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Abstract—Due to the complexity of high-squint synthetic aper-
ture radar (SAR) mounted on maneuvering platforms, the tradi-
tional geometric model and imaging algorithms cannot be directly
applied in the diving or climbing stage for the existence of vertical
velocity. Aiming at this issue, an equivalent geometric model of
maneuvering high-squint-mode SAR is constructed, and a mod-
ified wavenumber-domain imaging algorithm combined with the
proposed equivalent range model is proposed in this article. First,
the disadvantages of the conventional range model are analyzed in
detail and an equivalent range model is proposed to describe the
motion characteristic of squint SAR in maneuvering mode, which
maintains the azimuth-shift invariance along the flight direction
in the new slant range plane. Then, to achieve the requirement of
maneuvering SAR real-time processing, a modified wavenumber-
domain imaging algorithm with a high usage of the spectrum
by axis rotation for high-squint SAR data is proposed. Further,
since the equivalent model may introduce the severe distortion in
the imaging plane, a novel geometric correction method based on
inverse projection is performed to obtain the ground imagery with a
little distortion. Finally, simulation and real-data processing results
validate the superiority of the proposed algorithm.

Index Terms—Equivalent range model, geometric correction,
high-squint mode, maneuvering synthetic aperture radar (SAR),
wavenumber domain.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) [1], as an active mi-
crowave sensor, is widely mounted on maneuvering plat-

forms (MPs), such as unmanned aerial vehicles [2], [3] and mis-
siles [4], [5]. Compared with other motion platforms, the SAR
sensors mounted on MPs have some special characteristics, such
as flexible flight tracks, high-squint observation, and real-time
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processing requirements [6]. Due to the flexible trajectories of
these MPs, SAR usually works in a diving or climbing mode, i.e.,
maneuvering mode, and its flight height varies with the azimuth
slow time, which makes the azimuth invariance questionable in
the slant range plane [7]–[15]. In addition, a high-squint mode
is often adopted to ensure advanced observation and repeated
observations. Furthermore, since the resolution of full-aperture
MPs SAR data far exceeds the anticipated requirements, sub-
aperture data processing with a reasonable size has more advan-
tages [11].

For the geometric model of maneuvers, a fast raw data
simulation method for missile-borne SAR is proposed in the
literature [16]. The impacts of acceleration in the 2-D frequency
domain are analyzed, and the inverse process is used for imaging
processing. However, this method uses many approximations
and is only suitable for low squint angle and low resolution.
Furthermore, works of literature [17]–[19] discuss the constant
acceleration model for maneuvers on the basis of equivalence
and divide the range model into two parts: one is the hyperbolic
range model (HRM) without acceleration, the other is the term
with acceleration. These equivalences simplify the subsequent
imaging procedures and can be directly combined with the
high-resolution imaging algorithms, such as Omega-K [20],
[21]. Moreover, a fourth-order range model (FORM4 or DRM4
[22]), advanced hyperbolic range equation (AHRE) [23], [24],
modified AHRE [25], improved range model [26], velocity
equivalent model [27], and modified equivalent squint range
model [28] are proposed for maneuvers with curved orbit. These
models simplify the complex algebraic expression of the range
model. However, it may sacrifice the accuracy of the range
model since it only considers the equivalence of mathemat-
ical expression without analyzing real motion characteristics.
For further applications, the imaging models and algorithms of
high-resolution-high-squint SAR with a curved track will be the
research emphasis and difficulty. In order to lay the groundwork,
a squint maneuvering SAR range model and imaging algorithm
without acceleration is studied, which brings great convenience
for the following research on range model and algorithm in the
case of a curved track.

For the imaging algorithms of high-squint SAR, chirp scaling
(CS) [29], nonlinear chirp scaling (NLCS) [12], and their exten-
sions are proposed [7]–[10], [17], [19], [30]–[32]. Based on the
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four-order range model, these methods acquire the 2-D target
spectrum by the method of series inversion first, and then con-
struct the range and azimuth matching functions. However, they
are only suitable for the small squint angle and low resolution.
For high-resolution-high-squint mode, the wavenumber-domain
algorithms adopt Stolt interpolation to correct the spatial-variant
range cell migration (RCM), which can theoretically achieve
accurate SAR imaging. Based on this advantage, Liang et al.
[11] propose a modified Omega-K algorithm with a linear
range walk correction (LRWC). However, LRWC will cause
the azimuth dependence and all of the Doppler parameters vary
with the azimuth position. Further, azimuth resampling, which
is a good approach for correcting azimuth dependence without
considering motion compensation (MoCo), is proposed to deal
with the problem of azimuth dependence in [11]. The motion
characteristics will be changed after resampling operation, it
brings a great challenge for MoCo and affects the final focusing
quality. For maneuvering SAR with a curved track, Li et al.
[18] propose an extended Omega-K with the consideration of
constant accelerations. This method acquires an approximation
value of the real slant range history in order to establish a sim-
ilar HRM for simplifying the subsequent imaging procedures.
However, the proposed algorithm is not suitable for subaperture
data processing and ignores the azimuth variance of targets
as well as the range-variance of equivalent angles. In [33],
a two-step frequency-domain imaging algorithm is proposed
to adapt to subaperture data processing in diving mode. This
method analyzes the vertical velocity on the range model and
further increases the squint angle by squint minimization. On
the contrary, the azimuth variance due to the correction of RCM
via LRWC has a negative effect on the azimuth focus depth,
so the algorithm is not suitable for high-resolution-high-squint
mode. Besides, some other recent research works [34]–[41]
on maneuvering high-squint-mode SAR discuss the impacts
of the acceleration in detail, and LRWC is used to realize
RCM correction with the effect of azimuth dependence. These
publications are the modifications of CS and NLCS, which
are all the frequency-domain imaging algorithms. Furthermore,
the time-domain imaging algorithms, e.g., backprojection (BP)
[42] and its modifications [43]–[47], can perfectly realize high-
squint maneuvering SAR imaging without the consideration of
computation and MoCo. Therefore, the time-domain imaging
algorithms may not be suitable for maneuvering SAR in some
scenarios.

In view of the aforementioned problems, the maneuvering
SAR imaging not only needs to consider the real-time pro-
cessing with subaperture data but also needs to combine an
effective range model to simplify the whole imaging procedures.
Considering the factors earlier, this article proposes a modi-
fied wavenumber-domain imaging algorithm combined with an
equivalent range model. Compared with the referenced range
model and imaging algorithms, the main advantages of the pro-
posed algorithms are as follows. First, the proposed equivalent
range model meets the azimuth-shift invariance on the new
imaging plane. Second, the traditional MoCo methods [48]–[53]
can be directly combined with the equivalent range model. Third,
the equivalent range model paves the way for further research on

Fig. 1. Geometric model of maneuvering high-squint-mode SAR.

the acceleration case. Fourth, the proposed algorithm is suitable
for the high-resolution-high-squint mode.

The rest of the article is organized as follows. The disadvan-
tages of the conventional range models are discussed and the
new range model is established in Section II. In Section III,
an imaging algorithm in the wavenumber domain is newly
developed, under the circumstance of subaperture. In Section IV,
the results of simulation and real data are presented to verify the
proposed algorithm. Conclusions are drawn in Section V.

II. GEOMETRIC MODEL FOR MANEUVERING

HIGH-SQUINT-MODE SAR

A geometric model of maneuvering high-squint-mode SAR is
established, as shown in Fig. 1. The SAR platform flights along
the straight line ABC. At the middle time during acquisition,
B denotes the point of MP, P is the center point of antenna
footprint, and h is the height of the platform at this moment.
We suppose that there is an arbitrary point target denoted as Q,
which shifts the azimuth position xn in the same nearest range
cell from center point P. R0 is the slant range from radar to the
center point P. The symbols α, θA, and ϑ0 are the diving angle,
squint angle, and forward angle, respectively. The instantaneous
slant range of point Q can be expressed as

R(tm;R0) =

√
(vxtm −R0sinθA − xn)

2 + (h− vztm)2

+(R2
0cos

2θA − h2)

(1)

where tm is the azimuth slow time, vx is the velocity along
X-axis, and vz is the velocity along Z-axis. Note that the velocity
along Y-axis is ignored since the velocities of east and north can
be compounded into the 1-D velocity in the imaging model. In
addition, the trajectory of the platform is assumed as a straight
line without considering the accelerations.

A. Conventional Range Model and Its Disadvantages

According to the existing algorithms for squint SAR imaging
[5]–[10], the instantaneous slant range is generally expanded
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TABLE I
LIST OF SIMULATION PARAMETERS

by Taylor series with respect to the azimuth slow-time tm.
Therefore, the expression of instantaneous slant range in (1)
can be rewritten as

R(tm, R0) = RT − hvz + vxxn +R0vxsinθA
RT

tm

+

(
v2x + v2z
2RT

− (hvz + vxxn +R0vxsinθA)
2

2R3
T

)
t2m

+

⎛
⎝ (v2

x+v2
z)(hvz+vxxn+R0vxsinθA)

2R3
T

− (hvz+vxxn+R0vxsinθA)3

2R5
T

⎞
⎠ t3m + · · · (2)

where RT =
√

R2
0 + 2R0xnsinθA + x2

n. In (2), it is evident
that the coefficients of the first-, second-, and third-order terms
and the constant term RT are all related to xn. When xn = 0,
one can obtain RT = R0, which means that both the range
curvature and azimuth matching factor vary with the azimuth
position. In other words, all the coefficients in (2) are azimuth
dependent and the assumption of azimuth-invariance is no longer
valid. Specifically, the further the target’s azimuth position from
the center point, the greater dependence the range curvature
mitigation and azimuth matching factors have. Besides, the
imaging algorithms based on the conventional range model often
adopt the reference range of center point to construct the range
curvature mitigation correction and azimuth matching operation.
This approximation may bring a large residual curvature and
obvious azimuth defocusing for edge points. Thus, the imaging
algorithms with the conventional range model may affect the
azimuth focusing depth and lead to serious image defocusing.

In order to evaluate the residual azimuth-variance RCM and
azimuth phase of the conventional range model, we rewrite the
coefficients of ki(R0) i = 1, 2, 3 in expression (2) as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k1(R0, xn) = −hvz+vxxn+R0vxsinθA
RT

k2(R0, xn) =
v2
x+v2

z

2RT
− (hvz+vxxn+R0vxsinθA)2

2R3
T

k3(R0, xn) =
(v2

x+v2
z)(hvz+vxxn+R0vxsinθA)

2R3
T

− (hvz+vxxn+R0vxsinθA)3

2R5
T

(3)

where k1(R0), k2(R0), and k3(R0) denote the linear, quadratic,
and cubic RCM terms, respectively. The residual RCM and

corresponding phase can be expressed as⎧⎪⎪⎪⎨
⎪⎪⎪⎩
ΔRrcm(R0, xn) =

(
ki(R0, xn)− ki(R0, xn)|xn=0

)(
Ta

2

)2
, i = 1, 2, 3

Δϕrcm(R0, xn) =
4π
λ

(
ki(R0, xn)− ki(R0, xn)|xn=0

)(
Ta

2

)2
, i = 1, 2, 3

(4)

where Ta is the subaperture acquisition timeand λ is the wave-
length. For further analysis, the simulation parameters are listed
in Table I. The radar works in Ku-band, the squint angle is 70°,
andxn is 1 km. Fig. 2(a)–(f) shows the envelope and phase errors
of residual RCM terms caused by the conventional range model.

From Fig. 2, it is observed that the residual RCM and phase
vary with the azimuth position heavily, and the variance in-
creases with the distance from azimuth position to the center
point. The variance of linear RCM between the edge point
and the center point is almost 15 m, as shown in Fig. 2(a).
According to the principle that the minimum envelope error can
be neglected when its value is less than half of the resolution
and the minimum phase error can be neglected when its value
is less than π/4, the residual envelope and phase errors of the
linear RCM term are obviously larger than the minimum value
of the principle, as shown in Fig. 2(a) and (b). For the 0.5 m
resolution requirement of the final focusing imagery, the residual
envelope error of the quadratic RCM term is not satisfied but the
residual envelope error of the cubic RCM term can be neglected,
as shown in Fig. 2(c) and (e). However, the residual phase errors
of quadratic RCM and cubic RCM are both larger than π/4, as
indicated in Fig. 2(d) and (f).

In general, the imaging algorithms based on the conventional
range model ignore the residual envelope and phase errors of
high-order terms will cause defocusing in final imagery. The
complex slant range model cannot be directly combined with
some precise focusing algorithms, such as the wavenumber-
domain imaging algorithm. A more accurate range model should
be introduced for maneuvering high-squint-mode SAR.

B. Equivalent Range Model

Compared with the complex geometric model in Fig. 1, a sim-
ple model with the equivalence basic is proposed to ensure the
accuracy and pave the way for the following precise algorithm.
In this new model, the imaging plane consists of the velocity
vector and slant range vector, as the dotted lines shown in Fig. 3.
Let tn be the center time when the beam center passes through
the point target P, then the instantaneous range from P to radar
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Fig. 2. Envelope and phase errors of residual RCM terms. (a) and (b) Envelope and phase errors of residual linear RCM term. (c) and (d) Envelope and phase
errors of residual quadratic RCM term. (e) and (f) Envelope and phase errors of residual cubic RCM term.

can be expressed as

R(tm, R0) =

√√√√R2
0 + (v2x + v2z)(tm − tn)

2

−2R0

(
vx sin θA + h

R0
vz

)
(tm − tn)

. (5)

Based on the geometric model in Fig. 3,
(vx sin θA + hvz/R0) in (5) represents the projection of
the velocity vector to the beam line of sight (LOS) and yields

v sin θ = vx sin θA +
h

R0
vz (6)

where v =
√

v2x + v2z is the resultant velocity, which is the
velocity along the straight line ABC. θ represents the new squint
angle in the equivalent range model, i.e., the angle ∠DBP in
Fig. 3. Therefore, (5) can be rewritten as

R(tm, R0) =

√
R2

0 + v2(tm − tn)
2 − 2R0v sin θ (tm − tn).

(7)

For the conventional model in Fig. 1, the descending velocity
existing on the plane BTP makes the property of the echo
shift-variance in the X-direction. In comparison, the equivalent
model established on the plane BCPD, an imaging plane that
is spanned by the velocity vector and the beam sight vector, is
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Fig. 3. Equivalent range model for maneuvering high-squint-mode SAR.

azimuth shift-invariant in the direction of the velocity vector.
Actually, the plane BCPD can be obtained via rotating the
plane BTP along the BP axis. With this subtle equivalence, the
imaging model of high-squint mode maneuvering SAR becomes
azimuth-invariance on the new imaging plane BCPD, which
facilitates the following precise imaging algorithm and MoCo
[48]–[53]. Note that the corresponding imaging plane is rotated
through the equivalent processing and this procedure will result
in a large geometric distortion in the focused imagery. There-
fore, the geometric correction is necessary during the imaging
processing.

III. MODIFIED WAVENUMBER-DOMAIN IMAGING ALGORITHM

According to the aforementioned analysis, a modified
wavenumber-domain imaging algorithm is proposed combined
with the equivalent range model in this section. Suppose that
the transmitted pulses are lineally frequency modulated. The
received signal in the range wavenumber and azimuth time
domain can be expressed as

Ss (Kr, tm;R0) = Wr (Kr) · wa (tm)

× exp

(
−j

(Kr −Krc)
2c2

16πγ

)
exp (−jKr ·R (tm;R0))

(8)

where γ is the range chirp rate of the transmitted signal and c
is the light speed, fcis the carrier frequency, Kr is the range
wavenumber, Krc = 4πfc/c. Wr(·) and wa(·)are the range
windowing function in the wavenumber domain and the azimuth
windowing function in the distance domain, respectively.

A. Range Preprocessing and Axis Rotation

In (8), the first exponential term corresponds to the range
compression, and the second term is the azimuth modulation
term. Therefore, the range compression factor is given by

Hrc (Kr) = exp

(
j
(Kr −Krc)

2c2

16πγ

)
. (9)

Afterward, we transform the range compressed signal into the
2-D wavenumber domain via the azimuth fast Fourier transform

Fig. 4. Selectable areas of spectrum support region before and after axis
rotation. (a) Selectable area before axis rotation. (b) Selectable area after axis
rotation.

(FFT) and yields

SS(Kr,Kx) = Wr (Kr) ·Wa (Kx)

× exp

[
−jR0

(√
K2

r −K2
x cos θ +Kx sin θ

)
− jKxxn

]
(10)

where Kx represents the azimuth wavenumber, Wa(·) is the az-
imuth windowing function in the wavenumber domain. In order
to reduce the impacts of range curvature and azimuth frequency
modulation, a bulk compensation factor at the reference range
Rref in the 2-D wavenumber domain is given by

Hrcm (Kr,Kx)

= exp
[
j
(√

K2
r −K2

xcosθ +Kxsinθ
)
·Rref

]
. (11)

After the compensation, the signal is expressed as

SS (Kr,Kx;R0) = Wr (Kr) ·Wa (Kx)

× exp
[
−j

√
K2

r −K2
x · y − jKx · x

]
(12)

where x = (R0 −Rref)sinθ + xn and y = (R0 −Rref)cosθ.
Observing (12), the expression of the 2-D spectrum is similar
to the broadside SAR and the following core procedure is
Stolt interpolation for solving range azimuth coupling in the
wavenumber-domain imaging algorithms. In order to realize
the interpolation, the selection of a rectangle region in the data
support region is essential. However, a simple selection area
is limited by a squint angle in the conventional algorithms, as
shown in the relatively small shaded area in Fig. 4(a). Such
strict limitation will evidently reduce the imaging quality, and
make it difficult to meet the resolution requirement. For the
imagery of squint SAR, the higher the squint angle, the smaller
the support region. In order to enlarge the selected region of the
spectrum and guarantee the resolution, Liang et al. [11] propose
a modified Omega-K algorithm with the correction of RCM by
squint minimization in the range frequency and azimuth time
domain, but this method results in the variant range envelope
and azimuth phase, and thus reduces the maximum depth of
azimuth focusing. To avoid the issue of variance and realize the
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Fig. 5. Point target spectrum in squint mode before and after axis rotation. (a) Original spectrum before rotation. (b) Spectrum after rotation.

support region with maximum usage, an axis rotation operation
is creatively performed for the squint SAR spectrum selection.
The rotation angle is the squint angle. After being rotated, the
spectrum is corrected into broadside mode along the LOS and
cross LOS. Furthermore, the selectable area of the support region
can be described as a rectangle region in the new coordinates,
as shown in Fig. 4(b).

According to the above analysis, the rotation factor is[
x
y

]
=

[
cosθ sinθ

−sinθ cosθ

] [
u
v

]
. (13)

[uv ] is the new coordinate system after rotating, u = xncosθ
and v = (R0 −Rref ) + xnsinθ. Then, the rotated signal can be
constructed as follows

S(Kr,Kx) = Wr (Kr) ·Wa (Kx)

× exp

⎡
⎣−j

(
Kxsinθ +

√
K2

r −K2
xcosθ

)
· v

−j
(
Kxcosθ −

√
K2

r −K2
xsinθ

)
· u

⎤
⎦ . (14)

From (14), the first exponential term represents the range com-
ponent and the second exponential term represents the azimuth
component. Then, the interpolation along the cross LOS can be
easily designed and yields

Ku = Kx cos θ −
√

K2
r −K2

x sin θ (15)

where Ku is the new azimuth wavenumber. After the interpola-
tion, substituting (15) into (14), we have

SS(Kr,Ku) = Wr (Kr) ·Wa (Ku)

× exp
[
−j

√
K2

r −K2
u · v − jKu · u

]
. (16)

Compared with the expression in (14), (16) is a standard
spectrum form in broadside mode, which facilitates the fol-
lowing imaging and MoCo. In addition, Fig. 5 is the simulated
spectrum of a point target in the squint mode before and after
rotation, which further validates the proposed rotation operation,
as described in Fig. 4.

B. Modified Stolt Interpolation

To pave the way to the following MoCo, we conduct a mod-
ified Stolt interpolation for the rotated 2-D spectrum, and the
interpolation kernel is given by

Kv =
√

K2
r −K2

u −
√

K2
rc −K2

u (17)

where Kv is the new range wavenumber. This kernel realizes
the separation of range envelope and cross-range phase, which
achieves the correction of envelope separately and protect the
phase terms. This separation makes the proposed wavenumber-
domain imaging algorithms combine with the MoCo methods
[49]–[53] easy and the signal processed via the Stolt interpola-
tion is

S(Kv,Ku) = Wr (Kv) ·Wa (Ku)

× exp
[
−j

√
K2

rc −K2
u · v − jKu · u− jKv · v

]
. (18)

In (18), the first term is a wavenumber-domain matching
factor, and the second term represents the focusing position
along the cross LOS. The last term represents the range focusing
position after range IFFT. It is obvious that there exists no
range–azimuth coupling and the azimuth phase includes a linear
term and a modulated term of Ku.

C. Wavenumber-Domain Focusing

Reviewing (18), for the conventional full-aperture imaging,
2-D focusing can be achieved via a matched filter and a subse-
quent 2-D IFFT. However, for subaperture data processing, as
the length of the effective synthetic aperture is much smaller than
the width of the scene, the conventional imaging algorithms in
the time domain cannot cover all of the points in the scene. The
uncovered scene will aliasing into the final imagery. In Fig. 6(a),
A, B, and C are three point targets located in the same range cell
but in different azimuth cells, namelyuA,uB , anduC . The phase-
frequency distribution lines of these three targets are shown as
the solid purple, solid red, and solid green lines, respectively. If
the strategy of time-domain focusing is selected, the matching
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Fig. 6. Comparison of difference focusing domain. (a) Description of time-domain focusing before and after the zero-padding operation. (b) Description of
wavenumber-domain focusing.

factor will exceed the length of the synthetic aperture perpendic-
ular to the LOS, as shown by the dotted brown line in Fig. 6(a).
The excessive part will be folded, and thus change the position
where the targets are eventually focused without zero padding.
For realizing the targets located in the real position, a large-scale
zero padding is needed. However, the heavy computational cost
will be brought by zero-padding operation. In order to avoid
the heavy computation, the wavenumber-domain focusing is
selected instead. In Fig. 6(b), the time–frequency lines of targets
A, B, and C cross the u-axis are their real distance position
uA,uB , and uC . Now it is expected to utilize the deramping
and exert azimuth FFT to focus the targets in the wavenumber
domain without zero padding. The final focusing positions of
targets A, B, and C are kuA

, kuB
, and kuC

, respectively.
After the range focusing via range IFFT, it is needed to

compensate for a reference factor that can restore the actual
characteristics of the azimuth phase [11]. The factor is

Haf (Ku, Rref) = exp
[
−j

√
K2

rc −K2
u ·Rref

]
(19)

where Rref is the reference range position of targets. Multiply-
ing (18) by (19), the expression of (18) is rearranged as

S(Ku, R0)= sinc [Br (R− (R0 −Rref ))] ·Wa (Ku)

× exp
[
−j

√
K2

rc −K2
u ·R0 − jKu · u

]
(20)

where Br is related to the transmitted bandwidth. For the sig-
nal after range pulse compression, the phase in the azimuth
wavenumber domain contains the high-order terms of Ku.
Transforming (20) into the azimuth time domain, the signal can
be expressed as

S(X,R0) = sinc [Br (R− (R0 −Rref))] · wa (X)

× exp
[
jK (R0) · (X − u)2

]
(21)

whereK(R0) =
−2π
λR0

andX is the corresponding representation
of Ku in azimuth time domain. From (21), to realize imaging
in the azimuth wavenumber domain, the azimuth deramping
operation is introduced and its factor is

Hderamp(X;R0) = exp
[−jK (R0) ·X2

]
. (22)

Then, the signal after azimuth deramping is expressed as

S(X,R0) = sinc [Br (R− (R0 −Rref))] · wa (X)

× exp [−j2K (R0) ·X · u]
× exp

[
jK (R0) · u2

]
. (23)

Obviously, there is only the linear term of the azimuth distance
X, namely, the signal can be focused in the wavenumber domain
by conducting azimuth FFT. The final focused signal is given by

S(u,R0) = sinc [Br (R− (R0 −Rref))]

· sinc [Ba (ku+2K (R0)u)]

× exp
[
jK (R0) · u2

]
(24)

where Ba is related to Doppler bandwidth. In (24), the exponen-
tial term is constant and the focused imagery in the wavenumber
domain is obtained. As mentioned earlier, the focused plane of
imagery is plane BCDP. Compared with the imagery focused
on the ground plane, there is a serious geometry distortion of
the focused imagery on the new imaging plane. Therefore, the
final imagery in (24) should be corrected to the ground plane via
geometric correction.

D. Geometric Correction via Inverse Projection

In order to remove the distortion caused by the equivalent
range model, a geometric correction method via inverse projec-
tion [32] is performed. The basic idea is to display an equally
spaced grid on the ground first and then calculate the range and
Doppler information of the pixels in the grid corresponding to
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Fig. 7. Diagram for geometric correction via inverse projection.

the slant range point inversely. Inverse projection uses fewer
points and it is easier to be implemented in parallel compared
with the conventional geometric correction method.

Suppose an arbitrary pointT ′ located on the ground plane, and
the corresponding point on the slant range plane is T , as shown
in Fig. 7. The instantaneous range and Doppler information
of T ′can be calculated by the following range-Doppler (RD)
equation {

R =
√

x2 + y2 + h2

fd = 2v
λ
sinθ′

(25)

where R, θ′, and fd represent the instantaneous range, squint
angle, and instantaneous Doppler frequency of point T ′, respec-
tively. [x, y] is the coordinate of pointT ′ in the XOY coordinate.
The expression of θ′ can be calculated by [32]

θ′ = arcsin

(
hsinα+ ycosα

R

)
. (26)

Based on the RD equation and (26), the nearest distance from
point T ′ to the vertical LOS direction is calculated by

Rn = R · cos (θ′ − θ0) (27)

where θ0 is the center squint angle and is complementary to
angle ϑ. Further, the norm of inverse projection is⎧⎪⎨

⎪⎩
x =

(
fd·λR
2vcosα − h · tanα

)
y =

√
R2 − h2 −

(
fd·λR
2v cosα − h · tanα

)2 . (28)

The value of [x′, y′] in the range and cross-range direction is[
x′

y′

]
=

sinβ −cosβ
cosβ sinβ

·
[
x
y

]
. (29)

Observing (28) and (29), the range and Doppler information of
all the displayed points on the ground can be precisely calculated
by the geometric model and RD information of the slant range
points. Then, to calculate the nearest range Rnand Doppler
fd, a 2-D sinc interpolation algorithm is selected to ensure the
accuracy, with the interpolation kernel

s (n,m) = sinc (n−Rn/∂Rn) · sinc (m− fd/∂fd) (30)

where ∂R and ∂fd denote the range and cross-range intervals
of the ground image, respectively. The accurate position of each

Fig. 8. Flowchart of the proposed algorithm.

Fig. 9. Simulation model and points distribution.

target based on the inverse projection from the ground plane to
slant range plane can be calculated and the final image without
distortion on the ground can be obtained.

E. Flowchart of the Whole Procedure

In the previous procedures, a modified wavenumber-domain
imaging algorithm based on the equivalent range model is
proposed. With the considerations of real-time processing and
accuracy, a fast geometric correction by inverse projection is
adopted to realize the geometric correction. In summary, the
main procedures of the proposed algorithm include five parts: the
range preprocessing, axis rotation, modified Stolt interpolation,
wavenumber-domain focusing, and geometric correction. The
flowchart of the modified wavenumber-domain imaging algo-
rithm combined with an equivalent range model is summarized
as Fig. 8.
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Fig. 10. Imaging results processed by the proposed algorithm with conventional range model. (a)–(c) Results of PT1–PT3, respectively.

Fig. 11. Imaging results processed by the reference algorithm [33]. (a)–(c) Results of PT1–PT3, respectively.

Fig. 12. Imaging results processed by the proposed algorithm. (a)–(c) Results of PT1–PT3, respectively.

IV. SIMULATION AND REAL DATA PROCESSING RESULTS

In order to evaluate the performance of the proposed algo-
rithm, simulation data and real data results are displayed in the
following parts.

A. Simulation Results

The simulation parameters are listed in Table I. Point targets
of 3× 3 with a size of 2× 2 km are distributed on the ground. The
flight path of maneuvering the SAR platform is diving with a ver-
tical velocity, as shown in Fig. 9. Both the range and cross-range
resolutions are about 0.5 m. In order to have a better comparison,
we select two side points named point target one (PT1) and point
target three (PT3), and middle one named point target two (PT2)
as a contrast. The focusing results processed by the reference

method [33] and the proposed algorithm are compared with each
other in detail by the imaging results of selected PT1–PT3 (the
imaging results are shown without windowing). Fig. 10 gives the
imaging results of the proposed algorithm without the equivalent
range model and Fig. 11 shows the reference method processed
with the proposed model. Fig. 12 is the result of the proposed
method.

Admittedly, both the results of PT1 and PT3 shown in Fig. 10
are defocusing due to the large approximation error of range
model, while PT2 is the center point without range approxima-
tion and it has a good focusing performance. This phenomenon
also happens in the reference method, which performs well for
the central point PT2, while noticeable defocus appears for
the edge points PT1 and PT3. This is because the reference
method brings azimuth-variance, and thus leads to defocus
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TABLE II
COMPARISON OF IMAGING QUALITY INDEXES WITHOUT WINDOWING

Fig. 13. Imaging results before and after geometric correction. (a) Before geometric correction. (b) After geometric correction.

TABLE III
LIST OF REAL DATA PARAMETERS

shown Fig. 11(a) and (c). In contrast, both edge points and central
points are precisely focused via the proposed algorithm. The
main-lobes and side-lobes are well separated from each other
and present an ideal “cross,” which validates its priority.

To further evaluate the performance of the proposed algo-
rithm, the imaging quality indexes of the simulation results are
quantified as shown in Table II, which includes peak side-lobe
ratio (PSLR), integrated side-lobe ratio (ISLR), and cross-range
resolution. Evidently, compared with the reference algorithm,
the proposed algorithm not only achieves precise focusing of
the edge targets, but also satisfactory imaging quality indexes,
which are specifically more similar to theoretical values of PSLR
(-13.26 dB), ISLR (-9.8 dB), and spatial resolution (0.5 m).

Furthermore, a 5 × 5 dot matrix is arranged in the scene and
Fig. 13(a) gives the imaging result in the slant range plane. It is
clear that there is a large distort compared with the placed dot

matrix. Fig. 13(b) shows the imagery after geometric correction,
which meets the arranged lattice.

B. Real Data Processing Results

The airborne raw data of maneuvering high-squint-mode SAR
are processed to validate the effectiveness of the proposed al-
gorithm. The bandwidth of the transmitted signal is 110 MHz
and the platform velocity is about 120 m/s with a diving angle
∼5°. The slant range and flight height are 15 km and 3.5 km,
respectively. The whole scene is 3 km in the range and 1 km
in the cross range, and the resolutions in the range and the
cross range are both about 1.5 m. The detailed parameters are
listed in Table III. The imaging results are displayed in Fig. 14.
Specifically, Fig. 14(b) obtained by the proposed algorithm is of
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Fig. 14. Imaging results of real data. (a) Image acquired by the reference method [33]. (b) Image acquired by the proposed method.

Fig. 15. Profiles of the selected points. (a) Profile of point 1. (b) Profile of point 2.
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Fig. 16. Imaging results of geometric correction. (a) Image result before geometric correction. (b) Image result after geometric correction.

higher quality than of Fig. 14(a) corresponding to the reference
algorithm [33].

Further, two isolated strong-scattering points at the edge of the
imaging scene are selected for contrasts, which are highlighted
with the red circle in Fig. 14. We extract the profile of these two
points along the cross range direction, as shown in Fig. 15. The
red line in Fig. 15 is the cross range focusing result obtained by
the proposed algorithm and the blue line is the result acquired
by reference [33]. Evidently, energy is focused precisely on
the selected points processed by the proposed algorithm, for
the narrower main-lobe width of the red line. In contrast, for the
reference algorithm as mentioned above, the azimuth chirp rate
is mismatched and the defocus of energy emerges shown as the
blue line in Fig. 15.

Finally, Fig. 16 shows the results before and after the geomet-
ric correction. In Fig. 16(a), the imaging result on the slant range
plane is distorted, which looks like a curved “parallelogram”
shown as the simulation result in Fig. 13(a). After the geometric
correction, the imaging result on the ground plane is obtained

in Fig. 16(b). The whole results demonstrate the feasibility of
geometric correction.

V. CONCLUSION

In this article, a modified imaging algorithm combined with
an equivalent range model is proposed for maneuvering high-
squint-mode SAR. First, the advantages of the equivalent geo-
metric model of maneuvering flight paths are analyzed compared
with the conventional slant range model. Especially on the new
imaging plane, the azimuth-shift invariance is still satisfactory
along the cross range direction. Then, a wavenumber-domain
imaging algorithm is proposed. Its main innovation is to obtain
the axis rotation and modified Stolt interpolation, which pre-
serves the resolution of images and makes it easy to combine
withMoCo. In addition, with the consideration of real-time
processing and resolution requirements, the subaperture data
are focused on a new focusing domain, i.e., the wavenumber
domain, which avoids the complex zero padding of conventional
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focusing methods. The processed results of simulated data and
real data validate the priority of the proposed algorithm.
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