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Deep Learning Classification for Crop Types
in North Dakota
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Abstract—Recently, agricultural remote sensing community has
endeavored to utilize the power of artificial intelligence (AI). One
important topic is using AI to make the mapping of crops more
accurate, automatic, and rapid. This article proposed a classifi-
cation workflow using deep neural network (DNN) to produce
high-quality in-season crop maps from Landsat imageries for
North Dakota. We use historical crop maps from the agricultural
department and North Dakota ground measurements as training
datasets. Processing workflows are created to automate the tedious
preprocessing, training, testing, and postprocessing workflows. We
tested this hybrid solution on new images and received accurate
results on major crops such as corn, soybean, barley, spring wheat,
dry beans, sugar beets, and alfalfa. The pixelwise overall accuracy
in all three test regions is over 82% for all land types (including
noncrop land), which is the same level of accuracy as the U.S.
Department of Agriculture Cropland Data Layer. The texture of
DNN maps is more consistent with fewer noises, which is more
comfortable to read. We find DNN is better on recognizing big
farmlands than recognizing the scattered wetlands and suburban
regions in North Dakota. The model trained on multiple scenes
of multiple years and months yields higher accuracy than any of
the models trained only on a single scene, a single month, or a
single year. These results reflect that DNN can produce reliable
in-season maps for major crops in North Dakota big farms and
could provide a relatively accurate reference for the minor crops
in scattered wetland fields.

Index Terms—Agricultural remote sensing, crop mapping,
deep neural network (dnn), geoprocessing workflow, image
classification, Landsat, North Dakota.

I. INTRODUCTION

AGRICULTURE has been producing food, fibers, and en-
ergy to support the entire human society for thousands

of years. To sustain and enhance crop production, farmers and
stakeholders need to make informed decisions on many related
activities. A lot of information is required for these decisions
such as how much of what types of crops are planted in which
areas—the crop map [1]–[6]. Crop maps are usually categorized
into in-season maps (generated during the growing season) and

Manuscript received December 27, 2019; revised March 16, 2020; accepted
April 16, 2020. Date of publication May 14, 2020; date of current version May 29,
2020. This work was supported in part by the U.S. National Science Foundation
under Grant AGS 1740693 and Grant CNS 1739705, and in part by ESIPLab
Geoweaver project. (Corresponding author: Liping Di.)

Ziheng Sun, Liping Di, and Hui Fang are with the Center for Spatial Informa-
tion Science and Systems, George Mason University, Fairfax, Virginia 22030
USA (e-mail: zsun@gmu.edu; ldi@gmu.edu; hfang1288@gmail.com).

Annie Burgess is with Earth Science Information Partners, Boulder, Colorado
80304 USA (e-mail: annieburgess@esipfed.org).

Digital Object Identifier 10.1109/JSTARS.2020.2990104

after-season maps (generated after the growing season). The in-
season maps are much more helpful for timely decision-making
and have bigger financial benefits than the after-season maps.

The growing availability of data from recurring and long-
term satellite observations has prompted a strong desire by the
agricultural community to use satellite data in creating crop
maps over large geographic areas [7]. The U.S. Department
of Agriculture (USDA) National Agricultural Statistics Service
(NASS) combines the annually collected data by its field offices
with satellite imagery to generate an annual crop map product,
Cropland Data Layer (CDL). CDL is highly accurate on major
crop types (e.g., ∼95% accuracy for corn and soybean) and
seamlessly covers CONUS [8], [9]. Because CDL relies on
ground truth and Landsat images of the entire growing season, it
is only available internally around September of the current year
and publicly around February of the next year. However, most
crop stakeholders, such as farmers, agricultural departments,
food market, and insurance companies, need in-season crop
maps to assist them to make timely decisions [4], [10]. It has
been a great challenge for the community to achieve accurate
in-season maps. After observing the spectral features of crops
over the growing season, it seems possible to generate in-season
inventories with large-scale remote sensing imagery and limited
field-observed data. The spatiotemporal and spectral variety in
satellite images across the growing season should be able to help
accurately recognize different types of crops (see Fig. 1).

There are two significant difficulties associated with op-
erational remote sensing-based in-season crop mapping over
large areas: 1) unavailability of in-season ground truths; and
2) complexity in managing the large-scale preprocessing and
postprocessing workflows. Most existing trained models have
strict spatiotemporal limitations. Many studies focus on small
subsets of satellite scenes and their models have a large chance
to fail when the spatiotemporal extent changes. The features
extracted from one scene are inapplicable to other regions or
dates, due to the seasonal and regional phenology of various crop
types. On the other hand, although the automatic level of classi-
fication routine is improving, it still requires human intervention
to manually tune and supervise the processes. To overcome the
first difficulty, our study uses solid pixels in CDL to enrich the
insufficient ground truth data. Solid pixels denote those pixels
which are trusted to be accurate. Several criteria are used to amid
the judgment, including whether the eight-directional neighbor
pixels are the same value, whether the pixel is on the boundary,
or whether the respective quality flags are on. Only the pixels
which meet all the criteria are considered as solid/trusted pixels.
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Fig. 1. Landsat spectral pattern of crops and adjacent land cover in eastern
North Dakota (X-axis: reflectance value; Y-axis: appearance frequency); the
bottom images show the greening up and harvesting of crops (showing that
the neighbor fields have very different farming calendar).

To address the second difficulty, this study also uses an advanced
workflow system [11]–[15] to compose an automatic workflow
for automating the tedious small processing steps, manipulating
computing facilities, and coping with large-volume Landsat
images. The workflow is used to yield in-season crop maps from
satellite images of North Dakota collected in the green-up and
prematurity stages of major crops such as corn and soybean.
The core function of the workflow is some machine learning
algorithms for classifying the pixels into semantic types with
actual meanings.

Machine learning is a family of data analysis methods that
automate analytical model building based on the idea that algo-
rithms can learn from data, identify patterns, and make decisions
with the minimal human intervention [16]–[19]. Researchers
have experimented with many machine learning methods to
derive crop maps directly from satellite observations. Among
all the machine learning methods, neural network has been a
popular one since the 1980s [20]. Many types of neural networks
have been created since the efficient gradient descent method,
back-propagation, was invented in the 1980s [21]. In recent
years, the augmented version of neural networks, deep neural
network (DNN), gains a lot of attention as they outperform many
other existing solutions in many image analysis tasks. Deep
learning (DL) is a general designation of DNNs to learn very
abstract features from data and use them to make predictions on
new data. It is initially inspired by the biological nervous system
and now broadly used in computer vision, speech recognition,

and natural language processing. DNN has been tested and
proven effective in the computer vision domain. Comparing to
conventional task-wise algorithms such as K-nearest neighbor,
random forest (RF), and support vector machines, a well-trained
DNN model seems to be able to extract more useful and com-
mon features and is expected to significantly reduce costs by
being directly reused across multiple tasks. However, using a
new technique in a new domain, e.g., agriculture, will always
meet some bottleneck challenges due to the differences in data,
requirements, and rules.

In crop mapping [22], semantic segmentation is the key step
that uses spectral reflectance, localized properties, and spatial
context information to determine the land cover type. One ex-
ample of the state-of-the-art DNNs for semantic segmentation is
fully convolutional network (FCN). FCN replaces the fully con-
nected (dense) output layers in conventional convolutional neu-
ral networks (CNN) with layers that can output 2-D images. But
FCNs cannot take global context on various scales into account.
To solve the disadvantages, many complex neural networks were
created, such as AlexNet, VGG, GoogLeNet, ResNet, R-CNN,
DeepLabv3, SegNet, U-Net, and so forth. Although the design
goals of these networks vary widely according to their initial
use cases, most of them can support semantic segmentation
task.

Besides, due to the high similarity in crop variety (barley and
wheat, red beans and black beans, grass, and alfalfa, etc.), crop
recognition is more difficult than many other vegetation types.
To accurately distinguish the crops, this article takes advantage
of SegNet [23] that has a stack of encoders and decoders and a
soft-max output layer. The encoders help extract very high-level
features and the decoders and soft-max layer together translate
the extracted features back to full-input-image-size maps [23].
To better fit in crop mapping tasks, the SegNet model is tuned
to be sensitive to minor spectral differences while maintaining
accurate extraction of high-dimension large-scale contextual
features.

An advanced workflow management system is used to
automate the tedious large dataset processing, to enhance time
efficiency and reduce scientific reproducibility issues [13], [16],
[24]. We implemented the DNN crop mapping workflow in
Geoweaver—an open-source web-based workflow system [25]–
[27], to help us integrate distributed resources, automate the
pre/postprocessing workflows and track the provenance of the
final crop maps [25]. Training DNN models is a back-and-forth
process and requires a lot of skills and expertise. Geoweaver is
an effective tool for recording the training history and locating
the roots of problems. The DNN workflow runs regularly on
near-real-time observed satellite images and quickly produces
in-season crop maps for new Landsat scenes that are observed.

This remainder of the article is organized as follows. The
related work is investigated in Section II. Section III intro-
duces the used DNNs. Section IV introduces the study area
and data source. Section V proposes the framework integrating
distributed DNN workflows on advanced cyberinfrastructure.
Section VI describes the experimental results. The discussion is
in Section VII. Section VIII concludes the article and gives the
future work.
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II. LITERATURE REVIEW

Machine learning has drawn a lot of attention in recent years.
The recent research literature is reviewed. Fritz et al. [28] pro-
duced a 1-km global cropland percentage map of 2005 by inte-
grating satellite images and individual cropland maps of various
scales and got an overall accuracy (OA) of 82.4%. Estel et al. [29]
used MODIS normalized difference vegetation index (NDVI)
times series to map active and fallow farmland and provide
the first European-wide map of abandoned farmland (cropland
and grassland) and cultivation. They used the RF classifier with
independent observations from the field and satellite images.
Gao et al. [7] studied mapping crop progress at field scales
by fusion of Landsat and MODIS imagery. Roy and Yan [30]
evaluated the 5- and 7-parameter linear and nonlinear harmonic
models in simulating crop growth. Muller et al. [31] studied the
use of spectral-temporal variability metrics to separate cropland,
pasture, natural savanna vegetation, and other relevant land
cover classes for a savanna landscape in the Brazilian Cerrado
using Landsat. Xiong et al. [32] used Google Earth Engine and
MODIS NDVI to calculate the extent of croplands in Africa.
Teluguntla et al. [33] also used RFs on Google Earth Engine to
generate Landsat-derived cropland extent products of Australia
and China.

Kussul et al. [34] described a multilevel DL architecture
to classify crop maps from multitemporal multisource satellite
imagery including Sentinel-1A and Landsat-8. They first used
an unsupervised neural network to process optical segmentation
and missing data restoration, and then used supervised fully
connected multilayer perceptron to generate crop maps for a test
site in Ukraine. Their result accuracy can reach higher than 85%
for all the major crops (wheat, maize, sunflower, soybeans, and
sugar beet). Sun et al. [35] have proposed an end-to-end frame-
work using long short-term memory recurrent neural network
to take the temporal pattern of crops across image time series
to improve the accuracy of predicted cropland maps. Waldner
et al. [36] proposed a solution for automated annual cropland
mapping using knowledge-based temporal features. They tried
to build five knowledge-based temporal features that remain
stable over time and a classifier to deliver cropland maps based
on those features. They tested the system in Argentina, Belgium,
China, and Ukraine, and found that their method increases the
stability of the classifier allowing its reuse from year to year
without recalibration. Were et al. [37] compared the results of
support vector regression, RFs, and neural networks in mapping
soil organic carbon stocks in the Eastern Mau Forest Reserve.

These studies laid the foundation for producing in-season
cropland maps with high resolution and detailed information
on crop coverage and categories more automatically and more
time wisely.

III. DEEP NEURAL NETWORKS

Crop mapping is an image semantic segmentation task and
many DNNs can be utilized. We use SegNet as our DNN model
because of its demonstrated capability in identifying similar
classes in street view recognition [23], [38]–[40] and we expect it
reproduces a similar result in crop mapping. The original version

Fig. 2. SegNet.

of SegNet has four pairs of encoder and decoder layers [23] (see
Fig. 2). Each encoder has a subsampling layer, a dense convolu-
tion layer, and a batch normalization layer [41]. The subsampling
layer uses a nonoverlapping 2 × 2 or 3 × 3 pooling window.
Rectified linear unit (ReLU) is the activation in the convolution
layer [42]. The batch normalization layer is used to normalize
the activations of the previous layer at each batch to accelerate
network training by maintaining the mean activation close to
zero and the standard deviation close to one [43]. Each decoder
has an upsampling layer, a dense convolution layer, and also a
batch normalization layer. The upsampling layer magnifies its
input using the memorized pooled indices to a larger tile with
higher resolution, which is the reverse of the subsampling layer
[41]. The output layer uses soft-max activation to classify each
pixel independently [44]. The output is an N-band image where
N is the number of classes in the target hierarchy. In this case,
N is the number of crop categories. The chosen loss function
is categorical cross-entropy [45], and the optimizer function is
Adadelta [46]. Categorical cross-entropy is the cross-entropy
loss function for multiclass classification. The loss increases as
the predicted probability diverge from the actual label value. A
perfect model would have zero loss. Adadelta optimizer can
adapt the learning rate according to the moving window of
gradient updates and delivers a more stable learning curve.

Besides SegNet, U-Net is another popular DNN for such a
task. It consists of a contracting path to capture context and
a symmetric expanding path that enables precise localization
[38], [47]. The initial experiment on the biomedical image
database of the IEEE international symposium on biomedical
imaging (ISBI) challenge [47] shows that U-Net can be trained
end-to-end from very few images and outperforms other con-
volutional networks. The learning and testing speed is very
fast. The original U-net structure is divided into two halves.
The first-half of U-net includes repeated 3 × 3 convolution
layers (unpadded convolutions) [48], each convolution neuron
followed by a ReLU and a 2 × 2 max pooling operation [49]
with stride 2 for down-sampling. Every step in the second half
has an upsampling of the feature map followed by a 2 × 2
deconvolution layer [50] that reduces the number of feature
channels, a concatenation with the fused feature maps from the
first half, and two 3×3 convolutions, each followed by an ReLU.
Padding after each step is necessary due to the loss of border
pixels in every convolution. At the final layer, a convolution layer
is used to map each feature vector to the number of classes. To
make the tiling able to be merged back to a seamless map, it is
important to set the tile size to ensure all max-pooling operations
are applied to a layer with an even x- and y-size [51]. Same as
SegNet, the output layer adopts the soft-max activation function
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Fig. 3. North Dakota.

and the loss function uses cross-entropy [38]. Considering U-Net
has more parameters and is relatively slower to train than SegNet
when the training dataset is big, we chose SegNet instead of
U-Net out of totally financial efficiency reasons.

IV. STUDY AREA AND DATA

A. Study Area

U.S. agriculture has distinct regional patterns in the Central
Valley, Midwest, and Great Plains. For example, California’s
Central Valley is the most concentrated region for valuable cash
crops, including fruits, nuts, berries, vegetables, etc. The Mid-
west region has dominated U.S. corn production for many years
and is widely known as the “corn belt” [52]. The broad version
of “corn belt” states includes North Dakota, South Dakota, Ohio,
Michigan, Iowa, Illinois, Indiana, Nebraska, Kansa, Minnesota,
Missouri, Wisconsin, and Kentucky. These states are located
in the Great Plains with the great latitudinal and climatic span
stretching from North to South. Our ultimate goal is to train
a model that can apply to this entire region. In this study, we
choose North Dakota—the Peace Garden state (see Fig. 3), as
our study area to experiment and validate our approach. Once the
model accuracy becomes reliable, we will expand the coverage
to the entire corn-belt region.

B. Dataset

Landsat 8 imagery is used as model inputs and CDL, NASS
reports (see Figs. 4 and 5), regional crop maps and ground-
collected datasets are used as training labels. Most of the ground
truth data were obtained via field surveys and roadside photo
samples. Some crop field boundaries are got by digitalizing the
high-resolution images from the National Agriculture Imagery
Program [53]. The data sources include the Common Land Unit
of USDA Farm Service Agency, the data portal of the state
government of North Dakota [54], and the data archive of North
Dakota State University Agriculture Experiment Station [55],

Fig. 4. Growing stage time chart of corn in North Dakota, in 2018 (cited from
USDA NASS website https://bit.ly/36ddGyN).

Fig. 5. Growing season chart of U.S. major crops (source: USDA NASS).

[56]. These data programs have been carried out by experienced
data collectors following a series of protocols and managed
by government departments or universities. The quality of the
ground data is very reliable.

The crop phenology is complicated and the crops in two
neighbor fields are in very different stages by a very high chance.
Spatial scale, observation date, and greenness are the three
important factors used in choosing Landsat scenes and collect-
ing ground truth. Landsat resolution is suitable for measuring
dynamics at the field level. In 2018, the corn in North Dakota
is planted in April and May, silking in late June and entire
July, become dented and mature in September, and harvested
in October and November. It shows that every year the period
and duration of each growing stage shifts back and forth. We
need to choose Landsat 8 collected in the silking, dented, and
mature stages when the crops have the largest leaf area and the
strongest spectral reflectance of crop plants. To make it easier,
the selection of Landsat images is automated by calculating
NDVI from band 4 and band 5 and counting the pixels whose
NDVI values are larger than 0.4 in the scene. In most cases,

https://bit.ly/36ddGyN
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moderate vegetation, e.g., crops at an early stage, tends to vary
between 0.4 and 0.6. Anything above 0.6 indicates the highest
possible density of green leaves [57]. If the number exceeds a
certain threshold (thresholds differ among regions), the image
would be considered as suitable for crop mapping. We will use
the scenes from 2013, 2014, and 2015 as training datasets and
test the trained model on the scenes, in 2016 and 2017.

C. Landsat 8 Surface Reflectance (SR) Product

SR is the amount of light reflected by the earth’s surface
[58]. The Landsat SR products account for atmospheric effects
such as aerosol scattering and thin clouds to enhance image
brightness and can help the detection and characterization of
earth’s surface change. Landsat 8 OLI SR products, which are
used in this study, are generated using the Landsat Surface
Reflectance Code (LaSRC), which makes use of the coastal
aerosol band to perform aerosol inversion tests, uses auxiliary
climate data from MODIS, and a unique radiative transfer model
[59]. LaSRC hardcodes the view zenith angle to “0,” and the
solar zenith and view zenith angles are used for calculations as
part of the atmospheric correction. Most day-lit (descending)
Landsat 8 scenes can be processed to SR. Newly collected
Landsat 8 scenes become suitable for processing within a few
days of data acquisition [60]. However, the efficacy of land SR
correction is likely to be reduced in hyperarid or snow-covered
regions, areas with low sun angle conditions, coastal regions
where land area is small, relative to adjacent water, or areas
with extensive cloud contamination [61]. Corrections may not
be accurate to data acquired over high latitudes (> 65° North
or South). People can refer to the quality assessment band
for pixel-level condition and validity flags [62], [63]. Besides,
Landsat atmospheric correction and SR retrieval algorithms are
not ideal for water bodies due to the inherently low level of
water-leaving radiance, and the consequential very low signal
to noise ratio. Similarly, SR values greater than 1.0 can be
encountered over bright targets such as snow and playas. These
are known computational artifacts in the Landsat SR products.
Within 65° North or South, Landsat SR products are very reliable
for measuring the actual reflectance of the crop plants and release
scientists from the job of atmospheric correction [58].

V. APPROACH

Most DL researches in agriculture directly reuse the neural
networks designed by computer scientists, which have been
proven workable in many crop classification tasks [34], [64],
[65]. The current major challenges in applying DL in agriculture
are preprocessing the existing observation into the learning-
ready format, and postprocessing the neural network results into
crop maps. Although there are many DL tools, web systems,
libraries, it is still hard to put together all the heterogeneous
pieces into a consistent pipeline [66], [67]. The proposed frame-
work integrates DNN and cyberinfrastructure to build the work-
flow (see Fig. 6) and produce crop maps from remote sensing
images automatically.

Fig. 6. Workflow.

Fig. 7. Sieve process (threshold: 15).

A. Preprocessing

To make the training more efficient, the preprocessing of DNN
needs to take extra steps compared to the conventional classifi-
cation scheme. Besides the normal preprocessing operation like
calibration, atmospheric correction, and spatial enhancement,
Landsat and cropland map products must be prepared into input
batches and output masks respectively. Landsat images (down-
loaded via USGS EarthExplorer) will be first unzipped and
reprojected to NAD83/Conus Albers (EPSG:5070) projection
and resample to exact 30-m spatial resolution (reprojecting will
change the resolution).

CDL for North Dakota is downloaded and unzipped into
ERDAS IMG files. We use geospatial data abstraction library
(GDAL) [68] to read and sieve CDL to remove the isolated
pixels and reduce data uncertainties and complexity. As shown
in Fig. 7, the sieving process removes raster polygons smaller
than a provided threshold size (in pixels) and replaces them with
the pixel value of the largest neighbor polygon. It can greatly
eliminate the inconsistent small-area crops within the other
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Fig. 8. Naturally biased crop distribution in North Dakota (2017).

large-scale fields, e.g., the unexpected soybean fields within the
cornfields. The downside is that some good pixels, such as the
river sections, are removed too. It could be complemented by
applying an additional water/road data layer to force update
the sieve results with ground truth. A pixel-to-pixel mapping
between Landsat and CDL will be established based on the
resampled Landsat and sieved CDL. Any location mismatch
in the process will result in huge failures. To make them
exactly match, we use GDAL [68] to extract the boundary
polygon of every scene and use the polygon to clip the CDL.
The resampled Landsat images (1–7 bands) and the matched
CDL images are sliced into two folders: inputs (Landsat bands)
and targets (CDL). We filtered all those out-of-season batches
(before emerging or after harvesting), bad pixels, cloud pixels,
snow/ice pixels, edge-effect pixels, untrusted pixels (confidence
coefficient is low), etc., to ensure training dataset quality.

CDL image values range from 0 to 255. However, not all of
the 256 values are used to label the crop types and there are some
empty values. In particular, only 132 values correspond to real
land cover types in the hierarchy. The one-hot encoding method
is used to map the crop classes (0–255) into a matrix of numbers
ranging from 0 to 131. One pixel is corresponding to one row in
the matrix. In the row, the item respective to the correct class has
a value of 1, and all the others are 0. The hierarchy without empty
classes will make the texture of the results clean and unified.

B. Machine Learning on Imbalanced Dataset

This work reuses the USDA NASS crop classification system
which has 132 crop classes. Unfortunately, the training dataset is
naturally seriously biased (imbalanced) for many of the minority
crops. As shown in Fig. 8, in 2017 most area of North Dakota
is covered by grassland and the most grown crops are soybean,
spring wheat, corn, and canola. Other crops have a much smaller
growing area. The crops are not equally represented in either the
reality or the training dataset. To better represent the minority
crops, we could use resampling techniques to increase the ratio
of the minority crops in the training dataset.

A DNN model with seven input channels and 132 output
channels is created based on the original SegNet model. The
seven bands of Landsat are fed into the seven channels. The
data will be digested by the subsequent encoders to do the con-
volutional computation to extract high-level features from the

bands. The information from different bands may be combined
or exaggerated in the process in many ways to discover the
most common and effective features. Later, the features will
be translated by the decoders to get a same-size crop map. The
model needs a lot of training before working properly.

The ultimate goals of model training include not only getting
higher classification accuracy but also achieving generalization.
A well-trained neural network allows people to make predictions
on data the model never met. DL has two core procedures—
training and validation. The commonly used algorithm for train-
ing neural networks is backpropagation which fed the errors
from the classification of the previous record back into the neural
network to modify the weights on the links among neurons for
the next run and repeat for many iterations. Usually, the training
dataset is split at a certain ratio, e.g., 8:2, in which 80% percent
of samples will be used in training and the rest 20% will be for
testing. In every iteration, the model will calculate its errors on
both portions. The accuracy got from the 80% portion is called
training accuracy, while the accuracy from the 20% portion
is called testing accuracy. Via the setting, we can determine
overfitting and underfitting in the learning process. Overfitting
happens when the neural network learns the detail and noise
in the training data to the extent that it negatively impacts the
performance of the model on the new data. It will prevent the
trained network from applying to new data and generalization.
Generalization means how well the concepts learned by the
model apply to strange datasets that the model is never trained
on before. Underfitting means the model is not trained enough
and is not suitable to give good performance on either train-
ing dataset or testing dataset. Overfitting and underfitting, two
typical problems caused by poor generalization, permanently
coexist with neural network training. That is one of the major
reasons why neural network training is always back and forth,
and very hard to balance between the concrete prior knowledge
and abstract representation features. The dividing line between
overfitting and underfitting is vague and floating per case. It
requires a lot of experience and expertise from DL practitioners.
For example, in Fig. 9 we show the learning curves of accuracy
and loss function by training DNN on one Landsat scene and
CDL. After training for three hours with 1000 iterations on the
training batches, the model is still underfitting (the training and
validation accuracy curves are not going apart) and has space to
improve. The training and validation accuracy are very close and
their mean values both reach 80%. There are many techniques
and tricks to help prevent overfitting, including Dropout, Bias,
L1, and L2 regulation. But none of them can substitute human
supervision at present.

C. Postprocessing

Translating the machine learning results back to cropland
maps requires a series of post processes. The output of the
neural network is processed by a soft-max function which turns
numbers into a probability array indicating the probability of
the inputted objects belonging to each class (one-hot encoded
matrix). The classes with the highest probability will be assigned
to the objects. The DNN results would be in the shape of (batch
size, batch width ∗ batch height, 132). They will be mapped back
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Fig. 9. Curves of model validation accuracy and loss function value in training
processes.

to the 0–255 range, the same as CDL by adding empty values and
rendered using the CDL color style. The result batches will be
merged into a big map, reprojected and rendered using the same
color styles as CDL. Due to uncertainties in classification, the
predicted results must integrate some ground truth files to force
correct some parts of the areas such as the residential area, high
way, waterbody, cloud, snow, cloud shadow, etc., which are not
the emphasis of this research. We will directly use the data from
other sources such as NASA NLCD [69] and OpenStreetMap
[70] to fill in those regions. The results will be evaluated by
several metrics. The common metrics such as OA, producer
accuracy, consumer accuracy, Kappa coefficient, and F-1 score,
will be all calculated based on the confusion matrix [71], [72].
Section VI will give more details about the evaluation results.

D. Setup on Advanced Workflow System

Considering the large data volume, tedious pre/post
processing steps, hyperparameterization in the neural network,
most DL tasks cannot be carried out by a single machine but need
multiple machines with high-performance parallel computing
devices such as GPU to accelerate the process into a reasonable
time frame. Cyberinfrastructure such as Google Earth Engine
[73] and Amazon Web Service (AWS) [74], [75] have been

Fig. 10. Production workflow in Geoweaver.

proven greatly useful in big data storage, processing, analy-
sis, and dissemination. Many online software resources such
as Google Cloud Datalab, Google AI, FloydHub, OpenML,
BigML, etc., are also available to help. Besides public resources,
many institutes have their own datasets, legacy machine learning
code, computational workstations, rack servers, private cloud,
cluster, and cloud instances. Most of the cyberinfrastructures are
not directly compatible with each other regarding the current big
data processing framework, and the transfer of data and appli-
cation is very painful. To successfully set up a DL workflow on
the hybrid of private and public cyberinfrastructures, advanced
tools are required to connect and make them collaborate with
each other in a seamless way [24], [76]–[79].

The DNN workflow is complicated and time consuming and
involves a series of tools, software, and scripts in various lan-
guages. For example, the scripts for re-projecting and resampling
are based on GDAL [68] and written in C language. The scripts
for plotting the statistics results use R and matplotlib. The DNN
definition and training/testing programs are built on Keras in
Python. The overall volume of the original Landsat scenes
from USGS is around 5 TB after decompression. However,
the intermediate products generated by the preprocessing and
postprocessing steps take more than 30-TB disk space. The DL
code is deployed on a DELL server with two NVIDIA Tesla K-80
GPUs. All the preprocessed training samples must be transferred
to that GPU server for training and testing. Managing this
compound workflow is a daunting challenge for DL practition-
ers. Instead of manual management, an efficient management
tool will largely decrease the complexity, make the workflow
reusable, and allow the tracking of provenance. In this study,
we use Geoweaver to set up our production environment (see
Fig. 10). Geoweaver is a graphical workflow tool for managing
DL workflows in a distributed environment. It can substitute
Secure Shell client, File Transfer Protocol client, virtual private
network (VPN), and workflow software. It supports interacting
with multiple GPU servers and uses shell scripts to automate
the run of preprocessing, training, testing, and postprocessing in
DL workflows. We can upload and browse the result files in the
GPU server in a one-stop manner.

Additionally, provenance information is automatically cap-
tured and recorded, which can enable the inspection of each
step so a user could quickly locate misclassification and in-
vestigate the cause of problems [80]. The atom processes in
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TABLE I
SETUP CONFIGURATION

Geoweaver can be heterogeneous so that scientists can compose
their legacy code without rewriting the C++ code in Python or
vice versa. Geoweaver is a decentralized cross-platform system
running in web browsers, and every DL group could install a
private instance on their machines (including their laptops) to
manage their resources. The workflow and scripts recorded in
a Geoweaver are reusable in any other Geoweaver instances re-
gardless of the underlying hardware environment, which makes
it very convenient to reproduce the crop maps or generate new
maps from new Landsat scenes by various user groups. We have
successfully used Geoweaver in carrying out the experiments by
many times which saved us at least 30% of time on interacting
with the servers, scripts, code, version control, result files, data
transferring, etc. Geoweaver is the cyberinfrastructure tool for
students, researchers, engineers, or even citizen scientists who
are devastated in managing various servers, heterogeneous lan-
guage programs, code version management, or a tremendous
number of files.

VI. EXPERIMENT AND ANALYSIS

We have successfully set up DNN workflows on Geoweaver
and run it with various parameters (see Table I). We wrote our
SegNet using Keras and Tensorflow and tested on two NVIDIA
Tesla K80 GPUs, and 10-core Intel Xeon 4116 CPU. The Land-
sat 8 scenes of North Dakota from 2013 to 2017 are retrieved.
Most of them are observed between June and September. Many
crops in the crop classification hierarchy are not grown in North
Dakota. Small-frequency crops will have fewer samples which
would lead to a lower recall. In this study, we mainly focus on
the major crops in North Dakota and will improve the accuracy
of minority crops in the future by extending the study area to
increase the size of minority crop samples.

A. Comparison With Baseline Models

The changes of study regions will alter model performance.
We need first test DNN to compare with traditional baseline
models to prove that DNN is usable in this region with the
provided satellite images. We choose RF as our representative
of baselines models and use one Landsat scene 032027 captured
in July 2016 as our test image. We initially trained both DNN
and RF on the above half of the image and tested the model
on the other half. Fig. 11 displays some result comparison.
Comparing to the ground truth polygons, DNN and RF agree

Fig. 11. Comparison of DNN results with RF results in July 2016 (the first
row are RF results; the second row are DNN results; the third row are ground
truth.).

very well in the distribution of corn and soybeans. In the DNN
results, corn and soybean fields have less isolated pixels than
RF results which probably benefits from the noise-reducing
ability of convolutional layers. They also have very close results
in spring wheat, hay. Wetlands and water bodies are correctly
recognized in both models. The roads are more broken in the
DNN results. Both models classified some barley and dry beans
spots in the middle of spring wheat fields and generate some
herbaceous wetlands in the soybean fields (the first column)
while the ground truth shows that it is a pure soybean field.
That might be caused by a small pond formed by rainfall or
irrigation. Considering the DNN is still underfitting and has
space for improvement, this test validates that DNN is applicable
in cropland classification of North Dakota.

B. Comparison of Different Training Datasets

The selection of training samples has a direct impact on the
success of the DNN model. High-quality training dataset will
greatly accelerate learning and enhance accuracy. Four training
datasets are created to find out which configuration could max-
imize learning efficiency. As displayed in Table I, the training
datasets are customized according to the used Landsat scenes,
observed year, and observed month. The first dataset uses the
Landsat images from all the scenes and months in one year
(2017). The second dataset uses only one scene at Row 032 Path
027 and collected all the images of that scene from 2013 to 2017.
The third dataset uses the images observed in July of all the years
at all the scenes in North Dakota. July is selected because it is
when many crops have the largest leaf areas while fewer crops
are harvested. The fourth dataset contains all the images. Each
dataset is split into training and validation subsets and trained
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Fig. 12. Comparison of corn and soybean on different training datasets.

DNN on all the four datasets by 10 epochs. The four trained
models are tested on the same validation image and the results
are displayed in Fig. 12. All the results are similar in corn and
soybean fields. The one-scene result misclassified some large
soybean fields into cornfields, some pasture into alfalfa, some
spring wheat fields into barley fields. The month result has more
pixels absorbed by the highway and residential area. The one-
month and one-scene results are less accurate than the one-year
and multiple results. Furthermore, the multiple-everything result
has better performance in peas than the one-year result. Overall,
multiple-everything training dataset yields the best OA.

C. Compare With CDL

We fully trained DNN on the multiple training datasets and
use new test images to predict crop maps and compare them with
the NASS CDL. Fig. 13 shows the side-by-side comparison of
several typical croplands in North Dakota including sugarbeets,
corn, soybean, dry beans, canola, sunflower, peas, durum wheat,
barley, lentils, flaxseed, etc. The left maps are the result of DNN
from Landsat 8 image on August 3, 2016; the right maps are
CDL. In all the chosen croplands, soybean and corn are very
close and the differences are mostly in the field edges. DNN
results remove many isolated pixels within the corn/soybean
fields and make the crop maps more consistent and cleaner. In
herbaceous fields, wetland, pasture, and hay are mostly identified
correctly in DNN results with less isolated water body pixels
than CDL [see Fig. 13(a)]. Durum wheat, a unique category
in U.S. crops which is mainly distributed in North Dakota, is
separated from spring wheat very well by DNN [see Fig. 13(c)].
Spring wheat and barley are correctly recognized at most times,

but DNN still confused the two sometimes due to their high
similarity in spectral characteristics. Also, DNN feels hard to
tell the differences between alfalfa and pasture/grassland and
misclassifies some grassland into alfalfa. The spectral-unique
minority crops such as sugarbeets [see Fig. 13(a), (e)], sun-
flower [see Fig. 13(b)], canola [see Fig. 13(d)], and peas [see
Fig. 13(d)] are generally accurate in DNN results, although
some of them are classified into spring wheat or corn. The
DNN results have relatively irregular field shapes than CDL
as a result of its encoder–decoder fusion. CDL fields have better
field boundaries which could be reversely used to improve the
DNN maps. Besides, DNN can successfully recognize the large
developed space (towns, cities, highways, etc.), while missing
some small roads between fields [see Fig. 13(a) and (e)]. That
is because small roads are extremely underrepresented in the
training dataset. As the field roads are barely changed, we can fix
it by directly integrating the road pixels from CDL and NLCD.
Overall, the DNN maps give a reasonable prediction on crop
distribution purely based on SRs and show high agreement with
CDL in major crops in big farmlands. For the minority crops,
such as sunflower, canola, sugarbeets, peas, lentils, flaxseed,
DNN still did a good job in distinguishing them despite their
seriously underrepresented samples. It could be foreseen that
the accuracy of minority crops would increase if more samples
are involved to further balance the biases.

D. Quantitative Assessment

To quantitatively evaluate the accuracy, we chose three re-
gions in North Dakota (see Fig. 14) and calculated their confu-
sion matrix based on solid/trusted pixels in CDL (see Fig. 15).
A solid pixel means all the eight neighbors have the same
value with itself, which will eliminate the edge pixels with
a high risk of errors in CDL. The three chosen regions are
southeast of Darling Lake, Missouri River basin, and west of
Devils Lake. The confusion matrix is normalized to highlight
the underrepresented crops. In the Darling Lake region, spring
wheat (23) and grassland (176) have >90% OA [see Fig. 15(a)].
Soybean and corn’s accuracies are 89% and 74%, respectively.
The accuracy of soybean is pulled back by dry beans which are
misclassified into soybeans in that region. Sunflower is 82% and
peas have 73% accuracy. Dry beans are mostly misclassified
into soybeans in this region. Alfalfa has 61% OA while the
other 28% of alfalfa are classified into grassland in DNN results.
Barley is 72% accurate and 14% is classified as spring wheat and
the other 10% is classified as grassland. In this herbaceous wet
region, DNN did very well in recognizing soybean, sunflower,
spring wheat, and grassland. In the Missouri river basin, which
is a suburban area with occasional croplands, DNN correctly
recognized 98% pasture/grassland and did fairly good on corn
(81%), soybean (75%), sunflower (70%), spring wheat (80%),
peas (81%), and alfalfa (73%) [see Fig. 15(b)]. It has poor results
in peas (46%) many of which were classified into spring wheat
(31%). It might be caused by the fact that in this region, the
portion of the pea field is very small (barely seen) and the
boundary pixels are occupied by the neighbor spring wheat
fields. It reflects that the less area a crop has, the less accurate the
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Fig. 13. Comparison between the DNN results (left) and CDL (right). (a) Herbaceous area, (b) sunflower, (c) durum wheat, (d) canola, (e) sugarbeets.

results will be. Reasonably speaking, the results should be more
accurate if the corresponding crop has more area. This hypoth-
esis is validated in the west region of Devils Lake, a traditional
agricultural county where the majority of the land is covered
by major crops. In Fig. 15(c), the major crops have very high
accuracy, e.g., corn (85%), soybean (87%), sunflower (82%),
barley (79%), spring wheat (93%), dry beans (92%), peas (86%),
and grassland/pasture (90%). In this region, DNN still struggles
in distinguishing alfalfa (53%) from grassland/pasture (32%).
The fallow fields are not recognized very well in all three regions.
Fallow lands are covered by wild vegetation such as alfalfa and
weeds in the growing season and are acceptable being classified
as alfalfa or grassland. We will study how to identify fallow farm
fields from artificial alfalfa crop fields or real grassland in the

future. Open water is misclassified into herbaceous wetland and
we are comfortable with that disagreement as the water coverage
is changing over the year and the source data used in CDL might
be observed at a different date from the Landsat scene. We will
study DL by taking advantage of these biological and optical
features to improve accuracy. The herbaceous wetland has some
misclassification to fallow land. Overall, DNN has high accuracy
in major crops in big farms and may misclassify minority crops
in the wetlands and suburban regions where the crop fields are
scattered and have dramatic seasonal changes.

The final accuracy metrics are listed in Table II. The precision
of the Missouri River basin is 0.8214, Devils Lake is 0.8463,
and Lake Darling is 0.8241. These metrics are very impressive
considering the complicated crop hierarchy and the huge number
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Fig. 14. Validation region (Lake Darling, Missouri River Basin, and Devils
Lake).

TABLE II
ACCURACY METRICS OF DNN

of pixels in Landsat images. The high kappa and recall (>80%)
indicate that the number of correctly classified crops by DNN
covers most crops including the minority crops. The DNN result
of Devils Lake has the highest value in the four metrics (except
recall) which proves our conclusion (DNN accuracy is higher
in big farmlands). The equations for the metrics are listed as
follows (explanation can be found in [81]):

Precision =
ncorrect

nall predicted

Recall =
ncorrect

nall real

kappa =
p0 − pe
1− pe

F1 = 2× precision× recall

precision + recall

VII. DISCUSSION

A. Training Dataset Selection

NDVI and trusted pixel methods are used to get more sam-
ples from CDL to enrich the training dataset. NDVI is used

Fig. 15. Normalized confusion matrix between refined CDL and DNN 2017
result (corn-1, soybean-5, sunflower-6, barley-21, spring wheat-23, alfalfa-
36, dry beans-42, peas-53, fallow-61, open water-111, grassland-176, and
herbaceous wetland-195. The complete crop categories are in Appendix A).
(a) Darling Lake. (b) Missouri River. (c) Devils Lake.
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to automatically identify pixels with crop/vegetation-covered
at the observation time to automatically select the appropriate
Landsat scenes for classification. We extract the pixels from
CDL and make them go through a series of filtering processes
to remove the ambiguous pixels which have a high chance to be
incorrect. The natural quality of Landsat pixels should be seen
as a critical criterion to determine whether adding them into the
training dataset. The edge pixels, boundary pixels, low-confident
pixels, cloud/shadow pixels, should be eliminated to ensure all
the training pixels are highly accurate. The rest pixels which
have higher accuracy will be merged into the training dataset to
permit the training of DNN. The underlying crop features will be
more easily learned from SR if the crop samples are sufficiently
available in the training dataset. According to the results, the
multiple-scene-multiple-month-multiple-year training dataset is
better than only using images observed in one scene, one year,
or one month. In other words, “more is better.”

B. Usability of DNN Crop Maps

DNN maps can reflect the distribution of major crops such
as corn, soybean, spring wheat, sugar beets, barley, sunflower,
alfalfa, etc. The major crop distribution can be directly used for
agricultural activity advisory. For minority crops, DNN maps
are still incapable of producing a reliable judgment, especially
for wetland and suburban regions. The results of minority crops
such as peas, canola, etc. are less accurate and can only be
used as prediction results. The quality of DNN maps can be
further enhanced by a series of postprocesses involving other
data sources to force correct those misclassified fields, which
we will continue work in the future.

C. Reusability of Trained DNN Model

One major advantage of DL models over other machine
learning models is high reusability. However, reusing a trained
DNN model is still subject to spatial and temporal limitations.
The spatial extent is limited to the coverage region of training
samples. It means the DNN model trained in North Dakota may
not be applicable in other agriculture states such as Ohio. Obser-
vation dates of the input Landsat images also matter for DNN.
If the training images are majorly observed in July, the trained
models will not perform well on the images captured in May.
To eliminate these limitations, expanding the spatiotemporal
coverage of the training dataset might be the only solution.

D. Integration of DNN and Cyberinfrastructure

The learning process is always back and forth, and the overall
duration of training is long. Each training epoch takes about two
hours on two K80 GPUs. We normally run 30 epochs which take
about two and a half days. Each prediction process takes around
30 min. Also, the preprocessing will cost half an hour. Merging
all the results into one map will take another half an hour.
We used Geoweaver to chain all these processes into a highly
automated workflow. The sequential process on all 21 scenes
flying over North Dakota will take no more than one day. The
parallel process will take no more than two hours. In other words,

with the help of Geoweaver, this DNN solution is capable of
making in-season maps available only less than two days after
the retrieval of Landsat scenes. The workflow setup can also
scale when the used dataset outpaces the initial experimental
database. DL can usually go “deeper” into the datasets by
consuming more computational resources. Making DL work in a
distributed high-performance computing environment is a major
requirement of scalable DL. This research uses Geoweaver to
manage distributed resources and allow users to work across
multiple nodes. Integration with advanced cyberinfrastructure
is a big step forward for realizing large-scale crop mapping.

VIII. CONCLUSION AND FUTURE WORK

There are constantly unexpected problems during applying
a new technique in a new domain, especially when there are
more than one hundred classes and the study region contains
multiple scenes. Besides the algorithm itself, the inputs and the
training/testing methods have significant impacts on the algo-
rithm performance. This article attempts to explicitly describe
those problems and address them using the proposed workflow
to ensure the DL model could output what is desired. A novel
full-stack workflow using deep CNNs and cyberinfrastructure
is proposed to learn the underlying features of various crops
and use the trained model to produce in-season crop maps from
Landsat images. Geoweaver is used to manage the learning
workflow in a distributed environment. We tested the trained
DNN model in North Dakota and got satisfying results on major
crops such as corn, soybean, barley, spring wheat, alfalfa, etc.
The accuracy in all three test regions is higher than 82%. Both
precision and recall of DNN are very competitive comparing
to CDL. The DNN model is reusable in new Landsat images
of North Dakota and could easily scale to bigger regions (e.g.,
the other corn belt states) via cyberinfrastructure. This study
discovers that the DNN model will be more accurate if the
training dataset includes more Landsat images from multiple
scenes, months, and years. The trained DNN model can better
recognize major crops in big farms but will struggle in differen-
tiating minority crops in wetland and suburban regions.

In the future, we will continue to leverage the existing big
data facilities to expand the spatiotemporal coverage of the
training dataset on both major crops and minority crops to
produce large-scale in-season crop maps. The current model is
still underfitting and we will integrate more high-performance
computational platforms to collaborate on training to further
improve its performance. We will study how to identify fallow
farm fields from artificial alfalfa crop fields or real grassland. Im-
proving the accuracy of minority crops will be another important
direction. The quality of DNN maps can be further enhanced
by a series of post-processes involving other data sources to
force correct those misclassified fields, which we will continue
to study in our next stage of work.

ACKNOWLEDGMENT

The authors would like to thank J. Gaigalas for proofreading
the manuscript.



2212 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

REFERENCES

[1] D. J. Mulla, “Twenty five years of remote sensing in precision agriculture:
Key advances and remaining knowledge gaps,” Biosyst. Eng., vol. 114,
pp. 358–371, 2013.

[2] S. K. Seelan, S. Laguette, G. M. Casady, and G. A. Seielstad, “Remote
sensing applications for precision agriculture: A learning community
approach,” Remote Sens. Environ., vol. 88, pp. 157–169, 2003.

[3] P. J. Pinter Jr. et al., “Remote sensing for crop management,” Photogram-
metric Eng. Remote Sens., vol. 69, pp. 647–664, 2003.

[4] L. Di, G. Y. Eugene, L. Kang, R. Shrestha, and Y.-Q. Bai, “RF-CLASS: A
remote-sensing-based flood crop loss assessment cyber-service system for
supporting crop statistics and insurance decision-making,” J. Integrative
Agriculture, vol. 16, pp. 408–423, 2017.

[5] M. A. Friedl et al., “Global land cover mapping from MODIS: algorithms
and early results,” Remote Sen. Environ., vol. 83, pp. 287–302, 2002.

[6] X. Zhang et al., “Monitoring vegetation phenology using MODIS,” Remote
Sen. Environ., vol. 84, pp. 471–475, 2003.

[7] F. Gao et al., “Toward mapping crop progress at field scales through fusion
of Landsat and MODIS imagery,” Remote Sen. Environ., vol. 188, pp. 9–25,
2017.

[8] C. Boryan, Z. Yang, R. Mueller, and M. Craig, “Monitoring US agri-
culture: the US department of agriculture, national agricultural statistics
service, cropland data layer program,” Geocarto Int., vol. 26, pp. 341–358,
2011.

[9] W. Han, Z. Yang, L. Di, and R. Mueller, “CropScape: A web service based
application for exploring and disseminating US conterminous geospatial
cropland data products for decision support,” Comput. Electron. Agricul-
ture, vol. 84, pp. 111–123, 2012.

[10] H. Xiang and L. Tian, “An automated stand-alone in-field remote sens-
ing system (SIRSS) for in-season crop monitoring,” Comput. Electron.
Agriculture, vol. 78, pp. 1–8, 2011.

[11] Z. Sun, P. Yue, and L. Di, “GeoPWTManager: A task-oriented web
geoprocessing system,” Comput. Geosci., vol. 47, pp. 34–45, 2012.

[12] Z. Sun et al., “Automation of customized and near-real-time vegetation
condition index generation through cyberinfrastructure-based geoprocess-
ing workflows,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 7, no. 11, pp. 4512–4522, Nov. 2014.

[13] Z. Sun, L. Di, A. Chen, P. Yue, and J. Gong, “The use of geospatial
workflows to support automatic detection of complex geospatial features
from high resolution images,” in Proc. 2nd Int. Conf. Agro-Geoinform.
(Agro-Geoinform.), 2013, pp. 159–162.

[14] Z. Sun and P. Yue, “The use of Web 2.0 and geoprocessing services to
support geoscientific workflows,” in Proc. 18th Int. Conf. Geoinform.,
2010, pp. 1–5.

[15] P. Yue et al., “GeoPW: Laying blocks for the geospatial processing web,”
Trans. GIS, vol. 14, pp. 755–772, 2010.

[16] Z. Sun, H. Fang, L. Di, P. Yue, X. Tan, and Y. Bai, “Developing a
web-based system for supervised classification of remote sensing images,”
GeoInformatica, vol. 20, pp. 1–21, 2016.

[17] Z. Sun, H. Fang, L. Di, and P. Yue, “Realizing parameterless automatic
classification of remote sensing imagery using ontology engineering and
cyberinfrastructure techniques,” Comput. Geosci., vol. 94, pp. 56–67,
2016.

[18] Z. Sun, H. Fang, M. Deng, A. Chen, P. Yue, and L. Di, “Regular shape
similarity index: A novel index for accurate extraction of regular objects
from remote sensing images,” IEEE Trans. Geosci. Remote Sens., vol. 53,
no. 7, pp. 3737–3748, Jul. 2015.

[19] M. C. You, Z. Sun, L. Di, and Z. Guo, “A web-based semi-automated
method for semantic annotation of high schools in remote sensing images,”
in Proc. 3rd Int. Conf. Agro-Geoinform., 2014, pp. 1–4.

[20] A. J. Surkan and L. Di, “Fast trainable pattern classification by a modifi-
cation of Kanerva’s SDM model,” in Proc. Int. Joint Conf. Neural Netw.,
1989, pp. 347–349.

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, pp. 533–536,
1986.

[22] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-Martinez, and
J. Garcia-Rodriguez, “A review on deep learning techniques applied to
semantic segmentation,” 2017, arXiv:1704.06857.

[23] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolu-
tional encoder-decoder architecture for image segmentation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 39, no. 12, pp. 2481–2495, Dec. 2017.

[24] Z. Sun et al., “CyberConnector: a service-oriented system for automati-
cally tailoring multisource Earth observation data to feed Earth science
models,” Earth Sci. Inform., vol. 11, pp. 1–17, 2017.

[25] Z. Sun and L. Di, “Geoweaver: a web-based prototype system for managing
compound geospatial workflows of large-scale distributed deep networks,”
ESIP, 30 Jan. 2019, doi: 10.6084/m9.figshare.7629491.v1.

[26] Z. Sun, “Some Basics of Deep Learning in Agriculture,” ESIP,
30 Jan. 2019, doi: 10.6084/m9.figshare.7631615.v1.

[27] Z. Sun, L. Di, A. Burgess, J. A. Tullis, and A. B. Magill, “Geoweaver:
Advanced cyberinfrastructure for managing hybrid geoscientific AI work-
flows,” ISPRS Int. J. Geo-Inf., vol. 9, 2020, Art. no. 119.

[28] S. Fritz et al., “Mapping global cropland and field size,” Global Change
Biol., vol. 21, pp. 1980–1992, 2015.

[29] S. Estel, T. Kuemmerle, C. Alcántara, C. Levers, A. Prishchepov, and
P. Hostert, “Mapping farmland abandonment and recultivation across
Europe using MODIS NDVI time series,” Remote Sens. Environ., vol. 163,
pp. 312–325, 2015.

[30] D. Roy and L. Yan, “Robust Landsat-based crop time series modelling,”
Remote Sens. Environ., vol. 238, 2018, Art. no. 110810.

[31] H. Müller, P. Rufin, P. Griffiths, A. J. B. Siqueira, and P. Hostert, “Mining
dense Landsat time series for separating cropland and pasture in a hetero-
geneous Brazilian savanna landscape,” Remote Sens. Environ., vol. 156,
pp. 490–499, 2015.

[32] J. Xiong et al., “Automated cropland mapping of continental Africa using
Google Earth Engine cloud computing,” ISPRS J. Photogrammetry Remote
Sens., vol. 126, pp. 225–244, 2017.

[33] P. Teluguntla et al., “A 30-m landsat-derived cropland extent product of
Australia and China using random forest machine learning algorithm on
Google Earth Engine cloud computing platform,” ISPRS J. Photogram-
metry Remote Sens., vol. 144, pp. 325–340, 2018.

[34] N. Kussul, M. Lavreniuk, S. Skakun, and A. Shelestov, “Deep learning
classification of land cover and crop types using remote sensing data,”
IEEE Geosci. Remote Sens. Lett., vol. 14, no. 5, pp. 778–782, May 2017.

[35] Z. Sun, L. Di, and H. Fang, “Using long short-term memory recurrent
neural network in land cover classification on Landsat and Cropland data
layer time series,” Int. J. Remote Sens., vol. 40, pp. 593–614, 2018.

[36] F. Waldner, G. S. Canto, and P. Defourny, “Automated annual cropland
mapping using knowledge-based temporal features,” ISPRS J. Photogram-
metry Remote Sens., vol. 110, pp. 1–13, 2015.

[37] K. Were, D. T. Bui, Ø. B. Dick, and B. R. Singh, “A comparative assessment
of support vector regression, artificial neural networks, and random forests
for predicting and mapping soil organic carbon stocks across an Afromon-
tane landscape,” Ecological Indicators, vol. 52, pp. 394–403, 2015.

[38] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assisted Intervention, 2015, pp. 234–241.

[39] V. Badrinarayanan, A. Handa, and R. Cipolla, “SegNet: A deep con-
volutional encoder-decoder architecture for robust semantic pixel-wise
labelling,” 2015, arXiv:1505.07293.

[40] V. Iglovikov and A. Shvets, “TernausNet: U-net with VGG11 encoder pre-
trained on imagenet for image segmentation,” 2018, arXiv:1801.05746.

[41] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vision Pattern
Recognit., 2015, pp. 3431–3440.

[42] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807–814.

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” 2015, arXiv:1502.03167.

[44] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[45] J. T. Springenberg, “Unsupervised and semi-supervised learning with
categorical generative adversarial networks,” 2015, arXiv:1511.06390.

[46] M. D. Zeiler, “ADADELTA: an adaptive learning rate method,” 2012,
arXiv:1212.5701.

[47] O. Goksel et al., “Overview of the VISCERAL challenge at ISBI,” in Proc.
VISCERAL Challenge@ ISBI, 2015, pp. 6–11.

[48] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” 2016, arXiv:1603.07285.

[49] J. Nagi et al., “Max-pooling convolutional neural networks for vision-
based hand gesture recognition,” in Proc. IEEE Int. Conf. Signal Image
Process. Appl., 2011, pp. 342–347.

[50] H. Noh, S. Hong, and B. Han, “Learning deconvolution network for
semantic segmentation,” in Proc. IEEE Int. Conf. Comput. Vision, 2015,
pp. 1520–1528.

[51] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected CRFs,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2017.

https://dx.doi.org/10.6084/m9.figshare.7629491.v1
https://dx.doi.org/10.6084/m9.figshare.7631615.v1


SUN et al.: DEEP LEARNING CLASSIFICATION FOR CROP TYPES IN NORTH DAKOTA 2213

[52] C. B. Flora, “Social capital and sustainability: Agriculture and commu-
nities in the Great Plains and Corn Belt,” Res. Rural Sociology Develop.,
vol. 6, pp. 227–246, 1995.

[53] USDA. National agriculture imagery program. (2003). [Online].
Available: https://www.fsa.usda.gov/programs-and-services/aerial-
photography/imagery-programs/naip-imagery/

[54] NorthDakotaGIS. North Dakota GIS hub data portal. (2012). [Online].
Available: https://gishubdata.nd.gov/

[55] C. W. Lee, “NDSU PLSC 210 - horticulture science - plant classification,”
2010. [Online]. Available: https://www.ndsu.edu/pubweb/chiwonlee/
plsc210/topics/chap2-classification/classification.html

[56] NDSU. Archive - Ag News From NDSU. (2020). [Online]. Available: https:
//www.ag.ndsu.edu/news/topics/

[57] EOS. NDVI FAQ: All you need to know about NDVI. (2019). [On-
line]. Available: https://eos.com/blog/ndvi-faq-all-you-need-to-know-
about-ndvi/

[58] J. G. Masek et al., “A landsat surface reflectance dataset for North America,
1990–2000,” IEEE Geosci. Remote Sens. Lett., vol. 3, no. 1, pp. 68–72,
Jan. 2006.

[59] E. Vermote, C. Justice, M. Claverie, and B. Franch, “Preliminary analysis
of the performance of the Landsat 8/OLI land surface reflectance product,”
Remote Sens. Environ., vol. 185, pp. 46–56, 2016.

[60] D. P. Roy et al., “Landsat-8: Science and product vision for terrestrial
global change research,” Remote Sens. Environ., vol. 145, pp. 154–172,
2014.

[61] N. Flood, “Continuity of reflectance data between Landsat-7 ETM+ and
Landsat-8 OLI, for both top-of-atmosphere and surface reflectance: A
study in the Australian landscape,” Remote Sens., vol. 6, pp. 7952–7970,
2014.

[62] Z. Zhu, C. E. Woodcock, C. Holden, and Z. Yang, “Generating synthetic
Landsat images based on all available Landsat data: Predicting Landsat
surface reflectance at any given time,” Remote Sens. Environ., vol. 162,
pp. 67–83, 2015.

[63] M. Feng, C. Huang, S. Channan, E. F. Vermote, J. G. Masek, and J. R.
Townshend, “Quality assessment of Landsat surface reflectance products
using MODIS data,” Comput. Geosci., vol. 38, pp. 9–22, 2012.

[64] A. Kamilaris and F. X. Prenafeta-Boldu, “Deep learning in agriculture: A
survey,” Comput. Electron. Agriculture, vol. 147, pp. 70–90, 2018.

[65] M. Dyrmann, H. Karstoft, and H. S. Midtiby, “Plant species classifica-
tion using deep convolutional neural network,” Biosyst. Eng., vol. 151,
pp. 72–80, 2016.

[66] M. M. Najafabadi, F. Villanustre, T. M. Khoshgoftaar, N. Seliya, R. Wald,
and E. Muharemagic, “Deep learning applications and challenges in big
data analytics,” J. Big Data, vol. 2, 2015, Art. no. 1.

[67] Y. Bengio, “Deep learning of representations: Looking forward,” in Proc.
Int. Conf. Statist. Lang. Speech Process., 2013, pp. 1–37.

[68] OSGEO. GDAL-OGR: Geospatial Data Abstraction Library/Simple Fea-
tures Library Software. (2008). [Online]. Available: http://www.gdal.org

[69] C. Homer et al., “Completion of the 2011 national land cover database
for the conterminous United States–representing a decade of land cover
change information,” Photogrammetric Eng. Remote Sens., vol. 81,
pp. 345–354, 2015.

[70] M. Haklay and P. Weber, “Openstreetmap: User-generated street maps,”
IEEE Pervasive Comput., vol. 7, no. 4, pp. 12–18, Oct./Dec. 2008.

[71] M. Story and R. G. Congalton, “Accuracy assessment: A user’s perspec-
tive,” Photogrammetric Eng. Remote Sens., vol. 52, pp. 397–399, 1986.

[72] G. M. Foody, “Status of land cover classification accuracy assessment,”
Remote Sens. Environ., vol. 80, pp. 185–201, 2002.

[73] N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and
R. Moore, “Google earth engine: Planetary-scale geospatial analysis for
everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, 2017.

[74] E. Amazon, Amazon Elastic Block Store (EBS). Seattle, WA, USA: Ama-
zon Web Services Inc., 2013.

[75] J. Varia and S. Mathew,“Overview of Amazon web services,” 2014. [On-
line]. Available: http://cabibbo.dia.uniroma3.it/asw-2014-2015/altrui/
AWS_Overview.pdf

[76] Z. Sun, L. Di, and J. Gaigalas, “SUIS: Simplify the use of geospatial web
services in environmental modelling,” Environ. Model. Softw., vol. 119,
pp. 228–241, 2019.

[77] J. Gaigalas, L. Di, and Z. Sun, “Advanced cyberinfrastructure to enable
search of big climate datasets in THREDDS,” ISPRS Int. J. Geo-Inf., vol. 8,
2019, Art. no. 494.

[78] Z. Sun, L. Di, B. Cash, and J. Gaigalas, “Advanced cyberinfrastructure
for intercomparison and validation of climate models,” Environ. Model.
Softw., vol. 123, 2019, Art. no. 104559.

[79] Z. Sun et al., “Advanced cyberinfrastructure for agricultural drought
monitoring,” in Proc. 8th Int. Conf. Agro-Geoinform. (Agro-Geoinform.),
2019, pp. 1–5.

[80] Z. Sun, P. Yue, L. Hu, J. Gong, L. Zhang, and X. Lu, “GeoPWProv:
Interleaving map and faceted metadata for provenance visualization and
navigation,” IEEE Trans. Geosci. Remote Sens., vol. 51, no. 11, pp. 5131–
5136, Nov. 2013.

[81] R. G. Congalton, “A review of assessing the accuracy of classifications of
remotely sensed data,” Remote Sens. Environ., vol. 37, pp. 35–46, 1991.

Ziheng Sun received the Ph.D. degree from Wuhan University, in 2015.
He is a Research Assistant Professor with the Center for Spatial Information

Science and Systems, George Mason University, Fairfax, VA, USA. He is a prac-
titioner of using the cutting-edge technologies including artificial intelligence
and high-performance computing to answer critical scientific questions in geo-
sciences. He has published 12 first-author papers on international journals. He in-
vented RSSI, a novel index for artificial object recognition from high-resolution
aerial images, and proposed parameterless automatic classification solution for
reducing the parameter-tuning burden on scientists. He used long short-term
memory neural network to learn the seasonal changes to better recognize crops.
He has successfully built a number of geospatial cyberinfrastructure systems
for better disseminating, processing, visualizing, and understanding big spatial
data.

Liping Di (Senior Member, IEEE) received the Ph.D. degree from University
of Nebraska–Lincoln, in 1991.

He is a Professor and the Director with the Center for Spatial Information
Science and Systems, George Mason University, Fairfax, VA, USA. He is
internationally known for his extraordinary contributions to the geospatial
information science/geoinformatics, especially to the development of geospa-
tial interoperability technology and the federal, national, and international
geographic information and remote sensing standards. He is the pioneer in
agro-geoinformatics and in the development of web-based, advanced, distributed
geospatial systems and tools. He has engaged in the geoinformatics and earth
system research for more than 30 years and has authored or coauthored over 450
publications. He has received a total of over $55 million research grants from
federal agencies, international organizations, and private companies.

Hui Fang received the M.S. degree in geographic information system from
Wuhan University, Wuhan, China, in 2011.

She used to work in the industry to develop remote sensing image processing
module in commercial geographical information systems. Her research interests
include remote sensing, image classification, computer vision, and forestry
science.

Annie Burgess received the Ph.D. degree from University of Utah, in 2013.
She is the Director of ESIP Lab, Boulder, CO, USA. Her career has bridged

Earth Science and informatics. During her graduate work with the University
of Utah, Salt Lake City, UT, USA, she managed, analyzed, and distributed
an immense amount of data related to her research in snow hydrology. The
primary data product created during her Ph.D. work is currently distributed
through NASA/JPL. As a Postdoc with the University of Southern California,
Los Angeles, CA, USA, she developed software for the unique needs of the Polar
Science Community. She knows the power of connecting earth scientists with
technical and collaborative infrastructure. At ESIP, she utilizes her technical
savvy and networking skills to run their innovation program, also known as the
ESIP Lab.

https://www.fsa.usda.gov/programs-and-services/aerial-photography/imagery-programs/naip-imagery/
https://gishubdata.nd.gov/
https://www.ndsu.edu/pubweb/chiwonlee/plsc210/topics/chap2-classification/classification.html
https://www.ag.ndsu.edu/news/topics/
https://eos.com/blog/ndvi-faq-all-you-need-to-know-about-ndvi/
http://www.gdal.org
http://cabibbo.dia.uniroma3.it/asw-2014-2015/altrui/AWS_Overview.pdf


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


