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Abstract—Hyperspectral image anomaly detection is an
increasingly important research topic in remote sensing images
understanding and interpretation. Recently, low-rank
representation-based methods have attracted extensive attention
and achieved promising performances in hyperspectral anomaly
detection. These methods assume that the hyperspectral data
can be decomposed into two parts: the low-rank component
representing the background and the residual part indicating the
anomaly. In order to improve the separability of the background
and anomaly, we propose a novel hyperspectral anomaly detection
based on low-rank representation with dictionary construction
and data-driven projection. To construct a robust dictionary that
contains all categories of the background objects whilst excluding
the anomaly’s influence, we adopt a superpixel-based tensor
low-rank decomposition method to generate a comprehensive and
pure background dictionary. Considering the spectral redundancy
in the hyperspectral data, data-driven projection is introduced
to the low-rank representation to project the original data to a
low-dimensional feature space to better separate the anomaly and
the background. Experimental results on four real hyperspectral
datasets show that the proposed anomaly detection method
outperforms the other anomaly detectors.

Index Terms—Data-driven projection, hyperspectral image
(HSI) anomaly detection, low-rank representation (LRR), tensor
decomposition.

I. INTRODUCTION

HYPERSPECTRAL image (HSI) has the capability to pro-
vide not only the spatial positions and structure infor-
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mation but also the high-resolution spectral information for
discriminating ground objects [1]. They have been success-
fully applied in military and civilian domains [2]. A lot of
research works on HSI range from dimensionality reduction [3],
spectral unmixing [4], HSI classification [5], [6] to detection
task [7], [8], [9]. There are two application scenarios in the
detection task: target detection and anomaly detection. Given
the spectral prior, hyperspectral target detection is to find the
object of interest with supervised learning. However, in many
cases, the prior information is hard to obtain. In hyperspectral
anomaly detection, the characteristic distribution or spectral
prior is unavailable. Anomaly detection is usually to find pixels
or subpixels that differ from its surroundings, e.g., ships at sea
or aircraft in paddy fields, which can be considered as anomalies
[10], [11]. Anomaly detection has broad application prospects.
However, complex background, low spatial resolution, and high-
dimensional spectral characteristics may pose challenges to
anomaly detection in HSI.

Researchers have proposed various methods for hyperspectral
anomaly detection. A typical algorithm is the RX detector [12],
which hypothesizes the HSI data as the normal distribution
and performs the detection according to the Mahalanobis dis-
tances between the test pixels and the background. However,
the statistical characteristics estimation of background is often
inaccurate due to the existence of noise and anomalies. A lot
of RX’s variant algorithms have been proposed. Guo et al. [13]
proposed a weighted RX detector and linear filter-based RX
detector that can provide more accurate background statistical
characteristic estimation and decrease the influence of anoma-
lous pixels and noise. Moreover, some computation-efficient
methods also were discussed in the causal RX detector [14].
Single-feature-based anomaly detector [15] provides a frame-
work for subpixel anomaly detection. Liu and Chang [16] pro-
posed a multiple-window anomaly detection method to utilize
the spectral information. However, the statistic-based anomaly
detection methods assume that the hyperspectral data follows a
Gaussian distribution, which may pose a limitation for real data.

To overcome the disadvantages of inaccurate distribution
hypothesis, the representation-based methods have been
proposed and indicated favorable performances in HSI analysis.
Chen et al. proposed dictionary-based sparse representation
method for HSI classification [17]. In [18], Li et al. utilized the
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representation residual to define anomalies by constraining the
representation coefficients matrix with collaborative
representation detector (CRD), and extended the basic CRD
model into nonlinear kernel space. Considering the spatial
and spectral similarities in HSI, Xu et al. developed the
nonlocal patch tensor-based sparse representation for HSI
super-resolution [19]. Nowadays, the sparse representation
with low-rank constraint models has been explored. In [20],
Zhao et al. applied the sparse coding to explore the global
redundancy in the spatial domain and the local correlation
in the spectral domain, moreover, the low-rank constraint is
employed to overcome the spectral distortion problem for
HSI denoising. Furthermore, the coupled sparse denoising
and unmixing with low-rank constraint model was presented
in [21]. In [22], the l1/2 regularized low-rank and sparse
representation LRASR-based graph cuts method was proposed
to precisely describe the low-rank structure of data for HSI
classification. In [23], the tensor LRASR framework was
proposed for HSI-compressed sensing reconstruction and
anomaly detection. The representation-based algorithms can
avoid the distribution estimation for the real data, sparse and
low-rank constraints can inspire us to make full use of the prior
information. Recently, with the superior ability in exploring the
deep features, deep learning has been applied in remote sensing
image analysis including supervised learning [24] and weakly
supervised learning [25]. Hyperspectral anomaly detection can
be considered as an unsupervised learning task, Li et al. [26]
exploited the transferred deep convolutional neural network
framework to detect the anomalous pixels in HSI. However,
deep learning-based methods require huge labeled samples to
participate in the model training. In general, the labeled samples
are difficult or time consuming to obtain.

In hyperspectral anomaly detection, researchers have made
efforts on the LRR-based approaches. It assumes that the back-
ground follows a low-rank prior and the anomalies are sparse
distributed. The robust principal component analysis (RPCA)
model aimed at factorizing the observed matrix into low-rank
background component and sparse anomaly component [27],
[28]. As the background includes complex ground object mate-
rials, the RPCA method cannot completely separate the anomaly
from background. To obtain a relatively accurate background
estimation, the low-rank and sparse matrix decomposition model
was applied in [29]. Dictionary-based representation is of great
help in depicting background characteristics. In [30], the LRR
method was described. For simplicity, the whole original data
were adopted to construct the background dictionary in LRR.
Obviously, the anomalous pixels are included in the dictionary.
To generate a comprehensive and powerful dictionary, dictionary
construction strategies were explored. In [31], Xu et al. intro-
duced clustering and atoms selection algorithms to construct
a background dictionary for LRASR model. Furthermore, to
depict the local structure information, the l1 norm was applied
on the representation coefficients matrix. In order to learn a rep-
resentative dictionary, in LRRaLD (LRR and learned dictionary)
model, the sparse coding gradient descent is adopted to learn and
establish a dictionary [32]. The above LRR-based methods per-
form the matrix decomposition in the original spectral dimension

which does not consider the spectral redundancy. In addition, the
constructed dictionaries are not pure for the noise interference.
These two factors restrict the detectors’ performances.

In order to reduce the data redundancy of HSI, dimension-
ality reduction [3] and band selection [33] are two applicable
technologies. In [34], researchers extended the endmembers set
extraction idea into bands optimal subset selection, then the basic
RX detector was applied to the dimensionality-reduced data for
anomaly detection. In fact, there may exist many mixed pixels in
HSI. For the subpixel anomalies, the researchers in [35] applied
the unmixing technologies to obtain an abundance matrix that
can reflect more distinctive characteristics about background
and anomalies. Meanwhile, the original data space was trans-
ferred into the abundance feature space, then the dictionary-
based low-rank model was applied in the new feature space to
separate anomalies. Transferring the original HSI data into a
low-dimensional feature space can reduce the data redundancy
and complexity efficiently, which is beneficial for the following
anomalies detection. However, the dimensionality reduction
and anomaly detection are two separate processes in general,
which cause that the detection result relies on the obtained low-
dimensional feature data. To reduce the redundancy of data and
preserve the critical information, the projection-based methods
were applied for dimensionality reduction of complex data [36],
[37]. In [38], the RX detector was derived into the projection
domain for hyperspectral anomaly detection. The features are
transferred into a new space via the projection matrix. In our
work, to reduce the redundancy of data and separate anomalies,
the projection-based LRR model is applied for anomaly detec-
tion.

In order to realize dimensionality reduction and separate
anomalies simultaneously in a model and to construct a compre-
hensive and pure dictionary for background modeling, in this ar-
ticle, a novel data-driven projection LRR method with dictionary
construction is presented. Projecting the original HSI into a new
low-dimensional feature space can enable us to extract the active
and influential components of the data for the anomaly detection
task. In dictionary construction, in order to construct a compre-
hensive dictionary that contains all of the background categories
of the ground objects, we adopt a superpixel segmentation-based
strategy to construct a dictionary candidate set. In order to make
the dictionary candidates set more pure, we adopt the tensor
low-rank decomposition algorithm to compress the interference
of noise since the tensor decomposition-based framework can
preserve the intrinsic structure information of data and reduce
the noise including sparse noise efficiently. The whole scheme
of the data-driven projection LRR with dictionary construction
method is summarized in Fig. 1.

The contributions of our proposed data-driven projection LRR
with dictionary construction method can be summarized as
follows.

1) Different from traditional dimensionality reduction meth-
ods that are performed as a preprocessing step, we propose
a data-driven projection LRR model that performs dimen-
sionality reduction and anomaly detection simultaneously.
In this model, the projection matrix is optimized under the
framework of LRR that ensures the projection direction is
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Fig. 1. Whole scheme of DPLR method for HSI anomaly detection.

consistent with the representation characteristics of the
data.

2) A novel dictionary construction method is presented to
depict the background characteristics. a) To obtain a com-
prehensive dictionary that contains all of the background
ground object classes, a superpixel segmentation-based
atoms selection strategy is used to generate a dictionary
candidates cube. 2) To make the background dictionary
pure enough, a tensor Tucker decomposition method is
applied to the dictionary candidates set to compress the
interference of sparse noise.

The remainder of this article is organized as follows. The
basic of the LRR model is reviewed in Section II. In Section III,
we detailed the proposed data-driven projection low-rank rep-
resentation (DPLR) for HSI anomaly detection task including
model formation and optimization. Section IV describes the
experiments implemented on four real HSI datasets, and the
discussions about the parameters are presented. Finally, conclu-
sions are given in Section V.

II. LRR MODEL

Suppose X = L+E, it aims at recovering the low-rank
component L from the acquired data X with sparse noise E
interference [27]. The optimization problem is given by

min
L,E

rank(L) + τ0‖E‖0
s.t. X = L + E (1)

where X is the observed data and X ∈ RB×N with N samples
in RB . L,E ∈ RB×N are the low-rank item and the sparse
noise term, respectively. To balance the two parts, the weight
parameter τ0 (τ0 > 0) is introduced. In (1), rank(·) is the rank

function, ‖ · ‖0 is the l0 norm, which is the number of nonzero
elements of matrix entries.

To solve the NP-hard problem in (1), the convex relax form
of (1) is

min
L,E

‖L‖∗ + τ0‖E‖1
s.t. X = L + E (2)

where ‖ · ‖∗ is the nuclear norm, which is the sum of its singular
values. ‖ · ‖1 is the l1 norm, which is the sum of nonzero
elements of a matrix.

Recent research works on the LRR demonstrate that a reliable
dictionary is closely related to the robust representation of the
data. For the LRR model in [30], researchers adopted the data
itself as the dictionary to represent the low-rank component, then
(2) can be rewritten as

min
Z,E

‖Z‖∗ + τ1‖E‖2,1
s.t. X = XZ + E (3)

where Z is the representation coefficients matrix of X, Z ∈
RN×N , τ1 is the weight parameter. ‖ · ‖2,1 is called as the l2,1
norm, and it can be seen as the l1 norm of l2 norm of its columns.
In general, the l1 norm induced solutions can only exploit the
unstructured sparsity of data. Compared with the l1 norm on
matrix E in (2), the l2,1 norm can generate the sparsity on the
columns [39]. The joint-sparse structure is imposed on the matrix
by l2,1 norm, as the l2,1 norm restricts most of the columns’
values of the corresponding matrix to close zero. In (3), the l2,1
norm on the sparse noise term E can inspire us to search the
corrupted specific samples.
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III. LRR WITH DATA-DRIVEN PROJECTION AND DICTIONARY

CONSTRUCTION

Hyperspectral anomaly detection can be considered as an
unsupervised classification task. Compared with the anomalies,
background pixels make up the major components of the image,
even more than 90%. The data are imbalanced between the two
classes. Furthermore, the background includes various ground
objects which make the division task complex. These factors
increase the difficulty of anomaly detection, and the commonly
used classifiers are no longer applicable here.

Considering the characteristics of background and anomalies,
the hyperspectral anomaly detection task can be formulated
with LRR model, i.e., the background is modeled as a low-
rank part and the anomaly is modeled as the sparse part. The
dictionary-based representation methods have been successfully
applied in HSI analysis [17], [31], [32]. To better characterize the
background, we introduce dictionary D that is constructed based
on superpixel segmentation and tensor low-rank decomposition.
The dictionary-based LRR model is as follows:

min
Z,E

‖Z‖∗ + λ‖E‖2,1
s.t. X = DZ + E (4)

where X ∈ RB×N is the hyperspectral data with B bands and
N pixels. The dictionary matrix D = [d1, d2, . . . , dm] includes
m atoms. E = [e1, e2, . . . , eN ] represents the remaining part
which includes the anomaly.λ (λ > 0) is a parameter to balance
the low-rank part and the sparse part. This model decomposes
the HSI data into background and anomaly. The low-rank con-
straint on the background part can help us explore the global
information of data by strengthening the correlation between
the vectors of Z. As each hyperspectral pixel is a column vector,
we adopt the l2,1 norm to explore the structure sparsity of matrix
E along its column.

A. Data-Driven Projection LRR

Hyperspectral data typically have continuous spectral bands
per pixel with high spectral resolution. This makes the acquired
HSI data redundant and highly correlated between the bands.
There are two applicable techniques to reduce the spectral redun-
dancy. One is based on band selection by selecting representative
bands from the original bands set to replace the original data. The
other is based on dimensionality reduction by transforming the
original spectral data into a lower dimensional feature space.
Above all, the process of reducing the data redundancy is a
separated step, which can be viewed as a preprocessing step
before performing a specific task (for examples, classification
or target detection). The quality of dimensionality reduction will
affect the following classification or detection accuracy. In order
to perform the dimensionality reduction and separate anomalies
from the background, we propose a data-driven projection LRR
model. Our goal is to preserve the anomaly information as much
as possible while dimensionality reduction is performed, and we
will explore the low-rank characteristic of background and the
sparsity of anomalies in a low-dimensional feature space.

Suppose a hyperspectral data cube can be denoted as X ∈
RB×V ×H , where the spectral dimension is B and the spatial
size is V ×H , we convert the data cube into a two-dimensional
matrixX ∈ RB×N , N is the total number of pixels,N = V ×H
(we denote cubic data or tensors by curlicue letters, e.g., X , D;
matrices are expressed with general italicized bold capital letters,
e.g., X, D). In order to reduce the HSI spectral redundancy and
detect anomalies, we introduce low-dimensional projectionP ∈
Rb×B into LRR model, which can transforms the original data
with B spectral dimensions into b (b < B) dimensional feature
space. To better preserve the anomaly information and enhance
the separability of background and anomalies, we impose an
orthogonality constraint on the transformation matrix P. The
optimization problem is defined as

min
Z,A,P

‖Z‖∗ + λ‖A‖2,1

s.t. PX = PDZ + A,PT P = I (5)

where P ∈ Rb×B (b < B), the dictionary D ∈ RB×m includes
m atoms, Z ∈ Rm×N is the representation coefficients matrix,
A is the residual part including anomaly, A ∈ Rb×N . λ > 0 is a
weight parameter of the sparse term relative to the low-rank part.
In (5), PX represents the low-dimensional data after projection,
PDZ is the corresponding background component in the low-
dimensional feature space, and A is the corresponding remaining
part. Compared with the model in (4), our proposed model can
project the background and the anomaly into the corresponding
low-dimensional feature space, whilst the intrinsic low-rank
characteristic of background and the sparse prior to anomalies
are exploited effectively.

Introducing the projection matrix with an orthogonality con-
straint on HSI data is expected to scatter the data as much as
possible and remove the intercorrelation to better detect the
anomaly. Model (5) provides an approach to detect anomalies in
a low-dimensional feature space. The representation coefficients
matrix Z on the dictionary is low-rank as the background com-
ponent has low-rank invariance in the low-dimensional feature
space. The anomaly item A is constrained with l2,1 norm.

In order to solve the data-driven projection LRR model in
(5), we apply the alternating direction method of multipliers
(ADMM) algorithm [40]. To make the objective function sepa-
rable, the auxiliary variable H is introduced, the problem in (5)
can be converted as the following problem:

min
H,A,P,Z

‖H‖∗ + λ‖A‖2,1

s.t. PX = PDZ + A,PT P = I,Z = H. (6)

The unfolded augmented Lagrangian function of (6) is given
as:

L(H,Z,A,P,Y1,Y2, μ)

= ‖H‖∗ + λ‖A‖2,1 + 〈Y1,PX − PDZ − A〉+ 〈Y2,Z − H〉

+
μ

2
(‖PX − PDZ − A‖2F + ‖Z − H‖2F )

= ‖H‖∗ + λ‖A‖2,1 +
μ

2
(‖PX − PDZ − A + Y1/μ‖2F
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+ ‖Z − H + Y2/μ‖2F )−
1

2μ
(‖Y1‖2F + ‖Y2‖2F )

s.t.PT P = I (7)

where Y1 and Y2 are Lagrangian multipliers, μ (μ > 0) is a
penalty parameter. We update the variables H, A, P, and Z in
turn, by minimizing the Lagrangian function with other variables
fixed. Equations (8)–(11) detail the update formulas of variables
with ADMM algorithm.

1) Fix Z, A, P and update H, the objective function is as
follows:

min
H

‖H‖∗ +
μ

2
‖Z − H + Y2/μ‖2F . (8)

2) Fix H, Z, P and update A, the objective function is as
follows:

min
A

λ‖A‖2,1 +
μ

2
‖PX − PDZ − A + Y1/μ‖2F . (9)

3) Fix H, Z, A and update P, the objective function is as
follows:

min
P

μ

2
‖PX − PDZ − A + Y1/μ‖2F s.t.PT P = I.

(10)
4) Fix H, A, P and update Z, the objective function is as

follows:

min
Z

μ

2
(‖PX − PDZ − A + Y1/μ‖2F

+ ‖Z−H + Y2/μ‖2F ). (11)

The solution of H is Θ(1/µ)(Z +Y2/μ) where Θ is the
singular value thresholding shrinkage operator, then we update
A by Ω(λ/µ)(PX−PDZ+Y1/μ) where Ω is the l2,1 min-
imization operator. As the solution of P is a classic orthog-
onal ProCrustes problem that has been referred in [41], we
first compute the singular value decomposition (SVD) of ma-
trix (A−Y1/μ)(X−DZ)T as (A−Y1/μ)(X−DZ)T =
USVT and then let P = UVT . We solve the variable Z in
(11) by computing the derivative with respect Z and setting the
derivative to be zero, then we obtain Z = [(PD)TPD+Im]−1

[(PD)T(PX−A +Y1/μ) + (H − Y2/μ)]. The algorithm
flow of solving (7) is described in Algorithm 1.

So far, we obtain a matrix A ∈ Rb×N including anomaly,
where b is the dimension after projection, N is the total number
of pixels. The abnormal value of each pixel can be calculated as
follows:

R(xi) = ‖A:,i‖2 =

√∑
j
([A]j,i)

2. (12)

The abnormal value R(xi) can reflect the abnormality level
of the pixel xi. A pixel with larger value means it is will likely
to be an abnormal pixel.

B. Dictionary Construction Based on Superpixel
Segmentation and Tensor Low-Rank Decomposition

In our model, dictionary-based LRR can better depict the
background characteristics to separate anomalies from the back-
ground. The aim of this section is to construct a comprehensive

Algorithm 1: Data-Driven Projection Low-Rank Represen-
tation.

Input: HSI dataset X ∈ RB×N , Dimensionality b
Initialize: H0 = A0 = Z0 = Y1,0 = Y2,0 = 0, P = I,
μmax = 106, μ = 0.01, ρ = 1.1, ε = 10−6

1. Dictionary construction as depicted in Algorithm 2
While not converged do
2. Fix variables Z, A, P and update H by solving (8)
3. Fix variables H, Z, P and update A by solving (9)
4. Fix variables H, Z, A and update P by solving (10)
5. Fix variables H, A, P and update Z by
Z : = [(PD)TPD+ Im]−1[(PD)T (PX−A+
Y1/μ) + (H−Y2/μ)]

6. Update Y1 and Y2 by
Y1: = Y1+μ(PX−PDZ−A)
Y2: = Y2 + μ(Z−H)

7. Update μ by
μ = min{ρμ, μmax}

8. Check the convergence conditions
‖PX−PDZ−A‖F < ε, ‖Z −H‖F < ε

End while
Output: A, P, Z.

Algorithm 2: Dictionary D Construction Algorithm Based
on Superpixel Segmentation and Tensor Low-Rank Decom-
position

Input: HSI dataset X ∈ RB×V ×H , superpixel number J
and selected atoms number K
1. PCA algorithm is applied to the HSI and the first main

component is obtained, denoted as PC1
(PC1∈ RV ×H )

2. Segment PC1 into J superpixels by applying
TurboPixel superpixel segmentation algorithm and
select K atoms from each superpixel

3. Construct a 3-D dictionary candidates set Y with
spectral distribution, Y ∈ RB×Ĵ×K

4. Compute the lower rank dimension (r1, r2, r3) of Y
5. Solve (14) using ALS algorithm
6. Solve (15) to obtain the dictionary D
7. Convert D into matrix D

Output: dictionary D.

and pure background dictionary to enhance the discrimination
of background and anomalies. In detail, we propose a new
superpixel segmentation-based tensor low-rank decomposition
algorithm to construct dictionary D. Our dictionary construction
method consists of two steps. In step 1, similar to the cluster-
based dictionary construction method of [31], we adopt su-
perpixel segmentation to construct a comprehensive dictionary
candidates set. Moreover, in order to compress the interference
of noise (including sparse anomalies), in step 2, the tensor Tucker
decomposition method is applied on dictionary candidates set.
The details of our proposed superpixel-based tensor low-rank
decomposition algorithm are as follows.
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1) Superpixel Segmentation-Based Dictionary Candidates
Set Construction: Superpixel segmentation allows us to divide
the image into small homogeneous areas. In general, the su-
perpixel segmentation algorithms can be classified as the graph
theory-based algorithms, e.g., entropy rate superpixel [42], and
the gradient descent-based algorithms, e.g., SLIC [43] and Tur-
boPixel superpixels [44]. Considering the characteristics of HSI,
the TurboPixels superpixel segmentation algorithm is applied.
The superpixels obtained by TurboPixels are of roughly a sim-
ilar size and shape. In detail, before superpixel segmentation
is conducted, we apply principal component analysis (PCA)
[45] to extract the key information of the HSI data. As the
pixels within superpixel have similarites in spatial and spectral,
we randomly select atoms from each superpixel to construct
a dictionary candidates set. In real HSI, as the categories of
ground objects are limited, we set the number of superpixel J
(J > 0) to be medium. We denote the real obtained superpixel
number as Ĵ , we randomly select K (K > 0) atoms from each
superpixel. The atoms number of the dictionary candidates set is
Ĵ ×K. With spectral distribution, the dictionary candidates set
are represented as Y ∈ RB×Ĵ×K , which is a three-order tensor,
B is the number of spectral bands. We denote the second mode
as superpixel direction and the third mode as pixel direction.

2) Tensor Low-Rank Decomposition-Based Dictionary Con-
struction: The dictionary candidates set Y consists of back-
ground components and noises. As the anomalous pixels are
sparse and randomly distributed with small size, the anomalies
can be considered as noise. It can be modeled as Y = D +N ,
whereD is the background dictionary,N is the noise component,
D,N ∈ RB×Ĵ×K [46]. To obtain a pure dictionary, it aims at
minimizing the following formula:

min
D

‖Y − D‖2F (13)

where D is an approximation tensor of Y . We aim at estimating
the dictionary D using a subspace-based method. In order to
reconstruct the pure background dictionary, we apply the de-
noising method on the dictionary candidates set Y . In (13), the
tensor-based denoising model can better preserve the intrinsic
structure information. We here use the subspace spanned by
the eigenvectors corresponding to the covariance matrix of the
observation signal to solve the problem. The subspace-based
method can be extended to three-order tensor data, the purpose
is to find the lower rank-(r1, r2, r3) of dictionary D. Using the
Tucker decomposition (or called the SVD) [47], the problem in
(13) can be rewritten as

min
S1,S2,S3

‖Y×1S1×2S2×3S3‖2F (14)

where Sn(n = 1,2,3) consists of the first rn(n = 1, 2, 3)
eigenvectors corresponding to covariance matrix RnR

T
n , where

Rn is the n-mode flattening of Y . “×n” is the n-mode prod-
uct of tensor Y with a matrix Sn (n = 1, 2, 3). From (14),
we can see that the Tucker decomposition-based three-order
tensor low-rank reconstruction can better explore the low-rank
characteristic in both spectral and spatial directions. Then we
use the alternating least square (ALS) algorithm to solve (14).

The solution of (13) can be unfolded as

D = Y ×1U1×2U2×3U3 (15)

where the projector upon the n-mode of Y is denoted as
Un, Un= SnS

T
n (n = 1, 2, 3) with Sn = [s1 , . . . , srn ]. Specif-

ically, we adopt the Akaike information criterion [48] algorithm
to compute the subspace dimension rn(n = 1, 2, 3).

Based on tensor low-rank decomposition, we obtain the dic-
tionaryDwith Ĵ ×K dictionary atoms,D is a low-rank approxi-
mation of dictionary candidates setY . We convert the three-order
tensor D into two-dimensional (2-D) matrix D ∈ RB×m(m =
Ĵ ×K). Algorithm 2 describes the dictionary construction key
techniques in detail.

C. Algorithm Complexity Analysis

The main computation cost in Algorithm 1 appears in step
2, which requires to compute the SVD of the matrix with the
complexity of O(m2N), where m is the number of dictionary
atoms, N is the total number of pixels. The computation com-
plexity of step 3 is approximate O(b2N), where b is the reduced
dimensionality. The computation complexity of solving P is
around O(BbN) (B is the original spectral dimensions). The
computation complexity of solving Z is about O(BbN). There-
fore, the total computation complexity of Algorithm 1 is about
O[ηN(m2 + b2 +Bb)], where η is the number of iterations.

IV. EXPERIMENTS

A. Datasets

In order to verify the effectiveness of our proposed method,
a series of experiments are designed on the four real hyperspec-
tral datasets captured by different sensors. The information of
datasets is as follows.

1) HYDICE urban dataset [18]: The first dataset was cap-
tured by HYDICE airborne sensor from an aircraft plat-
form with the spectral resolution of 10 nm and spatial
resolution of 1 m approximately. Before performing the
detection task, we removed the low SNR and vapor ab-
sorption bands. We obtained the HYDICE urban dataset
with 175 spectral bands for experiments. We present the
pseudocolor map in Fig. 2(a) with a spatial size 307 ×
307, the subscene in red rectangle window is picked for
evaluation experiments with a spatial size of 80× 100. The
subscene consists of 21 anomalous pixels. Fig. 2(b) is the
pseudocolor map of the subscene, in which, the cars and
roofs are defined as anomalies, the position information is
described in Fig. 2(c).

2) AVIRIS urban scene dataset [49]: The second dataset
was collected by an Airborne Visible/Infrared Imaging
Spectrometer with a spatial resolution of 17.2 m. Fig. 3(a)
shows the pseudocolor image of AVIRIS urban scene
which consists of 100× 100 pixels. The second dataset has
207 available bands for experiments, Fig. 3(b) describes
the position information of the anomalies.

3) Cri hyperspectral dataset [29]: The third dataset was
acquired by the Nuance Cri hyperspectral sensor. This
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Fig. 2. HYDICE urban dataset. (a) Pseudocolor map of the whole image. (b)
Pseudocolor image of the interest area. (c) Reference.

Fig. 3. AVIRIS urban scene dataset. (a) Pseudocolor image. (b) Reference.

Fig. 4. Cri hyperspectral dataset. (a) Pseudocolor image. (b) Reference.

sensor can acquire imagery with a spectral resolution of
10 nm covering the wavelengths from 650 to 1100 nm.
The image scene covers an area of 400 × 400 pixels with
46 spectral bands. The pseudocolor image is presented in
Fig. 4(a). The position information of the anomalies is
given in Fig. 4(b), in which the white regions are 10 rocks
consisting of 2261 pixels.

Fig. 5. Pavia beach scene dataset. (a) Pseudocolor image. (b) Reference.

4) Pavia beach scene dataset [49]: The fourth dataset was
captured by the Reflective Optics System Imaging Spec-
trometer sensor with spatial resolution 1.3 m. The spatial
size of this dataset is 150 × 150, and the number of
available spectral bands is 102. The pseudocolor image
of this dataset is presented in Fig. 5(a), and the position
information of anomalies is given in Fig. 5(b).

B. Comparison Methods and Evaluation Criteria

In the experiments, we will compare our DPLR method with
eight representative methods including statistic-based methods,
representation-based methods, and dimensionality reduction-
based methods.

1) Global RX (GRX) [12]: It is now considered as the statistic-
based benchmark algorithm, in which, the HSI data are
hypothesized as a normal distribution, and then calculate
the Mahalanobis distance between the test pixel and the
entire image.

2) Local RX (LRX) [12]: Different from GRX, LRX calcu-
lates the Mahalanobis distance between the test pixel and
its local neighbors.

3) Sparse representation and linear mixture model
(SR_LMM) [50]: The background can be sparsely
represented by its spatial neighbors, while anomaly
cannot. In SR_LMM, the sum-to-one and threshold
constraints are imposed on the coefficients vector to
remove anomalies from the background dictionary.

4) Collaborative representation-based detector (CRD) [18]:
The pixels are represented by their spatial neighbors and
the l2 norm is imposed on the representation weight
vectors. The representation residuals are used to measure
anomalies.

5) RPCA [27]: The RPCA model is as shown in (2), by which
the HSI data are decomposed into a low-rank matrix and
a sparse matrix. Then (12) is applied on the sparse matrix
to compute the abnormal value of each pixel.

6) LRR [30]: This model has been shown in (3), and it is an
extension of RPCA, in which the dictionary is introduced
to represent the background. In the LRR algorithm, for
simplicity, the whole data is chosen as the dictionary.
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7) LRASR method [31]: LRASR is based on the LRR method
with dictionary construction. In order to describe the
background, LRASR adopts a cluster-based dictionary
construction strategy. To depict the local characteristics,
the l1 norm is imposed on the representation coefficients
matrix.

8) PCA_LRR [30], [45]: The PCA algorithm is performed
to obtain a dimensionality reduced data, then the LRR
algorithm is applied to separate anomaly.

The GRX and LRX are statistic-based benchmark methods.
Both methods are usually adopted as comparison algorithms
for HSI anomaly detection. SR_LMM, CRD, LRR, LRASR,
PCA_LRR, and our DPLR method are representation-based
methods. In our experiments, we select the classical statistic-
based methods for comparative analysis to verify the availabil-
ity of representation-based methods. SR_LMM and CRD are
positive comparison algorithms based on representation. RPCA
is the basic low-rank and sparse decomposition model. LRR
method takes the whole data as the dictionary in the LRR part.
In LRASR, the dictionary is constructed based on the clustering
algorithm, moreover, the coefficients matrix is constrained with
low-rank and sparse in the representation model. The proposed
DPLR method is based on data-driven projection LRR with
dictionary construction. To verify the effectiveness of the data-
driven projection LRR model, the low-rank representation-based
methods (LRR and LRASR), which process the data in the
original feature space, are selected as the comparison algorithms.
Moreover, the performances of different dictionary construction
methods can be demonstrated by the results of LRR, LRASR,
and DPLR methods. To further present the performance of
detectors in the low-dimensional feature space, the PCA_LRR
method is adopted for comparisons.

In order to evaluate the performance of different detectors,
the receiver operating characteristic (ROC) curve is adopted as
a criterion [51]. The ROC curve on a 2-D plane depicts the
changes in the true positive rate (TPR) with the false positive
rate (FPR). The reference values of TPR and FPR are computed
as

FPR =
FP

FP + TN
, TPR =

TP

TP + FN
. (16)

In the above equation, FP denotes the false positive value and
TN is the true negative value; TP and FN are true positive and
false negative values, respectively. Generally, the ROC curve of
a detector closing to the upper-left indicates that the detector
is of favorable performance. Furthermore, the AUC (area under
ROC curve) value is computed, it is a positive value and usually
smaller than 1.0.

C. Detection Performance

First, the AUC values obtained by different methods on the
four datasets are given in Table I. The results obtained by GRX
are stable whose values are more than 0.90 since it is benefited by
its global background estimation. The LRX method is suitable
for HYDICE Urban and Pavia beach scene datasets, in which
the anomaly size is not very large. The results of SR_LMM and
CRD methods demonstrate the positive background estimation

TABLE I
AUC VALUES OBTAINED BY DIFFERENT METHODS ON THE FOUR DATASETS

by the dual windows, especially on the HYDICE urban and Pavia
beach scene datasets. The AUC values of RPCA method and
LRR method demonstrate the acceptable detection results due
to the exploited low-rank characteristic of the background. The
results obtained by the PCA_LRR method are not so pleasurable
compared with the LRR method since some crucial information
about anomaly is abandoned after PCA. In Table I, the numbers
in boldface show that our DPLR method obtains the best score.
Compared with statistic-based methods of GRX and LRX, the
DPLR method demonstrates the promising performances in
the four datasets, especially in the datasets of Cri and Pavia,
the AUC values obtained by DPLR method are much higher
with 0.2 than GRX. The RPCA method based on low-rank
decomposition cannot separate the background and anomaly
completely. Compared with LRR and LRASR methods based
on LRR, the DPLR method can generate a comprehensive and
pure background dictionary to better separate anomaly further.

Then the ROC curves of comparison algorithms and DPLR
method on different datasets are presented in Fig. 6(a)–(d),
and the local amplified ROC curves are also displayed. For
HYDICE urban dataset in Fig. 6(a), RPCA method can get better
performance when the false alarm rate is smaller than 1 × 10-3

since it can exploit the prior information of background and
anomaly; when the false alarm rate is equal to 5 × 10-3, the
detection probability of DPLR method is close to 0.8, which
overcomes the other methods. For AVIRIS urban scene dataset
in Fig. 6(b), we can see that when the false alarm rate is more
than 1 × 10-3, the performances of the DPLR method and CRD
method are better than the other methods. For the datasets of Cri
and Pavia in Fig. 6(c) and (d), when the false alarm rate is greater
than 0.1, our DPLR method performs better demonstrating its
effectiveness.

Moreover, the visualization detection results about the four
datasets are shown in Fig. 7–10, in which (b)–(j) are the detection
maps obtained by different methods. In the detection maps, the
deeper color part represents the background and the brighter part
refers to anomalies. From the detection maps of GRX and LRX,
we cannot recognize all of the anomalies since the Gaussian
assumption may not be proper for the real data. In Figs. 7(e)
and 10(e), the CRD method performs better than the methods
based on statistics. The results obtained by the RPCA method are
acceptable. In Figs. 7(g), 8(g), and 10(g) obtained by the LRR
method, several anomalous pixels cannot be distinguished from
the background due that the background dictionary contains
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Fig. 6. ROC curves using different methods for the four datasets. (a) HYDICE urban dataset. (b) AVIRIS urban scene dataset. (c) Cri hyperspectral dataset.
(d) Pavia beach scene dataset.

Fig. 7. Detection results using different methods for HYDICE urban dataset. (a) Reference. (b) GRX. (c) LRX. (d) SR_LMM. (e) CRD. (f) RPCA. (g) LRR.
(h) LRASR. (i) PCA_LRR. (j) DPLR.

anomalous pixels. As the PCA_LRR method cannot ensure that
the critical information of anomaly is preserved after PCA, the
detection maps obtained by PCA_LRR are not so enjoyable,
especially in Fig. 8(i). The detection maps of LRASR method
and DPLR method are better than the others, and we can see that
dictionary construction-based methods can efficiently depict
the background to separate anomaly. Combining the results in
Table I and the visualization detection maps in Figs. 7–10, we can

see that the performance of the DPLR method is better than the
other methods and the detection results confirm its effectiveness
for anomaly detection.

D. Parameters Settings and Computation Costs

The computer used for experiments is a 64-b quad-core Intel
processor with CPU 3.20-GHz and 12 GB RAM under Win-
dows 10. The development software we used is the MATLAB
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Fig. 8. Detection results using different methods for AVIRIS urban scene dataset. (a) Reference. (b) GRX. (c) LRX. (d) SR_LMM. (e) CRD. (f) RPCA. (g) LRR.
(h) LRASR. (i) PCA_LRR. (j) DPLR.

Fig. 9. Detection results using different methods for Cri hyperspectral dataset. (a) Reference. (b) GRX. (c) LRX. (d) SR_LMM. (e) CRD. (f) RPCA. (g) LRR.
(h) LRASR. (i) PCA_LRR. (j) DPLR.

R2014a. Table II shows parameter settings and the running time
comparisons of different methods on the four real hyperspectral
datasets. As the performances of LRX, SR_LMM, and CRD
methods are sensitive to the inner window size Win and the outer
window size Wout, we set Win varying from 3 to 21 and Wout

varying from 5 to 23 to experiment, the optimal window sizes
of each dataset are selected. For the threshold parameter v of
SR_LMM, different values ranging in (0, 0.25) are used in the
experiment and the optimal value is selected. For the weight
parameters of RPCA and LRR, we carry out the experiments
with different values varying from 10-3 to 10, and the optimal
parameters are recorded. For the LRASR method, just as the
setting in [31], the number of clusters K and the number of the

selected atoms from each cluster P are set to be 15 and 20,
respectively. The LRASR method is sensitive to the tradeoff
parameter β and not sensitive to λ. In the experiment, λ is set
to be 0.1 for all datasets. Varying β in [0.01, 1], the optimal
value for each dataset is recorded. For the PCA_LRR method,
the reduced dimension after PCA is consistent with the DPLR
method, and the parameter in the LRR is set as same as that in
the LRR method.

We have analyzed the complexity of the DPLR algorithm in
Section III. Compared with the original data space processing
algorithms, our proposed algorithm is of lower computation
complexity. Moreover, we compared the computation costs of
different methods. In Table II, the running time of the DPLR
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Fig. 10. Detection results using different methods for Pavia beach scene dataset. (a) Reference. (b) GRX. (c) LRX. (d) SR_LMM. (e) CRD. (f) RPCA. (g) LRR.
(h) LRASR. (i) PCA_LRR. (j) DPLR.

TABLE II
PARAMETERS SETTINGS AND RUNNING TIME COMPARISONS

method is acceptable compared with other methods especially
when processing the large data, such as the Cri dataset. In gen-
eral, too high dimensions of data will bring additional computa-
tional costs. The traditional representation-based methods (such
as SR_LMM, CRD, RPCA, LRR, and LRASR) process data
in the original spectral dimensions. The introduced projection
matrix in our model (5) can reduce the dimensions of data to
compress the computation time. Thus, our proposed method has
better practical application value for large datasets.

E. Effectiveness and Stability Analysis

To evaluate the effectiveness of the projection P and the
constructed dictionary D on the detection result, three groups of

experiments for each dataset are performed. First, in our model
(5), the projection P is preserved, and a random dictionary [31] is
used to experiment. Then we adopt the constructed dictionary D
without projection P. Moreover, the DPLR method that includes
the orthogonal projection P and the novelty dictionary construc-
tion method is applied in the experiment. We repeat each group
of experiments on each dataset 10 times. The AUC values are
presented in Table III in which the upper and lower changes of
AUC values are given. To analyze the effect of P and D visually,
the AUC values of Table III are shown by the bar chart in Fig. 11.

From Table III, we can see that the upper and lower changes
of AUC values in the second row are greater than the third
and fourth rows. This is due to that the random dictionary is
much more unstable than the dictionary D constructed by our
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TABLE III
AUC VALUES AND THE CHANGES ON THE FOUR DATASETS

Fig. 11. AUC values on each dataset. The results of green bars are obtained by
preserving projection matrix P of (5) and a random dictionary. The blue bars are
with the constructed dictionary D without projection P. The red bars are obtained
by DPLR method that includes projection P and the constructed dictionary D.

method. For the DPLR method of the fourth row in Table III,
we can observe that the changes between the maximum and
minimum AUC values are within 0.011, and this confirms that
our method is credible. In Fig. 11, from the green and blue
bars of HYDICE urban and AVIRIS urban datasets, we can
see that the factors of projection P and the dictionary D have
a similar effect on the AUC results. On the Cri and Pavia beach
scene datasets, the results demonstrate that the dictionary D
greatly improve the detection performance as our dictionary
construction method has more advantages. In addition, the red
bars in Fig. 11 demonstrate that our method with projection P
and the dictionary D constructed by our method obtains the best
result.

F. Parameters Analysis

In this part, we will discuss the impact of parameters on the
detection results of the DPLR method. We divide the parameters
into two groups for further discussion. First, we will discuss the
impact of parameters λ and b of (5) on the four real datasets;
then the parameters J and K for dictionary construction will be
analyzed.

1) Analysis of Parameters λ and b: The impacts of parame-
ters λ and b on the four real datasets are discussed in this section.
In (5), λ is a parameter to balance the low-rank part and the
sparse part, b is the reduced dimensionality. Fig. 12 illustrates
the changes of AUC values when we jointly tune the parameters
λ and b. In Fig. 12(a)–(d), the parameter λ is set as {0.01, 0.05,
0.1, 0.5, 1, 5, 10}. The parameter b in Fig. 12(a)–(d) is set as
{20, 40, 60, 80, 100, 120, 140, 160}, {20, 40, 60, 80, 100, 120,
140, 160, 180, 200}, {10, 20, 30, 40}, and {20, 40, 60, 80, 100},

Fig. 12. AUC with the parameters tuning of λ and b. (a) HYDICE urban
dataset. (b) AVIRIS urban dataset. (c) Cri hyperspectral dataset. (d) Pavia beach
scene dataset.

Fig. 13. AUC with the parameters tuning of J and K. (a) HYDICE urban
dataset. (b) AVIRIS urban dataset. (c) Cri hyperspectral dataset. (d) Pavia beach
scene dataset.

respectively. We can observe that the changes in AUC values
are not significant when λ ∈ [0.05, 5]. For simplicity, in our
experiments, we set λ = 1. When the projection dimension b is
set to be the range of 1/3–1/2 of the original spectral dimension,
we can achieve better detection performances.

2) Analysis of Parameters J and K in Dictionary Construc-
tion: Parameter J is the preset number of the superpixel. Gener-
ally, the real obtained number of superpixels is slightly more than
the preset value J through TurboPixels superpixel segmentation.
K is the number of randomly selected atoms from each super-
pixel. In Fig. 13, K is set as {2, 4, 6, 8, 10}. In Fig. 13(a)–(b),
J is set as {10, 15, 20, 25, 30}. In Fig. 13(c)–(d), J is set as
{15, 25, 35, 45, 55} and {20, 25, 30, 35, 40}, respectively. Our
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DPLR method is not sensitive to dictionary parameters J and K.
In order to simplify the computation, in our experiment, we set
J ∈ [15, 35], K ∈ [2, 6].

V. CONCLUSION

This article has presented a hyperspectral anomaly detection
method based on a data-driven projection LRR algorithm with
background dictionary construction, in which the superpixel
segmentation and tensor decomposition are applied to construct
a comprehensive and pure dictionary to better separate the
background and anomalies. The proposed algorithm is examined
on different datasets, and the experimental results indicate that
the performance of our proposed algorithms is better than that
of several existing algorithms.

There exist limitations as the dictionary construction and the
low-rank decomposition are two separate steps, the detection
performance depends on the constructed background dictionary.
In addition, converting the original 3-D hyperspectral data cube
into 2-D matrix will inevitably lose some structure information.
Tensor representation and deep learning technologies have been
successfully applied to HSI analysis. To take a closer look at
the low-rank characteristics and deep features, we will use deep
tensor models in our further work.
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