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Classification of Paddy Rice Using a Stacked
Generalization Approach and the Spectral Mixture

Method Based on MODIS Time Series
Meng Zhang , Huaiqing Zhang, Xinyu Li, Yang Liu, Yaotong Cai, and Hui Lin

Abstract—Paddy rice is a major stable food, accounting for about
20% world’s food supply. And the rice paddy, an important artifi-
cial wetland type, plays an important role in the regional ecological
environment. This study proposes a stacked generalization and
spectral mixture approach to map paddy rice using coarse spatial
resolution images [Moderate Resolution Imaging Spectralradiome-
ter, (MODIS)]. By this method, the time series MODIS enhanced
vegetation index images, phenological variables, land surface water
index, elevation, and slope images are all employed to produce the
optimal feature combination, which is then used to map paddy rice
by the stacking algorithm. The validation experiment using the
data of the Dongting Lake area showed that the proposed method
can improve the overall accuracy of single classifiers, including the
support vector machine, random forest, k-nearestneigbor (kNN),
extreme gradient boosting (XGB), and decision tree. Stacking
(XGB) achieves the highest overall accuracy (90.3%) and Kappa
coefficient (0.86), which are 2.8% and 0.03 higher than that of using
the single kNN classifier. Furthermore, its user accuracies for dis-
tinguishing double-cropping rice and single-season rice are 92.5%
and 90.0%, respectively. In terms of the paddy rice classification
accuracy, the stacking model is also superior to single classifiers.
Moreover, the MODIS-derived rice map obtained by the stacked
generalization approach and the spectral mixture method area has
a large determination coefficient (R2 =0.9975) with the government
statistic data. The results demonstrate the potential of the proposed
method in using coarse spatial resolution images for large-scale
paddy rice mapping.

Index Terms—Moderate Resolution Imaging
Spectralradiometer (MODIS) time series, paddy rice, phonological
variables, spectral mixture, stack generalization.

I. INTRODUCTION

PADDY rice feeds 1/5 of the world’s people. The demand
for paddy rice is increasing due to the fast-growing global

population and cause cultivate land and water shortage and
biodiversity damage [1]–[5]. As an important cultivated wet-
land, rice paddy consumes a large amount of fresh water and
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emits massive methane (CH4) into the atmosphere, so it has
a significant influence on atmospheric chemistry and climate
change [6]–[9]. Therefore, large-scale paddy rice field monitor-
ing is of great importance for food security, water resources
exploration, and environment sustainable development. Con-
ventional paddy rice mapping is based on land inventory at
the subcounty or subprovince level [10]. However, the census
data cannot demonstrate accurate spatial distribution and tem-
poral dynamics. Satellite images, such as Moderate Resolution
Imaging Spectralradiometer (MODIS)-based MCD12Q1 [11],
MERIS-based GlobCover [12], MERIS and SPOT-VGT based
CCI-LC [13], and Landsat-based FROM-GLC [14] have been
used to generate paddy rice maps. Although these data are easly
available, they are not timely updated, so they cannot get wide
applications in the regions with rapid economic development and
climate changes. Therefore, annually updated datasets of rice
production area and high spatial resolution distribution maps at
different scales are imperative.

Global imaging sensors can provide data for mapping paddy
rice areas on a global, continental, or regional scale [15]–[25].
The advanced very high-resolution radiometer and MODIS are
two widely used sensors in this field. The freely available
MODIS data has a wide coverage and high spectral–temporal
resolutions, so they have been increasingly employed for rice
mapping and monitoring [26], [27]. Furthermore, time-series
MODIS images show superiority in land-use type classifica-
tion and crop monitoring, as they can extract vegetation in-
formation at different growing stages [28]–[34]. Among the
time-series MODIS data, spectral [35]–[37], land surface water
index (LSWI) [17], [38], and vegetation index [e.g., normalized
different vegetation index (NDVI) and enhanced vegetation
index (EVI)] [39]–[41] have been widely used in monitoring
and mapping rice cultivated areas, because of their high temporal
resolutions. EVI is more consistent with the in situ phenology
data than NDVI [42]. The phenological parameters derived
from time series vegetation indexes also can help improve the
accuracy of paddy rice mapping [43], [44]. So this study uses the
EVI time series and the phenological parameters derived from
it to map paddy rice.

Most conventional paddy rice mapping studies based on
MODIS data use the pixel-based image analysis algorithm and
has made a great contribution to paddy rice monitoring. Xiao
et al. [17], [18] used several vegetation indices (LSWI, EVI,
and NDVI) derived from MODIS images (500 m) to map paddy
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rice fields in southern China and southeastern Asia by a threshold
method. They achieved correlations of R2 = 0.88 for flat regions
and R2 = 0.80 for hilly regions between the MODIS-derived
rice and the National Land Cover Project dataset in south-
ern China and obtained correlation of R2 = 0.97 between the
MODIS-derived rice and national agriculture statistical data in
southeastern Asia. Son et al. [4] and Sakamoto et al. [27], [45]
employed the EVI time series and growth calendar of paddy
rice (phenology features) to identify rice area from 2000–2005
to 2000–2012, respectively, in Mekong DeIta of Vietnam, and
achieved an average overall accuracy of about 80% and Kappa
coefficient of 0.7. Teluguntla et al. [38] got the flooded paddy
rice maps in the Krishna River Basin, India, using multitemporal
MODIS images and the DT method. The accuracy of the paddy
rice maps is approximately 78%. Thenkabail [36] evaluated the
capability of time-series MODIS image and fuzzy classification
(ISODATA and decision tree) for paddy rice mapping in south
Asia and achieved a nearly 70% overall accuracy and correlation
R2 = 0.97 between the MODIS derived rice and the subnational
statistics data. Although there are lots of classifier algorithms for
paddy rice extraction based on the MODIS dataset, a method that
can improve the classification accuracy for different or specific
scenarios based on these classifier algorithms is needed.

Classification is a basic task of data mining and machine
learning. How to improve the performance of classifiers is the
focus of relating researches [46]. Traditional classifiers, includ-
ing support vector machine (SVM) and DT, are often adopted
by learning classifier systems to train a set of samples to form a
model. Then the trained model is used to predict new test samples
[47]. However, with the increasing amount and diversification of
data, these traditional classification algorithms cannot process
existing data and solve practical problems well. Ensemble algo-
rithms of single classifiers show superiority in classification [48].
Those methods combine some weak prediction models to form
a good prediction model [48]. Now, some ensemble methods,
including boosting, bagging, and stacking, have been employed
in classification researches [49]. The performance of the bagging
method depends on the stability of its base classifiers. It works
well for unstable classification algorithms (DT, neural network,
etc.), but it is not ideal for the integration of stable classifiers [50].
The training set of the base classifier of the boosting method is
determined by the classification performance of the previous
base classifier and the samples that are faulty for the previous
base classifier that appear in the training set of next base classifier
with a higher probability. Although the generalization perfor-
mance of the combined classification algorithm is improved,
there may be too much bias in some conditions, which may
decrease the classification accuracy [51]. Stacking achieves the
optimal generalization on the basis of different algorithms and
secondary learning. The stacking method, with a strong ability
of nonlinear representation and generalization error reduction,
is designed to solve both bias (boosting) and variance (bagging)
[52].

This article develops a comprehensive framework for map-
ping paddy rice using multitemporal MODIS data. An ensemble
of classification algorithm (stacking method) is used together
to achieve paddy rice maps of high accuracy and sensitivity.

Fig. 1. Study sites (false-color composite, NIR: MODIS EVI on DOY241,
Red: MODIS EVI on DOY145, and Green: MODIS EVI on DOY 65).
(a) Dongting Lake area. (b) Poyang Lake area.

The validation experiments have been done in two commodity
grain bases of China. In addition, the spectral mixture method is
applied to obtain the rice planting area in the study area. The gov-
ernment statistics as well as the National Land Cover Dataset are
used to validate the proposed approach. The proposed method
can be used to solve complex land cover classification problems.

II. STUDY AREA AND DATA

A. Study Area

The Dongting Lake area is located in the middle reach of
the Yangtze River, southern China [see Fig. 1(a)]. The area is
featured by a subtropical monsoon humid climate. It has four
distinct seasons. The average annual temperature is 15–18 °C
and the annual precipitation is about 420 mm. This region has
a complicated water system with dense river networks. It is one
of the largest commodity grain base in China, growing double-
and single-cropping rice. The double-cropping rice has the early
rice growing between April and July and the late rice growing
between July and October. And the single-season rice grows
during June–September. Dongting Lake is the second-largest
freshwater lake in China, and it is also an important natural
wetland in China [53]. The vegetation grows in wetland, such as
sedge and reed, is easily confused with paddy rice. From 1950
to 1980, a large area of wetlands was reclaimed for rice culti-
vation to solve the food shortage. In recent years, the Chinese
government promulgated a series of wetland protection policies,
including returning farmland to lakes. So a lot of farmlands have
been transformed into wetlands. Therefore, accurate estimation
and monitoring of rice planting area in the Dongting Lake area
is not only important to national food security but also provides
technical support for the regional ecological environmental pro-
tection. The Poyang Lake area [see Fig. 1(b)] is selected to
validate the method proposed in this article. Poyang Lake is
the largest freshwater lake in China, which is also located in
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the middle reach of the Yangtze River and has similar climatic
conditions with Dongting Lake. Additionally, the Poyang Lake
area is also an important natural wetland reserve and commodity
grain base in China. The phenological period of rice growth there
is similar to that of the Dongting Lake area. In this article, the
main body of the lake and the counties or districts with large rice
distribution areas around the lake in the Dongting Lake area and
Poyang lake area are studied.

B. Data and Processing

In this study, EVI, LSWI, phenological parameters, and DEM
were employed to map the paddy rice in the Dongting Lake
area and Poyang Lake area. Google earth images, Sentinel-2
MSI images, and the 1:10000 land use/land cover (LULC) map
were used to assist in identifying the cover types and collecting
samples for training and testing models. In the sample selection,
Google Earth and land use data are the main data, while sentinel-
2 is only an assistant. Field data, Statistical Yearbook, and the
National Land Cover Dataset (NLCD) 2010 were employed to
validate the proposed method.

We used the 16-day composited vegetation index products
(MOD13Q1) of the MODIS data, which has a spatial resolution
of 250 m in the sinusoidal projection. The data were obtained
between January 1st and December 31st in 2018 by the USGS.
MOD13Q1 has NDVI, EVI, and four spectral bands, which are
blue (459–479 nm), red (620 -670 nm), near infrared (NIR)
(841–876), and shortwave NIR (SWIR-2) (2105–2155 nm).
LSWI is calculated by LSWI = (NIR-SWIR-2)/ (NIR + SWIR-
2) [54]. Band SWIR with a resolution of 500 m was resampled to
get a resolution of 250 m, which is the same as that of other bands
and the vegetation index. After removing the invalid values
from MOD13Q1 by pixel reliability images, we transformed all
MODIS datasets to UTM (WGS84) projection, zone 49 (North)
using ENVI5.1. In this study, EVI and LSWI were used to map
paddy rice.

The clear (0% cloud cover) Sentinel-2 images over the study
area (path/row: N0205_R075_T49RFM) were acquired in 2018
and downloaded from the European Space Agency website. The
Sentinel-2 image has 13 bands, including visible, NIR, and short-
wave bands, among which the five NIR bands (four red edge
bands and one NIR band) can be used for vegetation monitoring
and analysis. The topography effects and atmospheric delay in
the Level-1C data were removed or reduced by the SRTM DEM
and the Sen2Cor algorithm, respectively [55]. Moreover, 23
ground control points were selected to register the Sentinel-2A
images. All images were georeferenced to the UTM projection,
zone 49N. The processed Sentinel-2 MSI images were used to
assist in the selection of training samples.

We did a field survey between April 1st and July 31st, 2018,
when paddy rice fields were in flooding or transplanting. The
field site of each land cover type has a width and length larger
than 250 m. The field sites include double-season rice, single-
season rice, sedge, reed, and others. “Others” includes, but is
not limited to, forest, rain-fed cropland, water, and built up. The
number of the field sites for double-cropping rice, single-season
rice, sedge, reed, and others are 32, 30, 25, 22, and 36 [see

Fig. 2. Distribution of field sites in the Dongting Lake area and the Poyang
Lake area.

Fig. 2(a)] in the Dongting Lake area and 30, 29, 26, 29, and 34
in the Poyang Lake area [see Fig. 2(b)], respectively. For some
sedge and reed sites, we stood on the road running through the
large sedge and reed area, and for other sites, we went to the
center of wetland by boat. These field survey samples were used
to assess and validate the classification result.

We also selected the 30-m ASTER global digital elevation
model (DEM) version 2 and resampled it to a spatial resolution
of 250 m. The slope images derived from DEM were used to
map paddy rice together with elevation images.

We used the LULC maps (scale: 1:10000) derived from the
satellite ZY-3 imagery (3.5 m) together with Google Earth
images to collect training and testing samples. The LULC maps
were produced by the Bureau of Land and Resources of Hunan
Province and Jiangxi Province, China in 2018. The overall
accuracy of the LULC product was controlled within 95% by
field survey [53].

The rice cropping calendar and rice growth phenological
observations are from the Institute of Subtropical Agriculture
of China. We also used the paddy rice data of the NLCD 2015,
which has a scale of 1:100 000 and divides the land cover into
25 types. NLCD was transformed into a gridded database at
250-m spatial resolution to validate the MODIS-derived paddy
rice map.

In this article, we also validated the rice map derived from
the MODIS dataset by the data from the Statistical Yearbook of
Hunan Province and Jiangxi Province of 2018 (http://www.hntj.
gov.cn/) at the county level.

III. METHODOLOGY

The proposed paddy rice mapping approach includes six steps
(see Fig. 3).

1) Smooth the MODIS-EVI time series using the Savitzky–
Golay (SG) filter [56].

2) Derive several phenological indices from the smoothed
EVI time series by the dynamic-threshold method [57].

3) Use an improved SVM and the recursive feature elimi-
nation (SVM-RFE) method to obtain the optimal image
features based on MODIS EVI, phenological variables,
LSWI, elevation, and slope images.

4) According to the optimized features, discriminate the land
cover and crop types by a stacked generalization method.

http://www.hntj.gov.cn/
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Fig. 3. Flowchart of the proposed rice mapping method.

5) Obtain the paddy rice abundance map on the basis of
the spectral mixture analysis (the fully constrained least
squares, FCLS) using time series MODIS EVI.

6) Map the paddy rice using the results of steps 4) and 5).

A. MODIS-EVI Time Series Reconstruction and Phenological
Parameter Extraction

The MODIS-EVI data were generated from the synthetic data
by the maximum-value composite method, which can reduce the
noises caused by cloud and aerosol effects. Note that, the rest
noises in the image and inaccurate phenological information
were eliminated by an S-G filter using the TIMESAT software
[56]. We used the threshold method to derive the phenologi-
cal variables from the MODIS-EVI time series. The threshold
method assumes that a phenological phenomenon occurs if the
EVI value is larger than a given threshold [57]. Due to the
subtropical monsoon climate, the crops in the study area ripe
one or two times per year. Since rice has different growth char-
acteristics with other vegetation, using the fitted EVI time series,
we mapped five vegetation phenological parameters, which are
the start of the season (SOS), the end of the season (EOS), the
length of the season (LOS), the largest EVI value (MOE), and
the amplitude of EVI (AOE) during each considered season (see
Table II) [56], [57].

B. Feature Optimization

Feature optimization transforms the selected features into
a low-dimensional feature space that generates higher accu-
racy and reduces data redundancy and computational load. The
optimal features describing the characteristics of paddy rice
were selected from 51 MODIS features (23 EVI images, 23
LSWI images, and 5 phenological parameter images) and 2
DEM features (elevation and slope). The generally used feature
extraction methods are filter, wrapper, and embedded models.
SVM-RFE is a wrapper approach using the weight magnitude
as ranking criterion based on RFE, which has been successfully
used to estimate paddy rice phenology and other classification
experiments (see Algorithm I) [58].

Algorithm I: SVM-RFE Feature Selection Approach.

Input: (1) Training samples X = {x1, x2, . . . xn−1, xn}
(where n is the number of training samples); (2) class
label Y = {y1, y2, . . . yn−1, yn}.

Output: Feature subset r.
1) Initialize: Subset of surviving features s = [1, 2, … n];

Feature ranked list r = [];
Repeat until s = [];
2) Restrict training examples to good feature indices X =

X0 (:, s);
3) Training α = SVM-train (X, Y);
4) Compute the weight vector of dimension length(s)

w =
∑

αkykxk

5) Compute the ranking criteria ci = (wi)
2;

6) Find the feature with smallest ranking criterion f =
argmin(c)

7) Update feature ranked list r = [s(f), r];
8) Eliminate the feature with smallest ranking criterion s

=
s (1: f−1, f+1: length(s))

End

However, using SVM-RFE for feature optimization brings
some problems, for example, the correlations between image
feature subset described in Algorithm 1 may bring the possible
data redundancy [59]. We used an improved feature selection
algorithm to address these issues. The improved method consists
of three steps: 1) the image features are sorted according to
the value of Ci; 2) generate a feature correlation matrix R with
the size of n × n (n is the number of features); 3) the upper
triangular correlation elements rij are filtered or retained by a
given correlation threshold. The final optimal feature subset is
then generated

R =

⎡

⎢
⎢
⎢
⎢
⎣

r11 r12 · · · r1n

r21 r22 · · · r2n

· · · · · · . . . · · ·
rn1 rn2 rn3 rnn

⎤

⎥
⎥
⎥
⎥
⎦
. (1)

C. Rice Mapping by a Stacked Generalization Approach and
the Spectral Mixture Method

We first classified the final optimal feature subset by
several classifiers, including SVM, random forest (RF), k-
nearestneigbor (kNN), extreme gradient boosting (XGB) and
DT. According to the natural environment and main vegetation
types of the study area, we classified the land cover into eight
types: water, sedge, reed, double-cropping rice, single-season
rice, rain-fed crop, forest, and others (building, bare land, etc.)
[60]. Training samples were selected randomly from Google
earth images, the LULC map, and the Sentinel-2 MSI of the
region in 2018. Most samples come from Google Earth images
and LULC maps. More than 200 samples were selected for each
cover type.



2268 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 4. Concept diagram of Stacking.

We used the stacking algorithm, a generalization method,
to improve the accuracy of paddy rice mapping. The stacked
generalization fuses the base learning result utilizing “meta-
classifier.” In the stacked generalization, there are some indi-
vidual learners called “base-classifiers,” which are employed
to extract the primary feature from the base training dataset
and output the secondary training dataset for the secondary
learner [52]. In general, the base-classifiers are expected to
be diverse and good enough in order to achieve a satisfactory
prediction performance. In stacked generalization method, the
base-classifiers are first trained using the training dataset. Then,
the secondary training dataset is generated by base-classifiers.
Finally, the secondary learner (meta-classifier) is trained using
the base prediction map that is then employed to produce the
final result (Fig. 4). To avoid over-fitting and select the optimal
hyper-parameters of different machine learning algorithms, the
training samples were divided into k sets of the same size
(D1, D2, …, Dk) by k-fold cross-validation and the stratified
sampling method [61]. K-1 sets were selected as the training
set, and the rest was the test set. The results derived from
the test set were then used as the training samples of the
secondary classifier. And the classification results of the sec-
ondary classifier were taken as the final classification results
(see Algorithm II).

The classification accuracy was assessed by a confusion ma-
trix that calculates the overall accuracy, Kappa coefficient as
well as the producer and user accuracies. All the field data were
employed to validate the classification results.

Pixel mixing is another factor affecting the accuracy of paddy
rice information recognition due to the low spatial resolution
(250 m) of MODIS images and the complex surface features
in study area. In order to accurately extract the paddy rice
area in the study sites, a mixture analysis algorithm was used
to decompose the mixed MODIS pixels. By this method, the
typical EVI curves of different vegetation types were used as
the endmember spectra, which were then extracted from highly
mixed MODIS data by the constrained particle swarm optimiza-
tion (PSO) [62]. Endmembers extracted by PSO are purer than
that extracted by vertex component analysis (VCA) [62]. The

Algorithm II: Stacking Algorithm.

Input: (1) Training samples X = {x1, x2, . . . xn−1, xn};
(2) class label Y = {y1, y2, . . . yn−1, yn}; (3) base-
learner ϕ1, ϕ2, . . . , ϕT ; (4) meta-learner ϕ.

Output: H(x) = h′ (h1(x), h2(x), . . . , ht(x)).
1) train base-learner ht:
for t = 1, 2, …, T do
ht = ϕt(X, Y )

end for
2) get each base predict result zt and mate-learner

training set D’:
for t = 1, 2, …, T do
zt = ht(X)
D’ = D’ U zt

end for
3) train the meta-learner h’ = ϕ(D’).

“mixed endmembers” can be modeled as the combination of the
“pure endmembers”

SVCA = AVCA ∗ Spso (2)

AVCA = funmixing(SVCA, Spso) (3)

whereSVCA is the endmember spectra extracted by VCA, which
are regarded as mixed pixels; SPSO is the endmember spectra
extracted by PSO, which are regarded as pure pixels; AVCA

is the abundance of SVCA, and funmixing means the unmixing
method. The specific process and implement steps can be found
in reference [62].

Subsequently, we applied the FCLS [63], [64] to get the
unmixing results, and the expression of FCLS is as follows:

R
i
=

n∑

j=1

ρjRij + εi (4)

n∑

j=1

ρj = 1, ρj ≥ 0 (5)

whereRi is the reflectance of i band; ρj is the reflectance weight
of the jth endmember; Rij is the reflectance of endmember j at
i band; εI is the residual of i band.

The final paddy rice area in the study area was calculated as

Arice =

n∑

i=1

(P i × Fi)× 250× 250× 10−4 (6)

where Arice is the paddy rice area (hm2); n, Pi, and Fi are
the pixel numbers of rice, corresponding pixel of rice, and
abundance value of rice in pixel i. We utilize the NLCD dataset
and statistical data to validate the paddy rice area derived from
the MODIS time series.

IV. RESULTS AND ANALYSIS

A. Classification Ability of Phenological Parameters Based
on Samples

As the smoothed MODIS-EVI time series in Fig. 5 shows, the
most stable and longest growing season belongs to forest. The
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Fig. 5. Smoothed MODIS EVI time series.

Fig. 6. Phenological parameters of the Dongting Lake area.

rain-fed cropland and reed also have stable and long growing
seasons. The EVI value of sedge enjoys a fast growth from day
of year (DOY) 1 to DOY113, but drops quickly during DOY113–
DOY177. The lowest EVI value of sedge of the year appears on
DOY177. The double-cropping rice has the growing peaks on
DOY145 and DOY241. The EVI value of the single-season rice
climbs fast before DOY209, then plunges. Reed and rain-fed
cropland grow relatively quick between DOY1 and DOY129,
and the growth becomes slower and stable from DOY129 to
DOY257. The EVI value of forest shows no significant change.
Since different vegetation types have quite different EVI time
series, especially during critical growth stages, they can be
identified using the EVI time series.

The phenological variables derived from EVI time series are
illustrated in Fig. 6, which plots the values of 50 randomly
selected pixel points (based on Google earth images) for six
vegetation types in the study area. Forest has a long growing
season (∼191 days), which starts early (DOY82) and ends late
(DOY273). The SOS and EOS of the rain-fed cropland are
similar to that of the forest. The single-season rice and double-
cropping rice have later SOSs (DOY113 and 98, respectively)
and earlier EOSs (DOY256 and 263, respectively) than other
vegetation types. Sedge starts growing around March (DOY
75) and finishes growing around October (DOY 274), which
is similar to sedge. Forest and the rain-fed cropland have the
maximum and minimum EVI, respectively. The EVI values of
other vegetation types are very similar. In addition, forest has the
minimum seasonal AOE, but rice and sedge have large seasonal
AOE.

Fig. 7. Classification ability of the phenological parameter combinations.

TABLE I
OPTIMAL CLASSIFICATION FEATURE SUBSETS

In order to evaluate the classification ability of the pheno-
logical variables, we produced scatter plots by different phe-
nological variable combinations. As Fig. 7(a) and (b) show,
the two types of rice are separated from other vegetables, but
the rest vegetables are mixed together. So the combinations
of EOS-SOS and EOS-LOS can be used for distinguishing
paddy rice from other vegetation types. The combinations of
EOS-MOE [see Fig. 7(c)] and EOS-AOE [see Fig. 7(d)] can only
separate double-cropping rice, and the SOS-MOE [see Fig. 7(h)]
and SOS-AOE [see Fig. 7(i)] combinations can only extract
single-season rice to a certain degree. Despite the relative clear
boundaries among sedge, reed, rain-fed cropland, and forest
extracted by the combinations of LOS-MOE [see Fig. 7(f)] and
LOS-AOE [see Fig. 7(g)], the two types of rice are mixed. The
classification ability of other combinations are relatively weak.

B. Optimal Classification Features

For reducing the data redundancy, an optimal feature com-
bination was generated by the improved feature selection algo-
rithm as shown in Table I. The optimal classification feature
subsets are MODIS EVI on DOY49, DOY113, DOY193, and
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TABLE II
CLASSIFICATION ACCURACIES AND OPTIMAL PARAMETERS OF

SINGLE CLASSIFIER

TABLE III
CLASSIFICATION CONFUSION MATRIX OF KNN

DCR, SSR, and RFC represent double-cropping rice, single-season rice, and rain-fed
cropland.

DOY241, MODIS LSWI on DOY87 and DOY177, phenolog-
ical parameters of EOS and SOS, as well as the slope data.
Compared with the SVM-RFE algorithm, the improved feature
selection method can effectively remove the redundancy caused
by correlations between the image features.

Apart from the image features shown in Table III, some
other features also performed well in vegetation discrimination,
such as DEM, phenological parameters of LOS, and some other
MODIS EVI. However, these features have a high correlation
with the feature subsets selected by the improved method, so
they were filtered out.

C. Classification Results and Accuracy Assessment

To get the best classification accuracy of land cover types, we
used five classifiers, which are RF, kNN, XGB, SVM, and DT.
The classification accuracies shown in Table II demonstrate that
all the classifiers have the overall accuracy and Kappa coefficient
above 85% and 0.75, respectively. kNN has the highest overall
accuracy (87.5%) and Kappa coefficient (0.83). The user accu-
racy of the kNN algorithm for distinguishing double-cropping
rice and single-season rice are 85.9% and 87.0%, respectively
(see Table III). There are some misclassification between rice
and rain-fed cropland, rice and forest, as well as single-season
rice and double-cropping rice. A portion of paddy rice pixels
were misclassified as rain-fed cropland, because some crops
have the similar phenological characteristics with that of rain-fed
cropland. The pixel mixing is another major reason of rice
misclassification.

The results of using the above base-classifiers are combined
as the input of the secondary layer of the Stacking algorithm.
Stacking (RF) denotes the method using the RF algorithm as

TABLE IV
CLASSIFICATION ACCURACIES AND OPTIMAL PARAMETERS OF

STACKING ALGORITHM

TABLE V
CLASSIFICATION CONFUSION MATRIX OF STACKING (XGB)

DCR, SSR, and RFC represent double-cropping rice, single-season rice, and rain-fed
cropland.

the meta-classifier. The classification accuracies and optimal
parameters of different secondary classifiers in Stacking are
shown in Table IV. Stacking (XGB) gets the highest accuracy
(90.3%, 0.86). The lowest accuracy is achieved by Stacking
(DT) (87.1%, 0.79). The user accuracies of Stacking (XGB) for
distinguishing double-cropping rice and single-season rice are
92.5% and 90.0%, respectively, which are 6.6% and 3% higher
than that of using the single classifier (kNN) (see Table V). In
addition, the overall accuracy and Kappa coefficient of using
Stacking model are generally higher than that of using single
classifiers. Stacked generalization scheme can be viewed as a
more sophisticated version of cross validation and has been
shown experimentally to effectively improve the generalization
ability of ANN-models over using a single level learning model.
In the stacked generalization algorithm, the output result is
produced by the meta-classifier based on the predictions of
base-classifiers. Therefore, the correlation of different classi-
fiers in base-classifiers may be the main factors impacting the
classification accuracy. In general, the changes in classification
accuracies caused by different configurations (including differ-
ent algorithms, different combinations of base-classifiers, and
different meta-classifier) of the stacking model are minimal.
Thus, to achieve a stable and generalized performance, an
adaptive object-based stacked generalization algorithm that can
automatically search for the best combination of parameters is
needed.

The land cover maps of the Dongting Lake area obtained by
different methods are shown in Fig. 8. They are similar except for
a few small areas (black ellipse in Fig. 8). The vegetation types in
this area are diverse, so vegetation mixed pixels are inevitable.
Sedge and reed mainly grow around Dongting Lake, so they
are easily separated from the paddy rice. However, there are a
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Fig. 8. Land cover maps of the Dongting Lake area.

Fig. 9. Abundance map of (a) double-cropping rice and (b) single-season rice.

few mixed pixels in the place where rice grows together with
sedge and reed. The pixel mixing is serious between paddy rice
and forest and rain-fed cropland, especially crops with similar
phenology to rice.

D. Rice Mapping Results and Accuracy Assessments

In this study, the EVI curves of different vegetation types
were utilized as the endmember spectra, and FCLS was used
to decompose the mixed pixels to obtain the abundance map
of rice (see Fig. 9). In the areas with one cropping type (either
double-cropping rice or single-season rice), the abundance is
relatively large, even close to 1, indicating that the proportion of
mixed pixels is small. For the transition region of the two rice
types, or the cross-bands, the abundance value is small, that is,
the proportion of mixed pixels is large.

The rice distribution map generated by the proposed method
is shown in Fig. 10(a). In this region, the double-cropping rice
distributes much wider than the single-season rice, especially in
the north part with dense river networks and lakes. However, the
single-season rice mainly grows around Dongting Lake or along
rivers, and it has sporadic distribution across the study area.

From Figs 9 and 10(a), we finally derived the area of the
paddy rice in the Dongting lake area. The correlation analysis
shows that the MODIS-derived rice area has a strong corre-
lation (the determination coefficient 0.9975) with that of the
government statistics at the county level for the year of 2018.
The determination coefficient (R2) of the regression model in

Fig. 10. Paddy rice derived from (a) the MODIS time series and (b) the NLCD
product.

Fig. 11. Regression analysis between the MODIS-derived rice area and statis-
tics data.

TABLE VI
RE BETWEEN THE MOD AND THE GRA STATISTICS

Fig. 11 indicates that the model could explain the variability in
the data. In general, the paddy rice area derived from MODIS
data has slight overestimations, and the average relative error
(RE) is about 7%. The RE between the MODIS-derived rice
areas (MOD) and the government’s rice area (GRA) statistics
ranges from 2.0% to 14.5% (see Table VI), which may be caused
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Fig. 12. Classification accuracy of kNN using the features obtained by differ-
ent feature selection methods.

by the overestimation of MOD. Counties/districts with larger
rice distribution area have larger RE between the classification
results and statistical data. For example, the RE of counties with
a rice distribution area of more than 10 000 ha is generally larger
than 7.5%. However, this does not mean that the larger the rice
distribution area, the greater the RE. The rice distribution area
of Xiangyin County is 11 248 ha, which is 17 237 ha smaller
than that of Miluo County. However, the paddy rice estimation
RE of Xiangyin County is twice of that of Miluo County. Part of
the reason for this phenomenon is that the MODIS-derived rice
areas was calculated by pixel counts, while the GRA statistics
was estimated by the total sown area.

V. DISCUSSION

A. Comparison Between the Improved Feature Selection
Method and SVM-RFE

In order to estimate the efficacy of the improved feature
selection method, we compared it with SVM-RFE in terms
of the classification accuracy of their selected features. These
two feature selection methods are independent of the classifier,
only kNN classifier was reported. Since the results of other
classifiers are similar to kNN, their results are not provided.
As shown in Fig. 12, based on the highest accuracies achieved
by the SVM-RFE and the improved method, the dimensions
of the optimal features are 9 and 18, respectively. The results
demonstrate that the improved feature selection method can filter
some related features, which will reduce the data redundancy.
Moreover, the improved feature selection method can determine
the optimal features by the red dot shown in Fig. 12, whereas
other methods (such as mRMR, FSDD, and CFS4) have to
compare the classification accuracy of different numbers of
features to get the optimal features, which involves a lot of
computation [59]. This means the improved feature selection
method has higher efficiency than other methods.

B. Stability and Generalization of the Stacking Algorithm

We utilized another commodity grain base (Poyang Lake area)
of China to evaluate the stability of the stacking algorithm. The
Poyang Lake area also has the subtropical monsoon climate, with
complex and diverse vegetation types, which is very suitable

TABLE VII
CLASSIFICATION ACCURACIES AND OPTIMAL PARAMETERS OF

SINGLE CLASSIFIERS

TABLE VIII
CLASSIFICATION ACCURACIES AND OPTIMAL PARAMETERS OF

STACKING ALGORITHMS

Fig. 13. Land cover maps of Poyang Lake area.

for testing the stability of the stacking model. The classifi-
cation accuracies and optimal parameters of single classifiers
and stacking combination models are presented in Tables VII
and VIII, respectively. The kNN classifier has higher overall
accuracy (87.2%) and Kappa coefficient (0.83) than other single
classifiers, which is the same to the results of the Dongting Lake
area. The highest overall accuracy is also obtained by Stacking
(XGB). Therefore, the Stacking algorithm has good robustness
and stability.

As shown in Fig. 13, the land cover maps obtained by different
classifiers are very similar except for some small areas. Overall,
the stacking (XGB) has a better performance than single clas-
sifiers due to the strong generalization ability of the stacking
model.

As Table VII shows, DT gets the lowest overall accuracy
(84.7%), so we only used the results obtained by RF, kNN,
XGB, and SVM as the training dataset to do the land cover
classification (see Table IX). The best results is obtained by
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TABLE IX
CLASSIFICATION ACCURACIES AND OPTIMAL PARAMETERS OF

STACKING ALGORITHM

staking (XGB), with the overall accuracy of 88.2%, lower than
that in Table VIII. But the accuracy of the stacking (RF) has been
improved slightly (0.3%). Generally, the classification results
considering DT is better than that doesn’t consider DT. By
combining the results of different classifiers, the generalization
ability of the stacking model is improved, which is also one of
the advantages of the ensemble learning.

C. Merits and Demerits of the Proposed Method

As an important food and wetland plant on the earth, paddy
rice plays a significant role in food security and regional ecology.
In this study, we used a stacked generalization approach and
spectral mixture method to generate paddy rice maps from coarse
resolution images. The method employs time series MODIS in
the growing stages of paddy rice, water index, and elevation
images, as well as the phenology variables derived from MODIS
time series. This approach considers the soil and canopy char-
acteristics of paddy rice during the critical growth phases of
rice and also the generalization ability of stacking algorithm.
The results show that the proposed method could achieve high
accuracies in paddy rice mapping at large scales. Compared with
the studies using MODIS dataset and the pixel-based method
in the study regions with similar conditions, our approach can
achieve similar or higher classification accuracies [4], [17], [18],
[27], [36], [38], [45]. The determination coefficient (R2) between
the MODIS-derived rice and statistical data have also been
increased by the proposed method [17], [18], [38].

A number of factors could affect the accuracy of paddy rice
mapping when using the proposed method. One is the tempo-
ral resolution of the MOD13Q1 dataset. The 16-day MODIS
time series EVI was generated by the maximum value of each
individual pixel in a period of 16 days [17]. In this process,
some information in the paddy rice growth stage may loss. Using
daily MODIS data can improve the growth phase identification,
but would result in larger datasets and cloud contamination.
Another factor is the residual cloud contamination in the 16-day
MODIS time series EVI, which is quite common in tropical and
subtropical areas. Synthetic aperture radar (SAR) is a promising
way in mapping paddy rice, because of its well-timed image
acquisitions and independence of meteorological conditions.
However, it is expensive to acquire time-series SAR images
covering large-scale areas. The third factor is the selection of
machine learning classifiers in the stacking algorithm. In this
study, we chose five frequently-used machine learning classi-
fiers, and more machine learning classifiers will be used in future
researches.

VI. CONCLUSION

In this study, a stacked generalization approach and the spec-
tral mixture method were employed to map paddy rice using time
series MODIS EVI data of the Dongting Lake area. The result
has demonstrated that the proposed method can map large scale
paddy rice using coarse spatial resolution images. Despite the
influence of cloud cover, mixed pixels and other potential issues,
the overall accuracy and Kappa efficient are higher than 90.3%
and 0.86, respectively. The results are reaffirmed by the strong
correlation between the derived rice area and the government
rice area statistics at the county level (R2 > 0.9). The rice area
derived from the MODIS data is slightly overestimated, with an
RE between 2.0% and 14.5%. Our paddy rice mapping algorithm
focuses on the detection of growth stages of the paddy rice, and it
provides spatial distribution with acceptable accuracy of paddy
rice in other large-scale areas.
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