 us-
ing SFM, respectively. Comparing to the plants in images,
the reconstructed point clouds are complete and correct, and
nearly no holes can be observed on the leaves, which satisfies
the following leaf phenotyping requirements. The quality and
quantity of images directly affect the 3-D reconstruction result.
When less images are used, the method produce many holes
on leaves. When too many images are used in reconstruction,
the processing time will dramatically increase; and more im-
portantly, the CMVS may produce redundant points, causing
leaves to be thicker than real and eventually causing problems
to the leaf segmentation algorithms. From the experience from
experiments, we choose more than 40 short-baseline images to
generate plant point cloud. Because Maranta arundinacea has a
more complex canopy than Dieffenbachia picta, we input more
Maranta arundinacea images to recover its canopy structure
than the latter.

B. Result of Canopy Without Stems

The radius scales r1 and r2 are two important parameters in
DoN thresholding. Ioannou et al. [42] argue that when the scale
ratio r2/r1 is around 10.0, the planar and nonplanar components
can be well separated on point clouds about urban street views.
Take the Maranta arundinacea sample 1 and Dieffenbachia
picta sample 1 as examples. The average point distance of
Maranta arundinacea is 0.002 m, and the average diameter of its
stem is about 0.016 m. For Dieffenbachia picta, the average point
distance is 0.0005 m and the average diameter of stem is 0.005 m.
The point density of the two clouds is very different from the
point clouds of street view. Therefore, we need to select a new
scale ratio r2/r1 to distinguish leaves from the stem system in
our point clouds. After a parameter tuning experiment, we find
out that the small radius r1 should be larger than two times of
the average point distance to extract enough surface information,
and r2 should be smaller than the average stem diameter in the
point cloud to concentrate the local scale. In this article, we fix
r1 to be twice of the average point distance, and r2 to be twice
of r1. Therefore, for Maranta arundinacea sample 1, we set
r1 = 0.004 m, r2 = 0.008 m. For Dieffenbachia picta sample 1,
we set r1 = 0.001 m, r2 = 0.002 m.

It is also important to determine the value for thresholding the
DoN resultΔn(xi, r1, r2). If the magnitude of normal difference
is larger than the threshold, we think that the point is located on
a rugged surface, which also means the point is likely from the
nonleaf part in the point cloud. Because the two different normals
are unit vectors and the angle varies between 0° and 90°, the
result of DoN lies between 0 and 0.72. We normalize the DoN
to the interval of [0, 1] to facilitate calculation. Fig. 11 shows
the results of Maranta arundinacea sample 1 using different
thresholds forΔn(xi, 0.004, 0.008), in which (a1) and (a2) show
two views of the original preprocessed point cloud, respectively.
The point cloud contains 688 374 points in total, with the stem
ground truth containing 34 040 points, the leaf ground truth
containing 654 334 points. We only show the points whose DoN
magnitudes are below the threshold in Fig. 11(b)–(d). Fig. 11(b1)
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Fig. 11. DoN results of the Maranta arundinacea sample 1 point cloud
using different thresholds for Δn(xi, 0.004, 0.008). Three DoN threshold
values (0.1, 0.05, and 0.03) are used for stems removal. (a1) Original point
cloud. (b1) |Δn(xi, 0.004, 0.008)| < 0.1. (c1) |Δn(xi, 0.004, 0.008)| <
0.05. (d1) |Δn(xi, 0.004, 0.008)| < 0.03. (a2) Original point cloud. (b2)
|Δn(xi, 0.004, 0.008)| < 0.1. (c2) |Δn(xi, 0.004, 0.008)| < 0.05. (d2)
|Δn(xi, 0.004, 0.008)| < 0.03.

Fig. 12. DoN results of the Dieffenbachia picta sample 1 point cloud
using different thresholds for Δn(xi, 0.001, 0.002). Three threshold val-
ues (0.2, 0.1, and 0.09) are used for stems removal. (a1) Original point
cloud. (b1) |Δn(xi, 0.004, 0.002)| < 0.2. (c1) |Δn(xi, 0.004, 0.002)| <
0.1. (d1) |Δn(xi, 0.004, 0.002)| < 0.09. (a2) Original point cloud.
(b2) |Δn(xi, 0.004, 0.002)| < 0.2. (c2) |Δn(xi, 0.004, 0.002)| < 0.1. (d2)
|Δn(xi, 0.004, 0.002)| < 0.09.

and (b2) is the results with the threshold at 0.1, and the number of
points left is 512 961. Fig. 11(c1) and (c2) is the results with the
threshold at 0.05, and the number of points is 275 239. (d1) and
(d2) are the results with the threshold at 0.03, and the number
of points is 126 940. Fig. 12 shows the results of Dieffenbachia
picta using different thresholds for Δn(xi, 0.001, 0.002). The
point cloud contains 226 878 points in total, in which the stem
ground truth contains 11 570 points, and the leaf ground truth
contains 215 308 points after manual segmentation. Fig. 12(b1)
and (b2) is the results when the threshold is 0.2, and the number
of left points is 181 873. Fig. 12(c1) and (c2) is the results with
threshold at 0.1, and the number of left points is 124 902. (d1) and
(d2) are results with threshold at 0.09, and the number of points
is 113 544. For MVS point clouds, we suggest the threshold
of DoN to be lower than 0.1. Finally, we set 0.03 for Maranta
arundinacea, 0.09 for Dieffenbachia picta.

In Figs. 11(d1) and 12(d1), the stems of the two samples
are completely removed, showing the proposed DoN filter to
be feasible. Though small holes begin to show up on leaves
in the two cases, the overall geometry of leaves is intact and
well-preserved. The quantitative analysis of Figs. 11(d1) and
12(d1) shows that the precision values of leaf points after DoN
are both close to 100%, but the recall rates are only 19.4% and
52.7%, respectively. Therefore, we apply the process in Fig. 4
to fill back some leaf points that were incorrectly removed by
DoN to suppress false negatives.

Fig. 13. Individual leaf segmentation results of four samples based on cur-
vature thresholding and region growing. (a) and (b) are the top view and side
view of the segmented Maranta arundinacea sample 1 result, respectively. (c)
and (d) are the top view and side view of the segmented Maranta arundinacea
sample 2 result, respectively. (e) and (f) are the top view and the side view of
the segmented Dieffenbachia picta sample 1, respectively. (g) and (h) are two
views of the segmented Dieffenbachia picta sample 2.

The parameters r3 and r4 are used to carry out Euclidean
clustering and point filling, respectively. r3 and r4 can be both
chosen as 2 to 10 times of the average spacing of the point
cloud. In this article, we fix the parameters as 2r1 = r2 = r3 =
r4. After the stems removal process, the canopy point cloud of
Maranta arundinacea sample 1 reaches 637 353 points, and its
recall of leaf points increases from 19.4% (after DoN) to 97.4%.
After stems removal, the canopy point cloud of Dieffenbachia
picta sample 1 now contains 212 392 points, and the recall for
leaf points increases from 52.7% (after DoN) to 98.6%.

C. Leaf Segmentation Results

In this subsection, the point cloud containing only leaves
(from Section III-B) will be segmented into individual leaves
by applying the approach described in Section II-F. On sev-
eral kinds of plants, we have observed that the points from
overlapped-leaf regions generally have a large curvature value
that lies in the interval of [0.4, 0.6]. On all sample plants,
we directly remove those points that have a curvature higher
than 0.3. Fig. 13(a) and (b) is the results of the proposed leaf
segmentation approach of Maranta arundinacea sample 1 in two
different views, respectively. A total of 21 leaves are successfully
segmented by the proposed method from a total of 23 leaves in
ground truth of the plant, with an accuracy of 91.3%. Fig. 13(c)
and (d) are the segmentation results of Maranta arundinacea
sample 2 in two different views, respectively. A total of 20 leaves
are segmented from a total of 21 leaves in the ground truth,
with an accuracy of 95.2%. In Fig. 13(e) and (f), 9 leaves are
finally segmented by the proposed approach from the original
10 leaves of Dieffenbachia picta sample 1, with an accuracy of
90%. In Fig. 13(g) and (h), all eight leaves from the original
Dieffenbachia picta sample 2 are successfully segmented by the
proposed method, with 100% accuracy. The missing leaves of
the samples are all very small leaves locating at the bottom of
the plant, where also receives the poorest quality in MVS recon-
struction. If the quality of the reconstructed point cloud is further
improved (using Lidar), the accuracy of leaf segmentation can
also increase.
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TABLE I
THREE METHODS ARE COMPARED OVER THE LAA MEASURE ON THE TWO TYPES OF PLANTS

The highest values are in bold face.

Fig. 14. Calculating ground truths of the leaf area, leaf length, and width using
2-D image processing. In (a), we clamp each leaf (nondestructively) with a 16
cm2 reference square between two parallel pieces of glasses, and place them right
below a camera to capture the image. (b) is the grayscale image that removes
the background by frame differencing. (c) shows the binary image by applying
the Otsu’s method [61] on (b), and the 2-D minimum bounding box with clearly
labeled truth leaf length and width is the result from applying [60].

D. Leaf Area Calculation Results

We select segmented leaves that are large enough to test the
proposed leaf phenotypic feature extraction method. A total of
12 leaves and 11 leaves are selected from Maranta arundinacea
sample 1 and sample 2, respectively. Eight leaves are selected
from Dieffenbachia picta sample 1 and sample 2, respectively.

The ground truth of each leaf area is obtained by contrasting
the pixels from the flattened leaf region with a standard square in
standard images. In order to verify the accuracy and effectiveness
of the proposed method, we compare it with GPT meshing [59]
and the projection method in [14]. Experimental results show
that the proposed method obtains the minimum error across
the three methods on almost all leaves. To assure fairness, we
separately conduct parameter tuning for the method [59], [14],
and the proposed area calculation method to obtain their best
results, respectively.

1) Measuring the Ground Truth: In order to quantitatively
evaluate the leaf area estimation, an easy image processing
method is designed to calculate the ground truth of each leaf
area by comparing the flattened 2-D leaf shape with a reference
square. The ground truths of the leaf length and width can also
be computed in this way by following the method in [60]. Fig. 14
shows how the ground truths of leaf area, length, and width are
measured from a single leaf in a nondestructive way. The ground

Fig. 15. Comparison of the three leaf area calculation methods on the four
sample plants of the two species. (a) shows the results on Maranta arundinacea,
in which each point is a leaf and the fitted line of our method are painted in red,
the data points and the fitted line of [59] are painted in green, and the points
and fitted line of [14] are painted in blue. The standard regression line y = x
is represented by an orange dotted line. (b) shows the results on Dieffenbachia
picta. It can be seen that the proposed method has the best regression result
against the ground truth of leaf areas across the three methods.

truth of leaf inclination is measured by a digital inclinometer
(DXL360S, Jingyan, Shenzhen, China).

2) Results of Leaf Area Estimation: We compare the pro-
posed leaf area calculation method with GPT meshing [59] and
the 2-D projection method [14] in quantitative experiments. A
new quantitative measure—leaf area accuracy (LAA), is defined
in (7) to quantitatively evaluate the performances. The compar-
ative results of the two plant types are shown in Table I, from
which can be seen that the LAA of our method is superior to the
other two methods in most cases. The best results in Table I are
in bold face.

LAA = 1− |calculated leaf area−ground truth|
ground truth × 100%. (7)

Fig. 15 shows the regression comparison of three leaf area
calculation methods on two plants. Note that the regression
line of our method is the closest to y = x across all compared
methods on two species.

3) Parameter Tuning for Leaf Area Estimation: In our pro-
posed method for estimating the area of each single leaf, facet
oversegmentation is first applied on each leaf, and then Delaunay
triangulation is applied on each projected facet to compute the
2-D area; finally, the leaf area is approximated by summing up
all facet areas. The parameters in facet oversegmentation and
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Fig. 16. Relationship between facet oversegmentation parameters r1, K with
the number of facets. (a) is the original point cloud of Maranta arundinacea
sample 1. (b) is the oversegmentation result with r = 0.01m, K = 100; the
number of facets is 375. (c) is the result with r = 0.04m,K = 150; the number
of facets is 58. (d) is the result with r = 0.18m, K = 200; the number of facets
is 26.

the outlier triangle removal can affect the accuracy of leaf area
calculation; thus, it is necessary to tune the parameters for the
optimal result.

The parameters influence the oversegmentation step by af-
fecting the granularity of the facets (the sizes of facets on
each leaf). The main parameters that affect the segmentation
granularity are K and r. According to suggestions in [51], the
other two parameters in the facet oversegmentation are fixed all
over the experiments in this article as θ = 23◦ andσ1 = 0.025 m.
Parameter K represents the number of nearest neighbor points
when calculating the spatial characteristics of each point. This
value not only affects normals of the facets, but also affects
the number of facets generated. The higher the K value is, the
smaller the number of facets is. The parameter r controls the
minimum distance between the centers of adjacent facets, so the
larger the value is, the smaller the number of facets is. In order
to avoid conflicting situation in parameters’ contributions, we
generally increase K while increasing r. The minimum value
of r should not be less than five times of the average spacing to
gather enough points for each facet. For Maranta arundinacea,
we set r in the interval of [0.01 0.18 m], and for Dieffenbachia
picta, we set r in the interval of [0.005 0.14 m]. The parameter
K has less influence on the oversegmentation than r, and we
set its value in the interval [100, 200]. We adjust the values
of r and K to form 12 different parameter configurations for
each plant to find the optimal parameters for generating facets
and calculating leaf areas. First, we verify that the changes in
parameters can produce different granularity. Second, we will
show that the LAA is actually robust to changes in granularity.
Fig. 16 shows different parameter settings can produce different
facet oversegmentation results on a Maranta arundinacea leaf.

We conducted facet oversegmentation on leaves of Maranta
arundinacea and Dieffenbachia picta with 12 groups of param-
eters, respectively. The numbers of facets under all parameter
configurations are shown in Fig. 17(a1) and (b1). With the in-
crease of the two parameters, the number of facets first decreases
and then remains stable. This is because when r is sufficiently
large, the other two auxiliary parameters (θ and σ1 in [51],
[58]) take over the role of dividing points into facets. The LAA
results under 12 different parameter configurations for leaves
of each plant are shown in Fig. 17(a2) and (b2), respectively.
For Maranta arundinacea, the LAAs of most leaves stabilize
above 96% after r ≥ 0.027, and the number of facets for each

Fig. 17. Parameter tuning for facet oversegmentation parameters. (a1) and
(b1) show the influence of parameters on the number of generated facets for
leaves of Maranta arundinacea and Dieffenbachia picta, respectively. (a2) and
(b2) show the relationship of parameter configurations and the LAAs. A total of
12 parameter configurations are tested on each type of plant, and the majority
of them can produce a calculation accuracy higher than 96%.

leaf is below 150. For Dieffenbachia picta, the LAAs of most
leaves stabilize above 96% after r ≥ 0.02, and the number of
facets for each leaf is below 100. It can be observed that when
the number of facets is too large (more than 250), the accuracy
of leaf area calculation will decrease. Therefore, the number of
facets should be upper-bounded to suppress calculation error. It
should be noted that our calculation method is actually robust
to change of parameters for facets generation because the worst
LAA of leaves in Fig. 17 still stay around 90%.

We finally set r = 0.067 m, and K = 150 for Maranta arun-
dinacea; r = 0.060 m, and K = 150 for Dieffenbachia picta.
In fact, the two parameters can be easily chosen from broad
intervals as long as the number of facets on each leaf is kept
below 100.

In the step of outlier triangle removal in leaf area calculation,
we remove the spurious triangles around facet edges by using
the median value of all lengths of triangles smedian multiplied
by the parameter λ as a threshold. The larger the threshold is,
the fewer triangles are removed. Therefore, λ has influence on
the result of leaf area estimation. We first fixed the parameters r
and K to the suggested values, and then tune the parameter λ in
the interval [2, 10] to obtain the LAA results of the two plants,
respectively. The results of six Maranta arundinacea leaves are
shown in Fig. 18(a), in which all reach the highest accuracy for
leaf area calculation when λ = 3.0. Fig. 18(b) shows the results
of Dieffenbachia picta, in which all six leaves also reach the
highest accuracy when λ = 3.0. Therefore, it is concluded that
for those plants have similar leaf structures with the two plant
types, λ can be fixed at 3.0 to obtain good performances.

E. Results of Leaf Length, Width, and Inclination Angle

Fig. 19 shows the results of using the method in Section II-G
to calculate the 3-D bounding boxes and the average leaf normals
for all leaves of the two types. The first row of Fig. 19 shows
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TABLE II
ESTIMATION ERRORS OF THE PROPOSED METHOD OF CALCULATING LEAF LENGTH AND WIDTH

Fig. 18. Relationship between the parameter λ in outlier triangle removal step
and LAA. (a) and (b) are the results of parameter tuning on Maranta arundinacea
and Dieffenbachia picta, respectively. The x-axis is λ, and the y-axis is LAA.
The best performance for both plants are obtained when λ = 3.0.

Fig. 19. Results with 3-D bounding boxes and leaf normals. The leaf normals
are represented by arrows, and the 3-D bounding boxes are painted in blue.
From the first row to the fourth row, results are Maranta arundinacea sample
1, Maranta arundinacea sample 2, Dieffenbachia picta sample 1, and Dieffen-
bachia picta sample 2. (a1) Top view. (a2) Top view. (a3) Top view. (a4) Top
view. (b1) Front view. (b2) Front view. (b3) Front view. (b4) Front view. (c1)
Side view. (c2) Side view. (c3) Side view. (c4) Side view.

the canopy point cloud of Maranta arundinacea sample 1 with
3-D bounding boxes and normals from three different views,
respectively. The second row shows the results of Maranta
arundinacea sample 2. The third and fourth rows show the

Fig. 20. Regressions of estimated leaf length and leaf width with ground truths
for the two plants. (a1) and (a2) are the regression results of the leaf length and
width of Maranta arundinacea, respectively. (b1) and (b2) are the regression
results of the leaf length and width of Dieffenbachia picta, respectively. The
results show the estimated values are close to their ground truths.

results of Dieffenbachia picta sample 1 and 2, respectively. Each
leaf normal starts from the gravity center of that leaf.

Table II lists the estimation errors of the leaf length and width
using our 3-D bounding box for the two types of plants. The
error is defined as the ratio of the absolute difference between
the estimated value and the ground truth to the ground truth
in percentage. The ground truths of leaf length and width are
obtained by the method shown in Fig. 14. The average errors of
the estimated leaf length and leaf width are both below 4.7%.
Fig. 20 shows the linear correlations between our calculated
values and the ground truths on leaf length, width of the two
plant types, respectively. All four fitted lines are close to y = x,
showing high accuracies. Note that the calculated length and
width values are generally smaller than their ground truths.
This is because leaves are flattened when ground truth values
are measured, making every ground truth leaf larger than its
appearance in the real 3-D world.

We also compare the inclination angles calculated by the
proposed approach with the ground truths measured by an
inclinometer for each leaf in Table III. For Maranta arundinacea
sample 1 and sample 2, the maximum leaf inclination angle error
(difference) is no higher than 4.0° and 4.8°, respectively, For the
leaves from Dieffenbachia picta sample 1 and sample 2, the
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TABLE III
COMPARISON OF ESTIMATED VALUES WITH GROUND TRUTHS OVER THE LEAF INCLINATION ANGLE

TABLE IV
AVERAGE PROCESSING SPEEDS OF THE PROPOSED METHOD ON ALL STAGES FOR THE TWO TYPES OF PLANTS

Fig. 21. Regressions of the estimated leaf inclination angle with ground truths
for the two plants. The two fitted lines are close to the line y = x, showing the
high accuracy of the proposed method.

maximum leaf inclination angle error (difference) is no higher
than 3.9° and 5.0°, respectively. The average errors of calculated
leaf inclination angle for the two plant types are 2.9° and 3.0°,
respectively. The average measurement error of ground truth
by the inclinometer is about 3.0°, which means our approach
is comparable with the inclinometer measurement. The corre-
lations between calculated inclination angles and the measured
ground truths are given in Fig. 21, showing the effectiveness of
our approach to extract inclination angles.

F. Processing Speed

The processing times for different stages of the proposed
method are listed in Table IV. The processing time for plant
Maranta arundinacea is longer than Dieffenbachia picta at all
stages, this is because the former contains more points than the
latter. The biggest bottleneck of the processing speed lies in the
3-D reconstruction stage. Except from the 3-D reconstruction
stage by MVS, both of our leaf segmentation and the leaf phe-
notypic traits calculation have quasireal-time processing speeds.

IV. CONCLUSION

This article proposes a framework for automatic leaf segmen-
tation and leaf phenotypic feature extraction for MVS plant point
clouds. Experiments on two types of ornamental plants have
shown that the proposed framework can effectively calculate
phenotypic features such as the area, length, width, average
normal, and the inclination angle of each single leaf in the canopy
point clouds. The average accuracy of the calculated leaf area by
our method reaches 96.8% for Maranta arundinacea and 97.8%
for Dieffenbachia picta. The average errors of the calculated leaf
length and width for Maranta arundinacea are both less than
4.0%, and the average error of the estimated leaf inclination
angle is 2.9°. For Dieffenbachia picta, the average errors of
calculated leaf length and width are both no higher than 4.7%,
and the average error of the estimated leaf inclination angle is
3.0°.

At present, our leaf segmentation and phenotyping framework
have been tested on several types of ornamentals. Although the
tested samples differ greatly on aspects such as canopy structure
and leaf shape, the effectiveness of our method is yet to be
further validated on a broad range of plants. For example, the
maize plant has very long and curved leaves, the bounding box
of a single leaf can be huge and its boundaries are hence no
longer reliable enough to deduce the dimension of its leaf inside.
Therefore, the techniques for calculating the leaf length, width,
and inclination angle for maize may have to be modified. In the
future, we plan to apply the proposed framework on several more
kinds of agricultural plants, and keep on improving our method.
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