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Automatic Building Extraction via Adaptive Iterative
Segmentation With LiDAR Data and High Spatial

Resolution Imagery Fusion
Shanxiong Chen , Wenzhong Shi, Mingting Zhou , Min Zhang , and Pengfei Chen

Abstract—Extracting buildings from remotely sensed data is a
fundamental task in many geospatial applications. However, this
task is resistant to automation due to variability in building shapes
and the environmental complexity surrounding buildings. To solve
this problem, this article introduces a novel automatic building
extraction method that integrates LiDAR data and high spatial
resolution imagery using adaptive iterative segmentation and hier-
archical overlay analysis based on data fusion. An adaptive itera-
tive segmentation method overcomes over- and undersegmentation
based on the globalized probability of boundary contour detection
algorithm. A data-fusion-based hierarchical overlay analysis ex-
tracts building candidate regions based on segmentation results.
A morphological operation optimizes a building candidate region
to obtain final building results. Experiments were conducted on
the international society for photogrammetry and remote sensing
(ISPRS) Vaihingen benchmark dataset. The extracted building
footprints were compared with those extracted using the state-of-
the-art methods. Evaluation results show that the proposed method
achieved the highest area-based quality compared to results from
the other tested methods on the ISPRS website. A detailed compar-
ison with four state-of-the-art methods shows that the proposed
method requiring no samples achieves competitive extraction re-
sults. Furthermore, the proposed method achieved a completeness
of 94.1%, a correctness of 90.3%, and a quality of 85.5% over the
whole Vaihingen dataset, indicating that the method is robust, with
great potential in practical applications.

Index Terms—Adaptive segmentation, building extraction, data
fusion, high spatial resolution imagery (HSRI), LiDAR.
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I. INTRODUCTION

BUILDING extraction from remote sensing data is for the
starting point in many real-world applications. These in-

clude cartographic mapping, urban planning, three-dimensional
(3D) city modeling, and disaster emergency response [1]–[4].
Manual interpretation of building areas from massive remote
sensing data is laborious and inefficient [5]. To satisfy the in-
creasing need for accurate building outline of the urban regions,
and their continuous update demands, more automated methods,
with higher accuracy geo-information, are required. Developing
automatic and robust algorithms for building extraction is a
research frontier in the field of remote sensing [6].

Automated building extraction methods include image-based,
LiDAR-based, and data fusion-based methods based on the
input data [7]. Image-based methods rely on spectral properties
derived from high spatial resolution imagery (HSRI). The major
obstacle stems from spectral ambiguities and shadow occlusions
that lead to significant errors [8], as well as low-level automation
[9]. LiDAR-based methods employ the intensity, echo, and geo-
metric attributes of the LiDAR point cloud to extract buildings.
Although LiDAR has improved the level of automation in the
building detection process [9], the use of raw or interpolated data
alone suffers from poor horizontal accuracy of building bound-
aries [10]. Given the pros and cons of LiDAR and HSRI, it has
been suggested that these data be fused to improve the degree of
automation and the robustness of automatic building extraction
[11], [12]. Data fusion-based methods, using both HSRI and
LiDAR data have attracted more attention, but questions remain.
The methods optimally combining HSRI and LiDAR data so that
their disadvantages are effectively compensated is an active area
of current research.

Building detection techniques integrating LiDAR data and
imagery can be divided into two groups [13]. One group uses Li-
DAR data as the primary cue for building detection, and images
to only remove vegetation [9], [14]–[17]. Thus, they have poor
horizontal accuracy for detected buildings. The other group is
an integration method [13], [18]–[27], that uses LiDAR data and
images as the primary cues to delineate building outlines, as well
as images to remove vegetation. Consequently, the horizontal
accuracy for the detected buildings is improved. Our proposed
building detection approach falls into latter category. Recently
developed deep learning based method provides a new optimal
way to combine these two data sources.
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Building detection approaches based on the convolutional
neural networks (CNNs) have shown superior performance
since CNNs can learn high-level and discriminative features
automatically [28], [29]. Long et al. [30] extended the original
CNN structure to enable dense prediction by a pixels-to-pixels
fully convolutional network (FCN). FCN yields full resolution
classification maps, has now become a common framework
for recent building extraction methods [6], [31]–[33]. Despite
the high performance of learning-based methods, these data
fusion-based methods heavily rely on a considerable body of
well-annotated training samples.

Existing data-fusion-based methods have other limitations.
Many methods require specific threshold settings or certain
empirical rules when, using low- or mid-level features to ex-
tract building footprints. Methods taking image segmentation
as a prerequisite step, are highly dependent on segmentation
parameter settings and are easily affected by such as solar
radiation, shadows, and random noise found in HSRIs [6]. Deep
learning methods using high-level semantic features require a
large number of well-annotated samples and their generalize
ability is limited by the training domain.

An automatic building extraction method integrating LiDAR
data and HSRI could address these problems. In our proposed
method, an adaptive iterative segmentation method is designed
to overcome over- and undersegmentation problems based on
the globalized probability of boundary (gPb) algorithm. In the
adaptive iterative segmentation process, both LiDAR data and
the HRSI are segmented to obtain hierarchical segmentation
results, and a data-fusion-based hierarchical overlay analysis
based on the segmentation results overcomes shadow occlusion.
In the proposed method, during data-fusion-based hierarchical
overlay analysis process, other nonbuilding backgrounds such as
vegetation under shadowed areas, are hierarchically eliminated
from initial candidate regions. The main contributions of this
study are as follows.

1) A new data-fusion-based method is proposed for auto-
matic building extraction in complex urban scenes.

2) An adaptive iterative segmentation method is designed
to overcome over- and undersegmentation based on gPb
contour detection algorithm.

3) A data-fusion-based hierarchical overlay analysis is de-
signed to overcome shadow occlusion.

The remainder of this article is organized as follows. Section II
presents a brief review of the data-fusion-based method and
contour detection. Section III describes the proposed method,
Section IV presents and analyses the experimental results, and
the main conclusions are presented in Section V.

II. RELATED WORK

A. Data-Fusion-Based Method

Advances in sensor technologies make the acquisition of
data from different sources much easier. The combination of
different data sources is becoming widely used for object seg-
mentation and recognition in both the computer vision and
remote sensing communities. Many algorithms combining red,
green, blue (RGB) and depth information for object segmenta-
tion/recognition [34]–[38] have been proposed in the computer

vision community. A comprehensive review is beyond the scope
of this article, instead focusing on data-fusion-based building
extraction methods in remote sensing.

The latest data-fusion-based methods are reviewed in this sec-
tion as research on building extraction has increasingly focused
on using imagery and LiDAR data. Rottensteiner et al. [15]
proposed a supervised classification-based building extraction
framework. However, traditional supervised classification-based
methods are affected by inappropriate feature selection, underes-
timation of urban classes, and insufficient training samples [39].
Therefore, researchers have developed hierarchical approaches,
which aim to exclude nonbuilding areas/pixels in a step-wise
fashion. Moussa and El-Sheimy [16] proposed an object-based
two-stage classification method to integrate LiDAR data and
HSRI. In the first stage, the entire digital surface model (DSM)
data is segmented into objects based on height variation. Then,
the objects are first classified into buildings, trees, and ground
according to a minimum area threshold. The second stage of
classification is conducted to tune the preliminary classification
of the first stage according to rules. This iterative classification
scheme was further expanded to include more features based on
the previous successive classification phases. Chen et al. [14]
generated initial building segments by truncating both normal-
ized DSM (nDSM) and normalized difference vegetation index
(NDVI) sequentially. The final building masks are determined
by a set of rules related to the region size and the spatial
relation between trees and buildings. To incorporate both height
and spectral information in the segmentation, Gerke and Xiao
[17] presented a method that exploits accurate, homogeneous,
and complete 3-D geometry from the point cloud, and spectral
information from images to detect urban buildings, trees, natural,
and sealed ground objects. These methods use LiDAR data as
the primary cue extracting primitives of buildings in LiDAR
data, and fusing different types of source data for classification.
However, these methods were less reliable at building edges.
Therefore, researchers have developed data fusion methods,
which use both the LiDAR data and the imagery as the primary
cues to delineate building outlines.

Many data-fusion-based methods use the two data sources
as the primary cues to use low- or mid-level features to extract
buildings. Sohn and Dowman [19] employed a data-driven ap-
proach on the IKONOS imagery and a model-driven approach
on the LiDAR with low point density to extract rectilinear lines
around buildings. Extracted lines were regularized by analyzing
the dominant line angles. The results showed that this system
could successfully delineate most buildings in a complex scene;
but tends to overlook some buildings because only the building
edges with parallel and orthogonal structures are considered.
Cheng et al. [21] proposed a similar technique with a precise
geometric position. To deal with the problems encountered when
detecting building edges solely from point clouds or images, Li
and Wu [22] proposed a new adaptive method for building edge
detection by fusing the two data sources. Nonbuilding objects
are removed by mathematical morphology and region growing
techniques. Edge buffer areas are created in the image space
using edge points of the individual roof patches. The pixels with
a local maximal gradient in a buffer area are judged as candidate
edges. The ultimate boundaries are determined by fusing the
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edges in the image and the roof patch using a morphological
operation. The experimental results show that the method is
adaptive for various building shapes. Zhang et al.[24] used many
cues to remove irrelevant candidates, such as height, to remove
low height objects (e.g., bushes), and width to exclude trees with
small horizontal coverages. Image entropy and color information
were jointly applied to remove easily distinguishable trees. A
rule-based procedure using the edge orientation histogram from
the imagery eliminates false-positive candidates. However, this
proposed algorithm is moderately slow as compared to the
original detector in [13]. In some unusual cases (e.g., buildings
with green roofs, vegetation with shadows, and self-occlusions.),
the improved algorithm will fail altogether.

To establish a relationship between the low-level image prim-
itives (e.g., line segments) and the higher level geospatial ob-
jects (e.g., intersections and closed boundaries), the hypothe-
sis/verification paradigm is adopted in some approaches. Based
on the assumption that building roofs are planar, Lee et al. [23]
proposed a new approach to extract the boundaries of complex
buildings from LiDAR and photogrammetric imagery. To do
this, they used several methods to group low-level features, such
as height distributions, segments, and edges, into higher-level
features by using directional histograms, entropy, region seg-
mentation, and merging, line segments matching, and perceptual
grouping. Gilani et al. [25] proposed a fully data-driven building
extraction and regularization method using detected candidate
building regions and line segments in an image. The buildings
are extracted, including partly occluded and shadowed after the
vegetation removal, employing multisource data and grid index
structure. Building footprints are generated using the image
lines and the extracted building boundaries. Although these
methods provide accurate extraction results, they often require
specific threshold settings or certain empirical rules when using
low-level or mid-level features.

Another stream of data-fusion-based methods uses the two
data sources as the primary cues to use data classification or
segmentation to extract buildings. Qin and Fang [18] obtained an
initial building mask hierarchically by considering the shadow
and off-terrain objects. A graph cut optimization algorithm based
on spectral and height similarities refines the mask by exploiting
the connectivity between the building and nonbuilding pixels.
This method can handle shadows and small buildings to an
extent. However, the building patches on steep slopes, roof parts
under shadows, and the roofs with vegetation cannot be extracted
correctly. Moreover, more automated parameter tuning for trun-
cating thresholds is needed for more challenging datasets. Zarea
and Mohammadzadeh [26] utilized support vector machines
(SVMs) to separate buildings from trees based on features
found in both LiDAR data and aerial images. In the SVM, an
automatic procedure was used for selecting the training data.
Awad [27] proposed an innovative fusion method for segmen-
tation, which reduces oversegmentation through increasing the
success rate of feature extraction. Based on the improved fu-
sion method, the confusion between different urban classes and
over-segmentation is reduced. A disadvantage of these methods
is that they are dependent on segmentation parameter settings,
but deep learning offers a potential solution using artificial neural
networks.

It is now possible to learn image features automatically
instead of extracting them by classical methods given the
tremendous jump in development in the field of artificial neural
networks. Maltezos et al. [40] introduced an efficient deep
learning framework based on CNNs that extract buildings
from orthoimages and dense image matching point clouds.
Experimental results indicate that a combination of raw image
data with height information provides potentials in robust
and efficient building detection. They further employ a CNN
classifier for building extraction from the LiDAR data [41]. The
proposed deep learning classifier outperforms the compared
linear and nonlinear classification methods. Bittner et al. [31]
presented a novel method to segment buildings in complex
urban areas using multiple types of remote sensing data based
on FCNs. Their end-to-end Fused-FCN4s framework integrates
relevant contextual features from spectral and height information
within a single architecture for pixelwise classification,
producing a unique binary building mask. Huang et al. [6]
developed an end-to-end trainable gated residual refinement
network (GRRNet) that fuses high-resolution aerial images and
LiDAR point clouds for building extraction. A modified residual
learning network is applied as the encoder in GRRNet to learn
multilevel features from the fused data. A gated feature labeling
unit reduces unnecessary feature transmissions and refines
classification results. The proposed model-GRRNet was tested
on a publicly available dataset with urban and suburban scenes,
illustrating that GRRNet delivers competitive building extrac-
tion performance in comparison with other approaches. Despite
the high performance of these learning-based methods, their
performances rely heavily on a large amount of well-annotated
training samples. The proposed method based on contour
detection addresses these problems. To understand the method
further, below is a brief introduction to contour detection.

B. Contour Detection

Contour detection refers to finding closed boundaries be-
tween objects or segments. Arbelaez et al. [42] proposed a
gPb contour detection algorithm. gPb contour detection provides
accurate contour results compared to other approaches on image
segmentation (e.g., mean shift, multiscale normalized cuts and
region merging) and edge detection (e.g., Prewitt, Sobel, Roberts
operator, and Canny detector) [42], often referred to as a state-
of-the-art method for contour detection. The algorithm is fast,
with no parameters to tune. This is achieved by combining edge
detection and hierarchical image segmentation while integrating
texture, color, and brightness image information at both the local
and a global scale. The algorithm creates an ultrametric contour
map (UCM) [43], with values reflecting the contrast between
neighboring regions.

The processing pipeline of gPb contour detection is as follows.
In the first step, oriented gradient operators for brightness,
color, and texture are calculated on two halves of differently
scaled discs to obtain local image information. The cues are
merged based on a logistic regression classifier resulting in
a posterior probability of a boundary, i.e., edge strength per
pixel. The global image information is obtained through spectral
clustering detecting the most salient edges only. This is done by
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Fig. 1. Workflow of the proposed method.

examining a radius of pixels around a target pixel in terms of
oriented gradient operators as for the local image information.
The local and global information are combined through learning
techniques and trained on natural images from the “Berkeley
Segmentation Dataset and Benchmark” [44]. By considering
image information on different scales, relevant boundaries are
verified, while irrelevant ones, e.g., in textured regions, are
eliminated. In the second step, initial regions are formed from the
oriented contour signal provided by a contour detector through
oriented watershed transformation. Subsequently, hierarchical
segmentation is performed by weighting each boundary and their
agglomerative clusters to create a UCM that defines the hierar-
chical segmentation. Thresholding the resulting UCM with some
global threshold k provides by definition a set of closed curves,
the boundaries of the segmentation at scale k. The lower the
levels of k, the fewer contours are transferred from the contour
map to the binary boundary map.

An adaptive iterative segmentation with LiDAR data and
HSRI fusion method based on gPb contour detection algorithm is
proposed. Crommelinck et al. [45] applied gPb contour detection
to aerial imagery for automated cadastral mapping. However,
contours solely from the images are affected by shadows and oc-
clusion. The LiDAR point clouds provide initially closed edges
around the roof patches, no matter the shadow and occlusion.
Therefore, the two contours from the two sources can be fused to
complement each other. To our knowledge, it is the first time gPb
contour detection algorithms have been used for nDSM and com-
bined with HSRI contour detection. On the other hand, previous
methods have used a specific threshold to produce segmentation
results from UCM, thus creating over- or under-segmentation
problems. By proposing an adaptive iterative threshold method,
hierarchical segmentation results were generated, thus, conquer
the over- and undersegmentation problem. Furthermore, the
UCM has no semantic meaning except for contrast between
regions, by fusing the height information provided by LiDAR
data, the contour is given better semantic information. Therefore,

by overlay analysis of the initial candidate area and hierarchical
segmentation results, the building will be detected automatically.

III. PROPOSED METHOD

The workflow of the proposed method consists of three stages
as in Fig. 1. In the data preprocessing stage, an nDSM and filtered
HSRI are generated for use at later stages. Data preprocessing
arranges the LiDAR point cloud and HSRIs into a grid format
at the same resolution and removes noise from both datasets. In
the stage of building candidate generation, candidate building re-
gions are extracted through adaptive iterative segmentation and
data-fusion-based hierarchical overlay analysis. Subsequently,
candidate building regions are optimized with morphological
processing, to produce final output buildings.

Data preprocessing, building candidate generation, and build-
ing outline optimization stages depicted in Fig. 1 are discussed
separately in Section III-A through Section III-C. The Vaihingen
Area1 dataset was selected as a use case to illustrate the processes
applied in the proposed approach.

A. Data Preprocessing

The proposed method takes LiDAR, ortho imagery as an
input. The preprocessing module removes noise from the LiDAR
and HSRI datasets, generate an nDSM with LiDAR, and unifies
the resolution of the two data sources. The workflow of data
preprocessing module is shown in Fig. 2.

As shown in Fig. 2(a), outlier removal and ground points
filtering generate an nDSM from LiDAR data. LiDAR point
clouds include noise points, which have anomalously high or
low elevations in comparison to the elevations expected for
ground, vegetation, and structures in the survey area. LasTools
(downloaded via http://www.cs.unc.edu/ isenburg/lastools/) is
a commonly used point cloud preprocessing tool. In this re-
search, we used two LasTools subtools lasnoise and lasground
to filter the noise points as well as separate ground points from

http://www.cs.unc.edu/
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Fig. 2. Workflow of data preprocess module. (a) LiDAR preprocess. (b) HSRI
preprocess.

nonground points. The lasnoise tool removes all points that have
only four or fewer other points in their surrounding 3*3*3 grid
(with the respective point in the center cell) where each cell is
1*1*1 meters in size. For lasground tool, the terrain type is set to
metropolis and the other parameters are default. It classifies all
LAS files with the default settings but uses even wider spacing
to allow for very large buildings. The separated ground points
and the whole LiDAR point cloud are interpolated into DSM
and digital terrain model (DTM) in raster format to make them
consistent with aerial images. The DSM and DTM cell size is set
as close as possible to the reciprocal of the average point density.
The nDSM is obtained by subtracting the DTM from DSM.

As shown in Fig. 2(b), a filtered image is generated using
ortho aerial image by resampling and guided image filtering
[46]. The ortho image is resampled into the nDSM spatial
resolution and smoothed through guided filter. Guided filter is an
edge-preserving smoothing technique, which is widely utilized
in computer vision and remote sensing community [32]. The
basic idea of guided filtering is to establish a local linear model
between the guided image and the filtered result. With the input
image as the guidance image, the filtering result is more struc-
tured and less smoothed. For more details, the reader can refer to
[46]. The ortho image is processed through guided filtering with
itself as guiders to reduce the negative effects of noises while
preserving edge smoothness. A guided filter with default settings
was applied in a MATLAB implementation. The preprocessed
data was fed to the building candidate generation module.

B. Building Candidate Generation

Candidate building regions are generated by removing vege-
tation and other nonbuilding backgrounds. Building candidate
generation includes two steps, initial candidate area generation
and removal of other nonbuilding objects. An initial candidate
area is generated by removing vegetation over nonground re-
gions. The other nonbuilding backgrounds are eliminated by
adaptive iterative segmentation and data-fusion-based hierar-
chical overlay analysis. Adaptive iterative segmentation was
adopted based on contour detection to generate hierarchical
segmentation results, and data-fusion-based hierarchical overlay
analysis in further filtering of nonbuilding backgrounds in the
nonground area to obtain more accurate candidate building
regions.

1) Initial Candidate Area Generation: The main interference
in the nonground regions obtained during data preprocessing is
vegetation, which needs to be removed in order to obtain initial
candidate area. Vegetation cannot be removed by using eleva-
tion information alone, so spectral information is introduced

Fig. 3. Initial candidate generation on the Vaihingen Area1 image: (a) image;
(b) binary vegetation mask; (c) nonground binary mask; (d) initial candidate
area. Note that the generated areas are shown in white color.

to improve vegetation removal results. Because of its particular
biological structure, vegetation appears relatively dark in the red
band and relatively bright in the near-infrared (NIR) and green
bands [47]. Based on this property, many vegetation indices have
been developed. They can be divided into two categories: NIR
band-based and green band-based [48]. For NIR band-based
vegetation indices, the NDVI [47] is currently the most popular
index. There are also some green band-based vegetation indices,
among them, the normalized difference green band-based index
(NDGI) [49] combines the green and the red bands in a nor-
malized way to offset the influence of the light, to some extent.
The green band-based indices are inferior to the NIR band-based
indices. Nevertheless, for many aerial images and close-digital
images without the NIR band, the green band-based indices are
the only option.

The two indices are defined as follows:

NDVI =
NIR-Red

NIR + Red
(1)

NDGI =
Green − Red
Green + Red

(2)

where Red, Green, and NIR stand for the spectral reflectance
measurements acquired in the red (visible), green, and near-
infrared regions, respectively.

A problem occurs in shadow areas, because vegetation has
a low value in the two indices. To solve this issue, researches
[26], [48], [50] improved the accuracy of vegetation detection
in the shadow areas by detecting the shadow. However, these
methods require shadow extraction and, therefore, affected by
shadow detection algorithms. Moreover, some methods also
require manually set thresholds, which reduce the degree of
automation.

The NDVI is binarized by Otsu’s method [51] to detect
vegetation areas automatically. The vegetation detection result
on the Vaihingen example image is shown in Fig. 3(b). It can be
seen that the NDVI binarized by Otsu’s method suffered from
underdetection. Nearly, all the detected vegetation was located
in the sunlit areas, while the vegetation in the shadowed areas
was missed for the most part. But that is enough for our proposed
method to detect buildings.

Non-ground binary masks (NGBM) are identified from an
nDSM using Tsai’s moment preserving automatic threshold
method [52], as shown in Fig. 3(c). Moment preserving thresh-
olding is a parametric method that segments an image based on
the condition that a thresholded image has the same moments
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Fig. 4. Hierarchical segmentation results on the Vaihingen Area1 image and
nDSM: (a) UCM of aerial image; (b) contour of iseg4; (c) contour of iseg1; (d)
UCM of nDSM; (e) contour of nseg4; and (f) contour of nseg1. Note that the
contour is shown in yellow color. All the image is dilated for better vision.

as the original image. It can be seen that the NGBM preserves
the nonground object and effectively eliminated ground objects.
Fig. 3 shows the process for initial candidate area generation.
Given a preprocessed image, automatic vegetation detection
produces a binary vegetation mask (BVM) to identify vegeta-
tion pixels. Nonground region generation produces a NGBM
to identify nonground pixels. The intersection of NGBM with
BVM, which identified vegetation over nonground areas, is
eliminated from NGBM to obtain the initial candidate area,
as shown in Fig. 3(d). Consequently, the nonground plant is
partially eliminated.

2) Adaptive Iterative Segmentation Based on Contour De-
tection: After the initial candidate area is obtained, nonbuilding
backgrounds areas still need to be removed. We obtain candidate
building regions by object-oriented analysis. Object-oriented
analysis takes image segmentation as a prerequisite step. The
segmentation results are highly dependent on the segmentation
parameter settings. To solve this problem, an adaptive iterative
segmentation algorithm is proposed based on contour detection.
UCM of image and nDSM are generated using the gPb contour
detection algorithm. The UCM is a weighted contour image that,
by construction, has the property of producing a set of closed
curves for any threshold. The value range of UCM is 0 to 1,
and large values indicate high contrast. The lower the threshold
value, the smaller the segmentation object. Experiments showed
that the strong contrast between edges with UCM values above
0.4 is consistent in the effect of distinguishing buildings. Thus,
the UCM is iteratively binarized with decreasing thresholds from
0.4 to 0.1, at 0.1 intervals. The hierarchical segmentation results
are provided based on the connected component analysis [53] of
the binary UCM map. The same procedure is adopted for both
UCM of the image and UCM of nDSM. Fig. 4 shows the contour

of segmentation results on the Vaihingen Area1 image for UCM
of the image and UCM of nDSM at different thresholds. In the
following, we refer to the eight segmentation results as iseg4,
iseg3, iseg2, iseg1, nseg4, nseg3, nseg2, and nseg1. The iseg4
image is the segmentation result from the UCM of the image at
threshold 0.4, nseg4 indicates the segmentation result from the
UCM of the nDSM at threshold 0.4, and so on.

Fig. 4(a)–(c) shows processing results of the Vaihingen Area1
aerial image. Fig. 4(a) is the UCM generated by gPb contour
detection. Fig. 4(b) shows a undersegmentation result. Fig. 4(c)
shows an oversegmentation result. The edge of segmentation
results is precise. In Fig. 4(b), a segmentation object contain
several targets simultaneously. In Fig. 4(c), a target consist
of several segmentation objects. At the same time, there is a
hierarchical relationship between Fig. 4(c) and (b). Because
contours in Fig. 4(b) all exist in Fig. 4(c). The generation of
Fig. 4(c) is based on Fig. 4(b), so they have a hierarchical
relationship. Contour detection solely from the aerial image is
affected by shadow and occlusion. Targets under shadow and
occlusion are not segmented.

Fig. 4(d)–(f) shows processing results of the Vaihingen Area1
nDSM image. Fig. 4(d) is the UCM generated by gPb contour
detection. Fig. 4(e) shows a undersegmentation result. Fig. 4(f)
shows an oversegmentation result. The edge of segmentation
results is not precise as in aerial image. The hierarchical relation-
ship is exist between Fig. 4(e) and (f) too. Furthermore, contour
detection solely from the nDSM is not affected by shadow and
occlusion. Targets under shadow and occlusion are segmented
ideally.

3) Data-Fusion-Based Hierarchical Overlay Analysis:
Other nonbuilding backgrounds are eliminated by hierarchical
overlay analysis of the eight segmentation results and initial
candidate area, discussed in the following section. Fig. 5
shows hierarchical overlay analysis for a simulated data. As
shown in Fig. 5, the hierarchical overlay analysis module
obtains candidate building regions by overlay analysis of
segmentation results and initial candidate area. The hierarchical
overlay analysis process zooms in at the bottom of Fig. 5.
The initial candidate region is overlaid on segmented image
Seg4 (undersegmentation). If the overlapped area exceeds area
proportional threshold (APT), it is considered as a building
object. The area proportion is the ratio of the area of the initial
candidate region to the area of the segmentation object. APT is
a value that determines whether the degree of overlap between
the initial candidate region and each segmented object meets
the conditions for building candidate. This is discussed in
more detail in Section IV-B. This object in initial candidate
regions would be erased at the latter stage. The remaining initial
candidate regions is overlaid on the segmented image Seg3,
and the operation is repeated until the segmented image Seg1
(oversegmentation) is processed. All the reserved objects are
merged to obtain the candidate building region.

The initial candidate area belonging to the building will
account for a larger proportion of the segmentation object,
while the remaining nonbuilding backgrounds are the opposite.
In HSRIs, buildings usually have low spectral variation cor-
responding to the building body and a high spectral variation
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Fig. 5. Workflow of hierarchical overlay analysis module for a simulated data.

corresponding to the building periphery, so they often have
strong edges and high contrast with the surrounding environment
[54]. In LiDAR data, there are height differences between ground
points and nonground points, especially for buildings, where the
height difference is generally vast. Due to these characteristics,
buildings tend to have higher UCM values in both an nDSM and
HSRI. In addition, buildings are above-ground objects. Thus,
the segmented objects generated by UCM belong to buildings
tend to have a larger proportion of initial candidate regions in
it. The nonbuilding backgrounds consist of two parts. One is
the vegetation left after removing the bright vegetation. It is
generally shaded vegetation or sparse vegetation. Such veg-
etation is usually lower than buildings in height, smaller in
area than buildings, and the internal elevation of vegetation is
irregular. Thus, their flatness and contrast of the spectrum and
elevation are lower than those of buildings. The other nonground
backgrounds are usually smaller than buildings and have no
similar characteristics to buildings. In conclusion, the nonground
backgrounds tend to have smaller UCM values in both an nDSM
and HSRI, and occupy a lower proportion in the overlay analysis
of segmentation results and initial candidate area.

Fig. 6. Results of data-fusion based hierarchical overlay analysis at Vaihingen
Area1: (a) aerial image; (b) ground truth; (c) initial candidate area; (d) building
candidate region; (e) color version of building candidate region; (f) remain object
at nseg4 overlay analysis; (g) remain object at nseg3 overlay analysis; (h) remain
object at nseg2 overlay analysis; (i) remain object at nseg1 overlay analysis;
(j) merge result of nDSM’s segmentation result; (k) remain object at iseg4 overlay
analysis; (l) remain object at iseg3 overlay analysis; (m) remain object at iseg2
overlay analysis; (n) remain object at iseg1 overlay analysis; (o) merge result of
image’s segmentation result.

Binarizing a UCM at a larger value results in a larger object;
therefore, the path from nseg4 to nseg1 is a hierarchical pro-
cess from undersegmentation to oversegmentation. If the initial
candidate area is considered a building in an object of nseg4 (un-
dersegmentation), it must also be a building in an object of nseg1
(oversegmentation). In order to reduce redundant operations, the
overlay analysis is performed in the order from undersegmen-
tation results to oversegmentation results. Each segmentation
result is marked as many connected objects. For each object,
counting the ratio of the number of the initial candidate region
pixels to the number of the object pixels and setting an APT, the
candidate building region is generated. Specifically, iseg4 is first
used to superimpose the initial candidate area, and the object
whose area ratio exceeds APT is retained, and the segment is
removed from the initial candidate region, then the iseg3, iseg2,
and iseg1 are repeated the abovementioned procedure. The four
results are combined, and the result from the UCM of the nDSM
and UCM of the image are merged. The whole process, for the
test data, is shown in Fig. 6.

As shown in Fig. 6, through the data-fusion hierarchical over-
lay analysis in this section, high-quality building candidates are
obtained. Fig. 6(c) is the initial candidate area result after remov-
ing vegetation from nonground areas. The outline of Fig. 6(c) is
not very accurate and contains many nonbuilding backgrounds.
Fig. 6(f) is the result of overlay analysis on the nseg4, the seg-
mentation result from UCM of nDSM at threshold 0.4, and the
initial candidate area. The optimized result is effectively filtering
the fragmented nonbuilding backgrounds. However, due to the
undersegmentation of nseg4, some buildings were also filtered
out. Fig. 6(g)–(i) are the results of using nseg3, nseg2, and nseg1
to supplement buildings missed by nseg4 undersegmentation.
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Fig. 6(j) is the union of Fig. 6(f)–(i). Compared to Fig. 6(c),
the building extraction results in Fig. 6(j) remove most of the
nonbuilding background. However, because of the nDSM-based
method, the edges are inaccurate, and the vegetation adjacent to
the building cannot be removed. Therefore, UCM of HRSI is
utilized to hierarchical overlay analysis to take full advantage of
nDSM and HRSI to improve the initial building outline further.
The third row in Fig. 6 is the result of hierarchical overlay
analysis based on HRSI. Fig. 6(k) is the result from the overlay
analysis of on the iseg4, the segmentation result from the UCM
of HRSI at threshold 0.4. The optimized result is effectively
extracted the precise boundary of the building. However, due
to the undersegmentation of iseg4, some buildings were also
filtered out. Fig. 6(l)–(n) are the results of using iseg3, iseg2, and
iseg1 to supplement buildings missed by undersegmentation.
Fig. 6(o) is the union of Fig. 6(k)–(n). Compared to Fig. 6(c),
the building extraction results in Fig. 6(o) remove most of the
nonbuilding backgrounds, and get more accurate edges, but omit
the buildings obscured by shadows. The shaded buildings were
retained in the nDSM results. Finally, by fusing the two results,
we get Fig. 6(d). It can be seen that Fig. 6(d) removes most of
the nonbuilding background in Fig. 6(c). Fig. 6(e) is candidate
building region shown in color for higher clarity. The results of
nDSM only, the results of HSRI only, and the results of both
nDSM and HSRI are colored in green, blue, and red. In contrast
to Fig. 6(o), Fig. 6(e) retains buildings obscured by shadows.
Object boundaries in Fig. 6(e) are mostly green except for the
shaded areas, indicating Fig. 6(e) mainly takes the boundary
obtained from the HSRI as the final boundary. Fig. 6(e) has
more accurate boundaries than in Fig. 6(j), and retains some
missed detections. However, Fig. 6(e) is a simple merge of results
from the UCM of the nDSM and UCM of the image. The false
detections from nDSM-based procedure were also passed to the
candidate building region, for further processing.

C. Building Outline Optimization

The building outline must be refined and small noises re-
moved. The boundary of the candidate building region generated
as the previous section is still not very accurate. Since we are
merging the two segmentation results, the boundary of the results
may have some glitches as well as some false detection of objects
above the ground (such as vegetation) adjacent to the building.
At the same time, some small areas also are retained in the
candidate area. The candidate building region is filtered with
the initial candidate region to eliminated confused vegetation
region adjacent to the building in complex scene. To suppress
small noises, a threshold of 10 m2 for the shape attribute area is
applied to the extraction results. Morphological filtering refines
the building boundary.

IV. EXPERIMENT AND ANALYSIS

Experiments and discussion are presented in this section,
which is divided into three following sections. Section IV-A
describes the datasets and evaluation metrics. Section IV-B
presents the analysis of parameter settings. The experimental

Fig. 7. (a)–(c) Aerial images of areas 1–3. Region of interest is specified with
yellow lines in aerial images. (d)–(f) Reference data for buildings of areas 1–3.

results and qualitative and quantitative analysis of the tested
methods are presented in Section IV-C.

A. Dataset and Error Metric

To verify the effectiveness of our method, extensive experi-
ments were conducted on the Vaihingen test dataset, which was
captured over Vaihingen in Germany [55] with an aerial camera.
We first evaluate the proposed algorithm with the three test sites
by comparing the extracted buildings with the reference data,
and then compare the whole dataset with the manually sketched
building masks on the aerial image.

1) Dataset: To assess the performance of our approach, we
conducted experimental evaluations on the international society
for photogrammetry and remote sensing (ISPRS) Vaihingen 2-D
semantic labeling challenge. This is an open benchmark dataset
provided at http://www2.isprs.org/commissions/comm3/wg4/
2d-sem-label-vaihingen.html. The data includes aerial images
and LiDAR data. In the Vaihingen area, ISPRS-WGIII/4 has
determined three study areas: area 1, area 2, and area 3. The aerial
images have three bands of infrared (IR), red (R), and green (G).
Each area has a point density of 3.5, 3.9, and 3.5 points/m2,
respectively. Area 1 is characterized by dense development
consisting of historic buildings with rather complex shapes along
with roads and trees. Area 2 is characterized by a few high-rising
residential buildings surrounded by trees. Area 3 is a purely
residential area with detached houses and many surrounding
trees. In these test areas, reference data were generated by
manual stereo plotting. The reference for building detection
consists of roof outline polygons at a planimetric accuracy of
about 10 cm. The aerial image of three study areas and reference
data is shown in Fig. 7.

To validate the effectiveness of our proposed method further,
we tested the proposed algorithm on the entire dataset. The same

http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-vaihingen.html
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Fig. 8. (a) Aerial images of the whole Vaihingen dataset. (b) Reference data
for buildings of the whole Vaihingen dataset.

range of the aerial images and the LiDAR data was clipped. The
ground truth of the whole area was obtained by manual editing
based on the ground truth published by ISPRS. The image and
ground truth of the whole Vaihingen dataset are shown in Fig. 8.

2) Error Metric: To evaluate the building extraction results
quantitatively, the index system adopted by ISPRS [56] was
applied. The following indices were used to measure the quality
of the results.

Compar,Corrar, Qar: Completeness, correctness and quality
determined on a per-area level. These indices are related to the
area that was correctly classified.

Compobj,Corrobj, Qobj: Completeness, correctness, and
quality determined on a per-object level. These indices count
the number of objects that are correctly detected. A minimum
overlap of 50% for an extracted object with the reference is
required for the object to be counted as a true positive.

Comp50,Corr50, Q50: Completeness, correctness, and quality
determined on a per-object level, but only considering objects
larger than 50 m2. These indices are useful to analyze the
dependency of per-object quality metrics on the object size. The
threshold was chosen to select the most representative buildings
per plot and the largest trees in the scene [57].

The correctness, completeness, and quality equations are
calculated by

Correctness =
TP

TP + FP
(3)

Completeness =
TP

TP + FN
(4)

Quality =
TP

TP + FP + FN
(5)

where TP represents the number of true positives, FP represents
the number of false positives, and FN represents the number of
false negatives.

B. Parameter Settings

The proposed method mainly involves the following parame-
ters: the APT and the minimum area threshold. Objects with an
area smaller than the minimum area threshold are removed in

Fig. 9. APT and minimum area threshold parameter analysis.

the building detection procedure. A detailed description of the
selection of these parameters is as follows.

According to [58] and [25], we compare the difference of
2.5 m2 and 10 m2 with the minimum area threshold parameter.
The APT value ranges from 0.55 to 0.95, at an interval of 0.05.
Fig. 9 shows the results, based on completeness, correctness, and
quality determined on a per-area level. Fig. 9 has six polylines.
The red polylines show the changes in completeness, correctness
and quality with the APT when the minimum area threshold was
10 m2. The black polylines show the changes in completeness,
correctness, and quality with the APT when the minimum area
threshold was 2.5 m2. The symbol ∗, ◦, and � in the figure
indicate completeness, correctness, and quality, respectively.

As shown in Fig. 9, comparing lines with the same symbol
and different colors at every specific APT value (e.g., 0.70),
the three evaluation indices show little change when the area
threshold was set to 2.5 m2 or 10 m2. Especially when the APT
increased, the difference between the two parameters was almost
negligible. The quality of the extraction results is relatively
high when the minimum area threshold was set to 10 m2. This
indicates that our method is prone to miss buildings under 10 m2

in area.
When analyzing the three red polylines in which the minimum

area threshold was set to 10 m2, the smaller the APT, the higher
the completeness, and the correctness increased as the APT
increased, as expected. As APT increases, the value of quality
first increased, then decreased, and achieved a maximum value
at 0.8. The red polyline with a square shows that when the APT
value was 0.8, the decrease in completeness and the increase in
correctness achieved an optimal balance. Therefore, the optimal
parameters for the experiment were set as follows: the APT
value was set to 0.8 and the minimum area threshold was set to
10 m2. For the other parameters, the same values for all test
data were used. These parameters included the window size
and structuring element of the morphological closing as well as
opening operations. They were set to a 3 pixel radius disk shape.
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TABLE I
ISPRS-WGIII/4 AVERAGE EVALUATION RESULTS (%) FOR DETECTED BUILDINGS OF THE PROPOSED METHOD COMPARED TO OTHER METHODS

The best values per column are highlighted by bold font.

C. Results and Analysis

According to this analysis, the minimum area threshold pa-
rameter was set to 10 m2 and the APT parameter set to 0.8. Then,
the building detection and accuracy evaluation were performed
on the three areas.

1) ISPRS Benchmark Results: The quantitative evaluation of
the Vaihingen data set (Area 1, Area 2, and Area 3) is available
on the ISPRS’ website.1 Since the proposed method integrates
LiDAR and aerial imagery automatically, we compared our
method to methods that (1) use both LiDAR and images, (2)
automatic, and (3) unsupervised. The average results of areas
1–3 are compared with the results on the ISPRS website. The
methods are shown in Table I. Table I has twenty-three rows and
ten columns. The first column shows the abbreviation for the 22
methods. The first row shows the nine indices. Each row is the
value of the indices of the relevant method. The best values per
column are highlighted by bold font.

As can be seen from Table I, our method has achieved the
highest Compar and Qar compared to the other methods. The
corresponding completeness and correctness values were 94.3%
and 93.8%, indicating that 94.3% of all building pixels in the
reference map were correctly detected, whereas 93.8% of the
detected building pixels are also building pixels in the reference
map. The quality index for our method in the current study
area was 88.8%. CAL2 method gets the highest Corrar, but its
Compar was much lower than our method. The Corrar of our
method was slightly lower than the CAL2 method; but the Qar

of our method was higher than CAL2. Moreover, the CAL2 al-
gorithm applies many empirical thresholds in building detection
that are not required by our proposed method. In object-based
evaluation, if all objects in the reference data are considered, and

1http://www2.isprs.org/commissions/comm3/wg4/results.html

objects less than 10 m2 are not removed, then our method only
achieves a Compobj value of 75%. There are two reasons for
this. First, the total number of buildings in the test area is less,
but there are many small buildings of less than 10 m2. Second,
our method is not suitable for detecting buildings of less than
10 m2. Our method, however, is still relatively accurate, having
a Corrobj of 97%. The FED_1 achieved the highest performance
in quality determined on a per-object level. However, the index
was evaluated only for buildings larger than 10 m2. Further
comparison of our proposed method and FED method presented
in Section IV-C2, but in the metrics for objects larger than 50 m2,
our method also achieved the highest performance, reaching
100% quality.

2) Comparative Analysis: To further verify our proposed
method, we made a detailed comparison with four state-of-the-
art approaches. They were the FED_2 algorithm [25], Maltezos’
method [40], U-Net [59], and DeepLabv3 [60]. The FED_2 is a
fully data driven and automatic approach. Maltezos’ method is
an efficient CNN-based approach only needs a small collection
of training samples. U-Net is a typical and widely used FCN ar-
chitecture with elegant encoder-decoder structures. DeepLabv3
attains comparable performance with other state-of-the-art mod-
els on semantic image segmentation benchmark. Although train-
ing data are needed, comparisons with these state-of-the-art
methods can further prove the effectiveness of the proposed
method. The results of FED_2 and Maltezos’ method were taken
from the paper. U-Net and DeepLabv3 were trained from scratch.
For a fair comparison, we manually selected the image tiles
covering Area1, Area2, and Area3 as the test set. The U-Net and
DeepLabv3 implementation details are as follows.

All the U-Net/DeepLabv3 experiments were conducted on a
server with NVIDIA GRID M60-8Q virtual GPU accelerator,
with 8 GB GPU memory. To train U-Net and DeepLabv3, the
whole Vaihingen dataset was seamlessly cropped into image

http://www2.isprs.org/commissions/comm3/wg4/results.html
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TABLE II
AREAS 1-3 EVALUATION RESULTS (%) FOR DETECTED BUILDINGS OF THE PROPOSED METHOD COMPARED TO FOUR STATE-OF-THE-ART METHODS

The best results are marked in bold and the secondary ones are underlined.

tiles with the size of 512 × 512 pixels. To increase the data
volume and improve the generalization ability of the model, we
augmented the data before training, including random rotation
and random crop. Both nDSM and HSRI are regarded as the
inputs to train the network. We trained the network until the
loss converged. For U-Net, the training loss converged after 57k
iterations, and the entire training process took about 22 h. For
DeepLabv3, it takes about 54 h to converge, occurring after 69k
iterations. The trained model was used to predict the test set
to obtain the prediction result. For a fair comparison, the same
postprocess as ours was applied to the prediction results. The
results were mosaiced and clipped to a range entirely consistent
with Area1, Area2, and Area3 for comparative analysis.

Table II shows the detailed evaluation results for the three test
areas of the Vaihingen dataset, the buildings with an area size
of below 10 m2 were not included in the per-object evaluation
process for the methods. Only pixel level accuracy assessment
was reported in [40]. The best results are marked in bold and the
secondary ones are underlined. Fig. 10 shows the per-pixel level
visual evaluation of all the test areas for our proposed method,
U-Net, and DeepLabv3, respectively.

Table II have 21 rows and 11 columns. The first column
shows the test area. The second column is the abbreviation of
the methods. From the 3rd to the 11th column shows the value
of the evaluation index. As can be seen from the last row of Ta-
ble II, the DeepLabv3 achieves the highest performance, and our
proposed method ranks the second. Compared with DeepLabv3

in the per-area level evaluation index, our method has lower
completeness and higher correctness, and the quality only differs
by 0.3%. As can be seen from Fig. 10 row 3, the DeepLabv3
suffers from the omission error of small buildings and imprecise
edges. Our method, however, showed stronger performance on
building boundaries. In the object-level evaluation index of more
than 50 m2, all methods except U-Net achieved 100% quality.
As shown in Fig. 10 row 2, U-Net has a missed detection in
Area3. U-Net has false detections in each test area and has poor
performance on small target detection. DeepLabv3 and U-Net
require a large number of labeled samples, while Maltezos’
method only needs a very small number of samples. The FED_2
and our method do not require samples. Therefore, these three
methods were compared in detail. The average Compar index
of Maltezos’ method [40] is 0.6% higher than our method. This
is due to their completeness in Area1 outperform ours with 3%.
However, higher completeness had result of lower correctness
in their approach. Our method is more robust and obtains higher
quality. The bold font in Table II shows that FED_2 only in the
Corr10 index of Area2 and average of three regions delivered
higher performance outcomes than our method. As shown in
Fig. 10 (b), our method has a false positive (red object) in Area2,
which is a plant at the edge of the shadow. This problem can be
attributed to the simultaneous occurrence of three factors. First,
the false positive has similar characteristics as buildings. Second,
it was occluded by shadow. Third, it is at the edge of the shadow.
Therefore, it is not easy to separate this plant from buildings as
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Fig. 10. Building detection result pixel-based evaluation on the Vaihingen data
set: (a) Area 1; (b) Area 2; (c) Area 3. Row 1: the proposed method. Row 2:
U-Net. Row 3: DeepLabv3. The TP, FP, and FN are colored in yellow, red, and
blue, respectively.

it has similar characteristics to buildings as well as high contrast
due to occlusion from a shadow.

Columns 3rd to 5th of the last row of Table II shows that
the overall average pixel-based completeness, correctness, and
quality for our method were 94.3%, 93.8%, and 88.8%, respec-
tively. These results show a significant improvement over the
FED_2 method. The per-object level completeness, correctness,
and quality only considered objects larger than 10 m2 are 93.1%,
97.0%, and 90.1%. Although our method was lower in Corr10
than FED_2, it achieves a higherQ10, by nearly eight percentage
points; 100% object-based accuracy was achieved on buildings
larger than 50 m2 for both methods.

While the proposed method achieves accurate building detec-
tion results, the drawback is that our method is prone to miss
buildings smaller than 10 m2, as indicated by the green colored
areas in Fig. 10 row 1. This problem can be attributed to two
causes. First, small buildings may have relatively small contrast
in both the spectrum and elevation. Second, it is possible to
identify the nonground point of the small target as the ground
point at the stage of distinguishing the ground point from the
nonground point.

An evaluation of the test dataset validates algorithms, but an
appraisal of the robustness and practicability of a method relies
on its performance on large datasets. To validate the effective-
ness of our proposed method further, the proposed algorithm
was tested on the whole dataset, which covers approximately

Fig. 11. Building extraction result of the whole Vaihingen dataset. (a) image;
(b) nDSM; (c) pixel-based evaluation; (d)–(f) enlarged image, nDSM and
pixel-based evaluation of selected bottom left yellow rectangle, respectively;
(g)–(i) enlarged image, nDSM and pixel-based evaluation of selected bottom
right yellow rectangle, respectively. The TP, FP, and FN are colored in yellow,
red, and blue, respectively.

1.52 km2 with 4527 × 5358 pixels in the orthophoto, containing
over 1000 buildings. The computation was made by dividing the
whole dataset into small tiles (1000 × 1000), with the same set
of parameters adopted for each tile, and the accuracy evaluation
results are shown in Fig. 11.

Fig. 11 shows the building extraction result of the whole
Vaihingen dataset. Fig. 11(a) is the resampled aerial image.
Fig. 11(b) is the nDSM image. Bright pixels indicate higher
height, vice versa. Fig. 11(c) shows the pixel-based evaluation
result, where TP, FP, and FN are colored in yellow, red, and
blue, respectively. It can be seen from Fig. 11(c) qualitatively
that most of the pixels are with yellow color, which repre-
sents the true positive, indicating that the proposed method
also robust on large-scale data. Although the proposed building
detection algorithm showed robustness, it still produced some
building extraction errors. As shown in Fig. 11(c), there are some
false-positive pixels. Meanwhile, there are also some false-
negative pixels. These errors need to be further reduced to
achieve more accurate building detection results. Two regions,
as shown in Fig. 11(a) with a yellow rectangle, are selected for
detailed analysis. The place at the bottom left of Fig. 11(a) has
many omission errors (from now on referred to as oa1). A zoom
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TABLE III
WHOLE VAIHINGEN DATASET EVALUATION RESULTS (%) FOR DETECTED

BUILDINGS OF THE PROPOSED METHOD

in view of oa1 is displayed in Fig. 11(d)–(f). The other place at
the bottom right of Fig. 11(a) has many commission errors (from
now on referred to as ca1). In the oa1 region, the elevation value
is only about 2 m. In the spectrum, there is no visible contrast
with the surrounding environment. Thus, the contrast between
the spectral image and the elevation is relatively small, resulting
in omission errors. Similarly, in the ca1 region, factory goods
are stacked on the open ground, which has high contrast in the
spectrum and elevation, so it was wrongly detected as buildings.

The accuracy verification table is shown in Table III. From
the quantitative evaluation results in Table III, the overall pixel-
based completeness, correctness, and quality for our method are
94.1%, 90.3%, and 85.5%, respectively, indicating that 94.1% of
all building pixels in the reference map were correctly detected,
whereas 90.3% of the detected building pixels were also building
pixels in the reference map. The quality of our method in the
large-scale study area is 85.5%, indicating that the method has
specific adaptability, as well as revealing the practical potential
of the proposed algorithm.

The per-object level completeness, correctness, and quality
were 86.9%, 88.1%, and 77.8%. The per-object level complete-
ness, correctness, and quality only considering objects larger
than 10 m2 are 93.4%, 88.0%, and 82.8%. The index Corr and
the index Corr10 has the same value. This confirms our previous
observation that our method cannot detect buildings smaller than
10 m2. Our proposed method tends to have higher completeness
rather than correctness. The per-object level completeness, cor-
rectness, and quality only consider objects larger than 50 m2 are
96.4%, 96.9%, and 93.5%, revealing the practical potential of
the proposed algorithm.

D. Computational Complexity

The computation process of the proposed method is com-
prised of three major components: (a) guided image filtering, bi-
narization and morphological processing, (b) UCM generation,
and (c) adaptive iterative segmentation with data fusion. With
raw LiDAR data preprocessed to nDSM, all the experiments are
performed with MATLAB on a laptop with Intel Core i7-8550U
CPU @ 1.80 GHz and 8.00 GB RAM. The most time-consuming
part is the UCM generation, since it requires to consider spectral
and height properties globally and locally. There are two ways to
generate UCM, one is multiscale, which can get more accurate
contours, but at the same time requires more computing time.
The other is a single scale, which requires less computing
resources while obtaining a sufficiently accurate contour. With
an efficient implementation as described in [61], in our operating
environment, it takes an average of 7.8 s to obtain a single-scale

TABLE IV
COMPUTATIONAL COMPLEXITY ANALYSIS OF THE PROPOSED METHOD

MS/SS are short for multiscale/ single scale testing, respectively.

UCM of a 1001 × 762 size image. The proposed method needs
to calculate the UCM twice, which are the UCM of the image
and the UCM of the nDSM. For nDSM, only single-scale UCM
was considered as its edges are inherently imprecise. For HRSI,
two UCMs were generated, and the extracted building result
were compared based on the per-area level quality. The detail of
the processing time is shown in Table IV.

Table IV has 11 rows and 9 columns. The first column
shows the test area. The second column is the data size. From
the third to eighth column shows running time for different
components. The last column shows the Qar index. MS/SS are
short for multiscale/single scale, respectively. The best values
are highlighted in bold. It can be seen from Table IV that the
accuracy of the proposed method differs a little at single-scale
and multiscale, whereas the computation time differs largely. To
extract buildings with 88.7% per-area quality, our method takes
about 17.2 s to process a 1001 × 762 pixels area based on a
single-scale UCM. The proposed method based on multiscale
UCM have higher extraction quality, but it takes more time. If
time complexity is taken into consideration, a single-scale ap-
proach is preferred. As described in Section IV-C2, it took many
hours to train a model for U-Net/DeepLabv3. According to the
description in [40], the total calculation time of the CNN model
for each study area is about 15 min. It should be noted that they
use higher resolution data. The average size is approximately
6.2 times larger than ours. Excluding training time, it takes
190 s to test the three Vaihingen area with the trained model,
and the average is about 63.3 s. Our algorithm is relatively fast,
with no training computation cost. According to the description
in [18], the computation time of their methods takes around
2 min for a 5000 × 5000 pixels image. Our method is slower
than them. But the two methods were tested on computers with
different computing performance. These comparisons verify that
our algorithm can meet the requirements of most applications.

V. CONCLUSION

In this article, a novel hierarchical automatic building extrac-
tion method with LiDAR data and HSRI fusion is proposed.
The proposed method employs mid-level features and image
segmentation to extract building boundaries efficiently and au-
tomatically. The idea is simple while practical. An adaptive itera-
tive segmentation method is proposed to overcome the over- and
under-segmentation problem. A data-fusion-based hierarchical
overlay analysis is designed to extract buildings robustly and
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efficiently. Compared with previous data-fusion-based methods,
our proposed method had no parameters to set and needs no
samples.

The performance of the proposed method was tested on Vai-
hingen dataset. The results show that it could not only extract
partially occluded and shadowed buildings but also generates
complex building shapes. The proposed method outperformed
similar types of methods as shown on the ISPRS website, a
quality of 88.8%. Detailed comparisons with four state-of-the-
art methods shows that the proposed method with no sampling
achieves competitive extraction results. The limitation of the
proposed method was that few targets below 10 m2 were detected
because of low contrast at both elevation and spectral.
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