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Convolutional Neural Network to Retrieve Water
Depth in Marine Shallow Water Area From Remote

Sensing Images
Bo Ai , Zhen Wen, Zhenhua Wang, Ruifu Wang, Dianpeng Su , Chengming Li, and Fanlin Yang

Abstract—The local connection characteristics of convolutional
neural network (CNN) are linked with the local spatial correlation
of image pixels for water depth retrieval in this article. The method
has greater advantages and higher precision than traditional re-
trieval methods. Traditional remote sensing empirical models re-
quire manual extraction of retrieval factors and the process is
complex. This article proposes a model based on CNN, which uses
different remote sensing images in four spectral bands, red, green,
blue, and near-infrared, to retrieve the water depth. In general,
CNN is mostly used for image recognition and classification tasks,
which can make full use of the local spatial correlation between
pixels. The method in this article exploits this feature of CNN
for water depth retrieval, taking into consideration the nonlinear
relationship between the radiance value and water depth value
from adjacent and central pixels. In this article, remote sensing
image data, measured water depth data, and lidar sounding data
are used as input data to build the model. Then, the retrieval error is
analyzed and the parameters are adjusted to further optimize the
model. Quantitative analysis and experimental results show that
the accuracy of the CNN model in shallow sea areas retrieval is
improved by more than 50%. The mean absolute error can reach
within 0.8 m. Finally, the model is shown to be highly portable and
capable of retrieving water depth data with resolution equal to the
spatial resolution of the remote sensing image using only a small
amount of input water depth data.

Index Terms—Convolutional neural network (CNN), deep
learning, shallow water, remote sensing images, water depth
retrieval, spatial correlation.

I. INTRODUCTION

OCEAN water depth measurement has always been one of
the most important tasks in ocean mapping. The measure-

ment of water depth in shallow sea areas is of great significance
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for marine transportation, coastal management, and marine en-
vironmental monitoring. At present, the methods for obtaining
water depth in shallow ocean waters are mainly divided into two
categories: field observation and remote sensing image retrieval.
The traditional method is shipborne sonar measurement. This
method can be highly precise, but it is greatly affected by
environmental factors such as weather and sea conditions, it
costs a lot of money, and ships cannot enter sensitive areas.
Lidar bathymetry is estimated to have good accuracy for river
water depth [1], [2]. In recent years, airborne lidar sounding
has developed rapidly for shallow waters [3]. This method can
be very precise, with an error of less than 0.2 m, but the cost
of equipment is very high, and it is best suited for small-scale
observations [4], [5]. Using models to retrieve water depth from
high-resolution remote-sensing images has become a possibility
with the development of remote sensing technology, and much
exploratory work on remote sensing image-based water depth
retrieval models has been carried out at home and abroad. This
work can be roughly divided into three categories: physical
models, empirical models, and mathematical models. Chen
et al. proposed a new physics-based dual-band that uses the
blue and green bands of high spatial resolution multispectral
images to estimate shallow water depth [6]. This algorithm can
retrieve the water depth in the absence of real data, which is
a huge breakthrough, but the extraction of the retrieval factor
is complex and the retrieval accuracy is not ideal. Kerr et al.
proposed an algorithm for optically extracting water depth from
multispectral images of coral reef landscapes which is effective,
but not very portable [7]. A bathymetry estimation approach that
combines a physical wave model with a statistical method based
on Gaussian process regression learned was derived [8]. Local
water depth was successfully estimated through wave dispersion
relationship [9]. It is difficult for physical models to compre-
hensively estimate the factors and weights that affect water
depth [10]–[12]. Stumpf et al. proposed an empirical model that
uses high-resolution satellite images of different seabed types
to determine water depth with low precision [13]. Icebergs were
used as depth sounders, but the uncertainties associated with the
methods were high [14]. Although this method has been adopted
for the purpose of navigational charting [15], they are difficult
to propose accurate and universal water depth retrieval models
from a scientific perspective [16], [17]. Bian et al. proposed
a through-water photogrammetric approach by using feature
extraction and image geometry from multitemporal Sentinel-1
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SAR data [18]. It is difficult to achieve high precision because the
low correlation between SAR images and water depth. The re-
gression kriging (RK) approach was used to combine the optimal
spatial interpolation of kriging with the high-resolution auxiliary
information of multispectral imagery for a detailed bathymetric
mapping [19]. A multi-Gauss function was used to retrieve water
depth using laser radar waveform data [20]. A quasi-analytical
algorithm approach was proposed for estimating the water depth
around Weizhou Island [21]. Mathematical models are difficult
to achieve good portability due to strict calculations. In addition,
many companies also have commercial-oriented water depth
products such as EOMAP. The cost of data is high, and the
accuracy of the data needs to be verified with the measured data.
Some teams also made 3-D water depth models for specific areas,
all without considering the portability of the model [22]–[24].

At present, most research is based on physical models, empir-
ical models, and mathematical models. These traditional water
depth retrieval methods do not consider the spatial correlation
between neighboring pixels and central pixels in remote sensing
images [25], and it is often necessary to manually extract the re-
trieval factor. This tends to limit the accuracy of these models and
complicate the process of building them. In summary, there are
still many problems in current water depth retrieval models: they
tend to only discuss a single region or a single type of image, have
poor portability, lack practical application, and have low preci-
sion. With the development of machine learning, new algorithms
have been applied to calculate water depth. Wang et al. achieves
high precision using a spatial distribution support vector ma-
chine to perform water depth retrieval from optical images, but
the portability of this algorithm has not been verified [26]. Ran-
dom forest machine learning and multitemporal satellite images
were used to create a generalized depth estimation model, but the
accuracy was not ideal [27]. As one of the key research objects
in deep learning, convolutional neural network (CNN) has been
successfully applied to remote sensing images. At present, CNN
is mainly used for remote sensing image classification and
target detection. CNN performed remote sensing image scene
classification, and achieved good results, such as land use and
land cover classification [28]–[30]. CNN was also used to detect
targets from remote sensing images, such as ships, clouds, and
cyanobacteria, which detected targets effectively [31]–[33].

This article makes the novel proposal that CNN be used to
retrieve water depth data in shallow marine areas. Two charac-
teristics of CNN make it suitable for the problem of retrieving
water depth from remote sensing images. First, the CNN’s local
join feature makes CNN suitable for processing raster data with
a spatial grid structure. It can be seen from the geographic
interpolation algorithm that the depths of unknown points can
be regarded as weighted averages of nearby known depths.
Therefore, this article explores the impact of adjacent pixels on
water depth retrieval through CNN. In addition, in the traditional
remote sensing water depth retrieval research, people often use
the relationships between water depth and radiance values in
remote sensing images to create a retrieval factor which relates
these two values. The convolutional layer of CNN in the model
can be used to extract these data feature values. Therefore, the
complicated process of manually extracting the retrieval factor

can be avoided [34]. The resulting model has high precision and
high portability.

II. METHODS

A. Overview

The CNN-based water depth retrieval method proposed in
this article first preprocesses the image and water depth data,
so that the remote sensing image and the measured water depth
match spatially, then divides the image into subimages centered
on the measured points. Next, it randomly samples the training
and test data and inputs data into the CNN for training. During
training, the CNN adjusts its parameters and builds the water-
depth retrieval model. The model takes subimages as input and
outputs water depth values. The model is validated using data
from the area around Robert Island to verify the scalability of
the model. The Robert Island data are first simplified, then the
model is used to retrieve depth values for the shallow waters
areas, and finally the results are compared with high-resolution
data obtained by airborne lidar sounding. The goal is to obtain
water depth measurement data for an entire region using only a
small amount of preexisting water depth data. The water depth
data retrieved by the model can achieve the same resolution as
the remote sensing image used as model input. A detailed flow
chart for this process is shown in Fig. 1.

B. Data Preparation

1) Research Area: The research area utilized in this article
is the region surrounding North Island and Robert Island in the
Xisha Islands, as shown in Fig. 2. These two islands are under
the jurisdiction of Sansha City, Hainan Province. They are in the
central part of South China Sea, southeast of Hainan Province.
They have a tropical maritime monsoon climate. Robert Island
covers an area of 0.3 square kilometers and North Island covers
an area of 0.4 square kilometers. These islands are surrounded
by shallow seas with a water depth of less than 50 m, which are
suitable for an application of the shallow water depth retrieval
method in this article.

2) Data: The remote sensing image data comes from three
satellites: Resources Satellite Three (ZY3), Gaofen-1 (GF1),
and Worldview-2 (WV2) [35]. All three images use four bands:
three visible light bands (450–525 nm) and one near-infrared
band (700–2500 nm) [36]. ZY3 is the first independent civilian
high-resolution stereo mapping satellite in China, which can
stably acquire full-color stereo images, multispectral images,
and auxiliary data. This article uses the multispectral images
(two scenes) from ZY3 with a 5.8-m resolution. The GF1
satellite is the first satellite of China’s high-resolution Earth
observation system. It incorporates breakthroughs in the key
technologies of high spatial resolution, multispectral imaging,
and wide-coverage combined with optical remote sensing. This
letter uses multispectral image data (one scene) from GF1 with 8
m resolution. The WV2 is a commercial satellite that provides its
users around the world with high-performance imaging products
that meet their needs. This letter uses multispectral image data
(one scene) from WV2 with 1.8 m resolution.
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Fig. 1. Water depth retrieval flowchart.

The experimental data also contains two types of water depth
data. The first is the land and underwater topographic survey
map of the North Island, measured in April 2013, which uses
a measuring scale of 1:2000 and the China geodetic coordinate
system 2000. The second is airborne lidar sounding data with an
error of less than 0.2 m, including measurements taken in both
2016 and 2019.

The data used in this article is divided into two parts: model
construction data and model verification data. Model construc-
tion data are used to build the model and adjust the parameters.
Model validation data are used to test the robustness and ap-
plication of the model. The model construction data includes
the images of North Island from ZY3 and WV2, as well as the
measured water depth data from the 2013 survey. The model
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Fig. 2. Study area. (a) Robert Island. (b) North Island.

TABLE I
DATASET INFORMATION

verification data includes the images of Robert Island from ZY3
and GF1, as well as the airborne lidar sounding water depth data.
Table I shows the information of all datasets in detail, including
date, area, and application.

3) Data Preprocessing: The water depth data are prepro-
cessed. First, the airborne lidar sounding data (.las) and the
measured water depth (.dwg) are converted into shapefile. Then,
coordinate correction is performed on the data points. Finally, the
remote sensing image is preprocessed, geometrically corrected,
radiometrically corrected, and atmospherically corrected, which
results in the water depth data matching the remote sensing
image in space. The pixel values of the remote sensing image
reflect the radiance value, so there is spatial correlation between
the pixels of the remote sensing image. Meanwhile, the local

Fig. 3. Subimage extraction process.

connection characteristics of CNN make CNN suitable for pro-
cessing the relationship between the local pixels. This article
uses CNN to study the influence of adjacent pixels on water depth
retrieval, a method inspired by the geographic interpolation
algorithm. Before inputting images to CNN, the whole remote
sensing image should first be divided into subimages with a
certain width centered on the measured water depth points. In
the process of extraction, the RasterToNumPyArray tool and
the SearchCursor tool provided by ArcPy are used to spatially
superimpose the image and the measured water depth point,
then a buffer of CellSize is constructed at the corresponding
point position for buffer analysis. Finally, the size of the CellSize
subimage block is extracted [37]. Fig. 3 is a flow chart of this
algorithm.

The geographic coordinates of the remote sensing image
need to be converted into an index and stored when extracting
subimages. The conversion formulas are as follows:

Indexcol =
X −Xmin

CellSizeX
(1)

Indexrow =
Y − Ymax

−CellSizeY . (2)

In the formula, Indexcol represents the index of the converted
column, Indexrow represents the index of the converted row, X
represents the latitude of the current point, Xmin represents the
latitude of the lower-left corner of the image, Y represents the
longitude of the current point, Ymax represents the longitude
of the upper right corner of the image, CellSizeX represents
the width of a cell in the remote sensing image, and CellSizeY
represents the length of a cell.

C. Model

1) Model Basis: This article designs a CNN model for water
depth retrieval with the objective of improved accuracy. Since the
original intention of CNN is to tackle classification tasks such
as image recognition, this article needs to adjust the network
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Fig. 4. CNN model structure.

model structure so that the CNN model can be applied to the
regression task of water depth retrieval [38].

This article considers other classic CNN, such as AlexNet,
VGG, and ResNet. AlexNet successfully applied tricks such as
ReLU, Dropout and LRN in CNN for the first time, which applies
the basic principles of CNN to deeper and wider network [39]. In
the VGG structure, the convolution kernel focuses on expanding
the number of channels, and pooling focuses on narrowing the
width and height, making the model architecture deeper, and
wider and the slow down the increase of the calculation [40].
ResNet has designed a residual structure using skip connection,
which makes the network reach a deep level and improves the
performance [41]. These classic algorithms have a common
feature: exploring deeper and wider neural networks to process
larger dimensional images. However, the test shows that the
deeper networks are not suitable for the retrival method. Because
the dataset cannot reach a larger dimension in terms of structure
and data volume, and is not suitable for deeper networks.

There is no theoretical support for the setting of the number
of convolutional layers currently. Through the experiment, the
multilayer convolutional layer has no obvious effect on the
retrieval results, and the time of model construction is longer.
So this article, uses CNN with only one convolutional layer to
perform the retrieval work. The structure of the CNN model is
shown in Fig. 4.

The convolutional layer is the core structure of CNN, and
it has the characteristics of a local receptive field. The local
receptive field means that each neuron of convolution layer is
only connected to the input domain in a small part of the area
[42]. This structure enables CNN to better grasp the spatial cor-
relation between remote sensing image pixels when processing
remote sensing data, which improves the accuracy of water depth
retrieval [43]. The expression for the convolution operation is as
follows [44]:

Y (i, j) = (I∗K) (i, j)

=
∑

m

∑

n

I (i+m, j + n)K (m,n) (3)

where I can be regarded as a 2-D image as input, K represents
a 2-D kernel function, i and j are variables, and m and n are
constants. In the CNN model, the variation of the parameters of
the front layer network will cause the distribution of the input
values for each layer to change, which may lead to the failure
of the model training. In response to this problem, this article
selects the BatchNormalization layer to normalize the results of

Fig. 5. Measured data distribution.

each hidden layer and then input them to the next layer [45]. The
formula for the standardization process is as follows:

x̂i ← xi − μB√
σ2
B + ε

(4)

yi ← γx̂i + β ≡ BNγ,β (xi). (5)

In this formula, μB = 1
m

∑m
i=1 xi is the mean of the data,

σ2
B = 1

m

∑m
i=1 (xi − μB)

2 is the data variance, x̂i is the stan-
dardized remote sensing pixel data, yi is the water depth data
after scaling and moving, and γ and β are parameters calculated
in the learning process.

The purpose of the activation function is to add nonlinear
capability to the CNN model, which improves the ability of
the CNN model to fit the nonlinear relationship between water
depth and image pixel values. This article uses a ReLU activation
function with sparse characteristics. ReLU can increase the
nonlinear fitting ability, save computing resources, and reduce
gradient disappearance, and over-fitting [46]. The formula of
ReLU is as follows:

y = max (0, x) . (6)

In a typical CNN, a tanh activation layer or softmax activation
layer is output, because the purpose of the classification task is
to output the probability that the image belongs to a certain
category or directly output the category of the image [47]. In
the water depth retrieval task, however, the output is the water
depth value calculated by the model. The water depth value is a
number with a range of R, so the tanh or softmax activation layer
cannot be selected. In this article, the linear activation layer is
adopted as the output layer at the end of the model, which makes
the value range of the output value satisfy the requirements of
water depth retrieval [48].

2) Model Creation: Models are constructed using North Is-
land image data and measured water depth data. Fig. 5 is a
statistical diagram of the water depth distribution of the study
area, showing that the measured water depth data used in this
article are mostly distributed in the shallow sea area, with only
a small amount of water more than 20-m deep. In this area, the
maximum water depth is 20.2 m, the minimum water depth is
0.1 m, and the average water depth is 7.6 m.

Data partitioning is one of the important prerequisites for
successful CNN training. The uniform distribution of data can
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TABLE II
NEAR PIXEL SELECTION EXPERIMENT

reduce the influence of outliers in the data on the model, thus
improving the precision of model training. Therefore, this article
randomize the data to divide the two sets of data into two separate
partitions such that the test data and training data have uniform
distributions of water depths. Training data, verification data,
and test data basically follow a 6:2:2 ratio. This article divides
the 1721 sets of remote image sensing data from WV2 into 1100
sets of training data, 300 sets of verification data, and 321 sets
of test data. The 427 sets of extracted remote sensing image data
from ZY3 are divided into 320 sets of training data, 50 sets of
verification data, and 57 sets of test data.

The randomly sampled training data and verification data,
along with the ZY3 data, are input into the CNN model, and
the corresponding training errors and test errors of WV2 and
ZY3 are calculated, respectively. The parameters are optimized
according to two types of errors.

The error function used in the CNN model training is mean
square error (MSE), and the formula is as follows:

MSE =
1

N

N∑

i=1

(Xi −X)2. (7)

In the above formula, X is the measured water depth value;
Xi is the water depth value obtained from the model retrieval;
N is the total amount of data.

A gradient-based optimization algorithm called adamax is
used for training. The optimization parameters are set as follows:
the learning rate is set to 0.02, β1 is set to 0.9, β2 is set to 0.999,
ε for numerical stability is set to 1e-8, and the attenuation rate
is set to 0.0 [49].

The curves of the training error and the verification error are
output after the training is completed. Fig. 6(a) shows the error
curve of ZY3 data. The two types of errors reach saturation after
about 200 training cycles, and then the error fluctuates within a
certain small range. Fig. 6(b) shows the error curve of WV2 data.
The resulting shows that the two types of errors reach saturation
after about 150 training cycles.

3) Parameter Adjustment: The topography of the shallow
sea area is often continuously changing. Therefore, considering
the terrain of the adjacent area in the experiment will have a
positive impact on the retrieval of water depth. In this section,
the subimage widths selected in this article are 3, 4, 5, 6, 7, and
8 pixels, and preset experiments are established to compare the
corresponding retrieval precisions between the different sizes of
pixel.

As can be seen from Table II, the number of suitable neigh-
boring pixels is approximately distributed around 6 ∗ 6–8 ∗ 8.

Fig. 6. Error curve of training. (a) ZY3 data. (b) WV2 data.

The best result of ZY3 appears in 7 ∗ 7, and the best result of
WV2 appears in 8 ∗ 8. Since the resolution of the WV2 image
used in this article is slightly higher than the resolution of the
ZY3, WV2 includes more pixels than ZY3 for the same area,
So, more adjacent pixels can be selected when using a higher
resolution image.

There is no accurate method for determining the number
of neurons for water depth retrieval currently. Therefore, the
prediction experiment is conducted to establish the water depth
retrieval model several times with varying numbers of neurons:
9, 12, 15, 18, 21, and 24 [50]. The experimental results are
shown in Table III. When using the ZY3 images, best results
occur when the number of neurons is 21. When using WV2
images, best results occur when the number of neurons is 18.

III. MODEL RESULTS

Two trained models are used for two sets of test data (WV2,
ZY3). The measured water depth value and retrieved water depth
value are mapped to observe the result of the retrieval model.
The abscissa is the serial number of the water depth point, and
the ordinate is the water depth value. The retrieval accuracy map
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TABLE III
NEURON SELECTION EXPERIMENT

Fig. 7. Retrieval accuracy. (a) ZY3. (b) WV2.

is shown in Fig. 7. The part where the blue line and the red line
do not coincide is the error.

As can be seen from the above figure, the model has higher
retrieval accuracy in the shallow water area. Visible light and
near-infrared cannot pass through the deeper water layer due
to the occlusion effect of sediment and marine plants in deeper
areas, so the true radiance value of deeper water depths cannot
be obtained, which reduces retrieval accuracy. The retrieval
errors of different water depth ranges are further summarized
in Table IV. The statistical results show that the accuracy of
water depth retrieval is significantly reduced when the depth is
lower than 15 m; the accuracy of retrieval is better when the
depth is greater than –10 m. The mean absolute error (MAE) of
ZY3 image can reach 0.668; the MAE of WV2 image can reach
0.447.

TABLE IV
ERROR STATISTICS

TABLE V
ERROR STATISTICS IN DIFFERENT MODEL

In this article, Numpy is applied to establish a linear regression
model [51]; Keras is applied to establish a single-layer neural
network model and a CNN model [52]; and then the above three
models are applied to perform retrieval experiments on WV2
data. A precision comparison analysis for these three models is
shown in the Table V.

The results show that the CNN has higher water depth retrieval
accuracy than the statistical linear regression model and the
single-layer neural network without considering adjacent pixels.

IV. DISCUSSION

The data used in the model application test section is the
ZY3 imagery, the GF1 satellite imagery, and the airborne lidar
sounding data from the Robert Island area. First, the portability
of the model is verified, demonstrating that the model can be used
in different regions and with different types of images. Then, an
application analysis of the model is carried out, and the model
is applied to the actual work, which verifies the feasibility of the
model in high-resolution water depth retrieval.

A. Model Portability

The established model is applied to the model test data, and
the adjusted model parameters are retained to perform the test
retrieval of the water depth. First, the model is used to construct
water depth data for the Robert Island area using the ZY3 images,
and the results are compared to the airborne lidar sounding data
of the same area. This verification tests the model using images
of the same type as the training images in a different geographical
region. The model retrieves 8869 sets of water depth data. The
average relative error of the water depth data calculated by the
model calculation and the airborne lidar sounding data is 0.9485.
The two types of data are plotted as scatter plots as shown in
Fig. 8(a), in which the x-axis is water depth data generated by
model, the y-axis is the airborne lidar sounding data, and the
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Fig. 8. Correlation coefficient between predicted and measured values. (a)
Predicted values from ZY3. (b) Predicted values from GF1.

correlation coefficient of the two types of data reaches 0.9148.
Next, the high-resolution satellite imagery and airborne lidar
sounding data in Robert Island area are used for verification in
the same way, testing the model with both a region and type
of image data which are different from those used in model
construction. The model retrieves 4874 sets of water depth data
and validates both types of data in the same way. The average
relative error is 0.9141 and the correlation coefficient is 0.8911,
as shown in Fig. 8(b). Through verifying the model against
these two sets of data, it can be seen that neither the type of
remote sensing images used nor geographical region affect the
model training test, and the robustness of the model is thereby
illustrated. By observing the two sets of test data maps, the figure
shows that the closer to the X-axis and Y-axis, the greater the
water depth value, the more scattered the data, the farther from
the fitted straight line. It can be seen that as the degree of data
aggregation and accuracy of water depth retrieval decrease as
water depth increases.

B. Application Test

This model can be applied to the field of remote sensing
image retrieval. Water depth data with the same resolution
of high-resolution remote sensing image are retrieved using
only a small amount of water depth measurement data and

TABLE VI
DIFFERENT DATA SELECTION METHOD ERRORS

TABLE VII
INFLUENCE OF DATA VOLUME ON THE ERROR OF DIFFERENT

REMOTE SENSING IMAGES

TABLE VIII
EFFECT OF WATER DEPTH ON ERROR

images, which reduces the burden of the actual measurement
task. Two remote sensing images and sounding data are used
for high-resolution retrieval of water depth. The accuracy of the
two selection methods, random selection and strip selection, is
tested, and two sets of control experiments are set. Table VI
shows the test results. Experiments show that the randomly
selected points retrieve the entire region with higher precision
because the randomly selected points are more able to sum-
marize the characteristics of the entire region. The fewer the
points, the more obvious the advantages of random sampling.
The model provides an idea for measurement. Higher accuracy
can be obtained with fewer points if point measurements are
sampled randomly. Strip-like domain airborne sounding data
can also produce high accuracy. Table VI shows the randomly
selected data retrieval test parameters.

It can be seen from the table that a small number of points
can adequately reflect the high-resolution water depth data. It is
possible to obtain better accuracy by using data wherein a higher
percentage of retrieval pixels have corresponding water depth
data, as shown in Table VII. An example is used to analyze the
retrieval accuracy of each water depth range. These 24 367 sets
of water depth data retrieved from the GF1 image 3% data (the
fifth line in the table) are divided into four parts: –20 to –15 m,
–15 to –10 m, –10 to –5m, and –5 to 0 m. MAE is calculated
separately for each part. The results are shown in Table VIII.
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Fig. 9. Retrieval result. (a) Water Depth from ZY3 image. (b) Water Depth from WV2 image.

TABLE IX
APPLICATION ANALYSIS

Table VII further illustrates that MAE increases as water depth
increases.

C. Model Application

The amount of water depth measurement data in the North
Island data used in model construction is small. The ZY3 images
and WV2 images are input as retrieval data into the water depth
retrieval model, and the water depth retrieval effect map (see
Fig. 9) is obtained after the retrieval. Map (a) shows the water
depth retrieval results from the ZY3 image, and map (b) shows
the water depth retrieval result from the WV2 image.

According to all the above results, this model also has the
following disadvantages. First, the result contains some outliers
(the water depth value of some points is greater than zero)
for many reasons, such as the individual singular points in the
pixels of the remote sensing image, the influence of water vapor
between the sea and land, and the bottom of the shallow water.
Table IX shows the statistics of outliers, which records the
total number of pixels, the number and proportion of outliers.
From the table, the result contains some only a small number of
outliers. Second, the portability of the model is limited because
the amount of data is limited; better results can be achieved if
the model samples are increased.

V. CONCLUSION

This article considers the spatial correlation between remote
sensing image pixels and the local connectivity of CNN. This
represents the first time that CNN has been applied to the task
of retrieving water depth data for shallow marine regions. The
data are applied to the model by preprocessing the remote
sensing image data and water depth data. The model is initially
established to achieve a certain precision through the basic
activation function, optimization algorithm, and standardization
processing of CNN. It can be concluded that the water depth
retrieval model is a complex nonlinear model, and the mapping
relationship between water depth values and radiance values in
remote sensing images is related to the spatial correlation in
the remote sensing images. At the same time, there are many
abnormal points in the measured water depth values, which
makes the distribution function of the data deviate from the
distribution function of the true water depth.

The model is further optimized by adjusting the number of
neurons and adjacent pixels, so that the model achieves higher
precision. The spatial resolution of the remote sensing image
should be considered when selecting the number of neighbors.
More neighboring pixels can be selected in the experiment for
images with high spatial resolution. The MSE test results of
the two scenes of images are 0.849 and 0.595, respectively. The
images are ZY3 (Scene1) and WV2, which are shown in Table I.
A graphical analysis of the model results can lead to some
conclusions: the retrieval effect is good in shallow water areas,
while in deep waters, the retrieval accuracy will be adversely
affected because the light cannot penetrate deeper waters. The
proposed CNN model has higher precision compared to the
linear model and the single-layer neural network which doesn’t
consider adjacent pixels.
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The model proposed in this article has a higher application
value. The model is verified by using different types of remote
sensing images. The results show that the two sets of different
data retrieval accuracy MSE can reach 0.9485, 0.9141, respec-
tively, and the water depth and water depth measurement after
retrieval have a high correlation. It proves that the model is
highly portable, which is superior to the traditional method.
Finally, the model is used in practical applications to verify
the practical value of the model. High-resolution water depth
data are obtained with good accuracy through a small amount
of water depth data and remote sensing image data, which is
of great significance for water depth measurement in shallow
waters of the ocean.
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