IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

2663

An Improved Low Rank and Sparse Matrix
Decomposition-Based Anomaly Target Detection
Algorithm for Hyperspectral Imagery

Yan Zhang ', Yanguo Fan ", Mingming Xu

, Member, IEEE, Wei Li

, Senior Member, IEEE, Guangyu Zhang,

Li Liu, and Dingfeng Yu

Abstract—Anomaly target detection has been a hotspot of the
hyperspectral imagery (HSI) processing in recent decades. One of
the key research points in the HSI anomaly detection is the accurate
descriptions of the background and anomaly targets. Considering
this point, we propose a novel anomaly target detector in this article.
Improving upon the low-rank and sparse matrix decomposition
(LRaSMD) approach, the proposed method assumes that the low-
rank component can be described as the parts-based representa-
tion. Parts refer to the various ground objects in HSI. A new update
rule of the low-rank component and sparse component is proposed.
The proposed approach can be divided into three main steps: first,
further refining the low-rank component in the LRaSMD model
as the parts-based representation. Then, the HSI is decomposed
as three parts: the product of the basis matrix and coefficient
matrix, sparse matrix, and noise. Second, the basis vectors matrix,
coefficient matrix, and sparse matrix are solved by the new update
rules. Third, since the anomaly targets exist in the sparse matrix,
the sparse matrix is thus employed to detect the anomaly targets.
The experiments implemented for five data sets demonstrate that
the proposed algorithm achieved a better performance than the
traditional algorithms.

Index Terms—Anomaly target detection, hyperspectral imagery
(HSI), low rank, matrix decomposition, parts-based, sparseness.

1. INTRODUCTION

YPERSPECTRAL imagery (HSI) has a high spectral
I I resolution. Therefore, it contains abundant and detailed
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spectral information of ground objects [1]-[3]. This advantage
greatly improves the capabilities in distinguishing the ground
objects, even for the minor differences between different objects
[4]-[6]. In that case, the target detection and classification using
HSI can be more effective than using multispectral imagery.
The former application aims at extracting the objects of interest
from a specific scene. The conventional target detectors are
usually designed as the matching filter and subspace projection
detector, such as the adaptive matched filter [7], spectral angle
matching [8], and orthogonal subspace projection [9]. However,
the target spectra information is not always available. Therefore,
the anomaly target detection is suitable when the target spectra
are absent. The anomaly detectors use the characteristics of the
anomaly target instead of prior target knowledge to implement
the detection processing.

The anomaly target detection focuses on extracting the objects
from the original HIS. The spectra of the anomaly targets are
distinctly different from the typical background. In the anomaly
target detection for the HSI, there are two key problems: first,
the description of the anomaly target and background, and
second, the separation of the anomaly target and background.
The description of the anomaly target and background is the
first step and important step in the anomaly target detection for
the HSI. A well-designed description model should account for
the most fundamental difference between the anomaly target and
background, thereby clearly delineate them.

In the mainstream approaches, many anomaly detection al-
gorithms have focused more on the background statistical in-
formation estimation. The Reed—Xiaoli detector (RXD) [10] is
considered as the benchmark algorithm of the anomaly target
detection and it is a typical detector using the background statis-
tical information estimation. In RXD, the estimated background
covariance matrix and mean value are utilized to describe the
background. Thus, the accuracy of the background covariance
matrix can greatly affect the detection performance of RXD.
Some algorithms have subsequently been proposed to solve this
problem. For instance, a locally adaptive iterative RXD [11]
uses the last time results of RXD to update the background
information. The blocked adaptive computationally efficient
outlier nominators (BACON) [12] combine the iteration strategy
with the original RXD to improve the detection performance. In
order to reduce the influence of the anomaly target on the back-
ground information, the principal component corresponding to
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the larger eigenvalue is removed in the subspace RXD (SSRX)
[13]. In summary, almost all RXD-based improved algorithms
remove the suspected anomaly target to obtain the accurate back-
ground information. Although the above-mentioned algorithms
can solve the inaccuracy problem of the background information
to an extent, the lower order statistical information still had
limitations in accurately describing the background. Therefore,
determining how to model the background and anomaly target
accurately is still an important problem in the hyperspectral
anomaly detection.

In recent years, the anomaly target detection algorithms based
on the low rank and sparse matrix decomposition (LRaSMD)
[14] and sparse representation (SR) [15]—[17] have been increas-
ingly focused upon and widely researched. The main tenet of
LRaSMD and SR is that the background of HSI has a low-rank
property. The low-rank property of the background means that
the background of HSI is composed of limited materials and
the pixels of the same material are continuous. Conversely, the
anomaly targets have low probabilities and small occupation
pixels [18]. Thus, the anomaly targets have a sparse property. The
LRaSMD-based algorithms consider that the original HSI can be
decomposed as a low-rank matrix, a sparse matrix, and noise.
The anomaly targets are included in the sparse matrix. Some
LRaSMD-based algorithms have demonstrated a strong detec-
tion performance, such as the LRaSMD-based Mahalanobis dis-
tance method for hyperspectral anomaly detection [14], a novel
low-rank and sparse decomposition [19], Euclidean distance-
based LRaSMD (EDLRaSMD) [20], the LRaSMD-based dic-
tionary reconstruction and anomaly extraction framework for
hyperspectral anomaly detection (LSDRAD) [21], and so on
[22]. The advantages of the LRaSMD-based algorithms can be
summarized as follows.

1) They can separate the anomaly target and background
through their intrinsic properties, which refer to the sparse-
ness of the anomaly target and the low rank of the back-
ground.

2) The algorithms consider the sparse, the low rank, and noise
component flexibly and simultaneously.

3) They do not require a sliding window.

Based on these advantages, we chose the LRaSMD model as
the basic framework of the description model used in this article.
The LRaSMD-based algorithms search for the solutions from
holistic versions. Some parts-based characteristics of HSI and
the linear relationship between each pixel and basis endmember
may be ignored. The parts-based characteristics of HSI can be
interpreted as that the HSI is composed of the limited ground
objects and each ground object is a “part” of HSI [23]. All pure
endmembers of the ground objects can be interpreted as the
“parts” of HSI. Although the SR-based algorithms can use some
limited dictionary atoms to reconstruct the background and the
target, they cannot solve the anomaly target detection due to
the lack of a target dictionary. From another perspective, the
atoms in the SR-based algorithms are over complete and cannot
represent the basic ground object endmember.

The non-negative matrix factorization (NMF) [23] technique
is an excellent parts-based representation approach that has been
successfully employed in the face recognition, classification
[24] as well as target detection [25], [26]. For instance, a novel
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hyperspectral anomaly detection based on similarity constrained
convex NMF (SC-CNMF) [27] utilizes the improved convex
NMF to reconstruct the background, which has presented a
great detection performance. The main content of NMF is that
the background of the original HSI can learn the parts-based
representation that is more consistent with the way that our
brain cognizes the objects. We can utilize this advantage of
NMF to accurately reconstruct the parts-based representation
of the low-rank component. To further improve the accuracy of
the reconstructed imagery, some modified NMF algorithms with
different constraints have been proposed [28], [29]. In [23], the
sparseness constraint largely controlled the factorization speed
and restoration accuracy in NMF.

In this article, we propose an improved LRaSMD-based
anomaly target detection algorithm for the HSI, called the parts
representation-based low rank and sparse matrix decomposi-
tion anomaly detector (PRLRaSAD). Herein, the sparse NMF
(SNMF) is employed to assist in solving the basis vectors matrix
and the coefficient matrix. Once the accuracy of the low-rank
component improves, the accuracy of the sparse component will
improve simultaneously.

Compared with the traditional LRaSMD-based algorithms,
the main contributions of the proposed method are summarized
as follows.

1) The traditional LRaSMD-based algorithms search matrix
factorization results from searching a holistic version,
and some linear and parts-based characteristics may be
ignored. The proposed method models the background
using a linear representation of the basis vectors that can
resolve this issue.

2) The proposed method separates the decomposition opti-
mization problem into three subproblems: the optimiza-
tion of the basis vectors matrix, coefficient matrix, and
sparse matrix. We can obtain not only the low-rank ma-
trix and sparse matrix but also the basis vector and the
corresponding coefficient matrix of the low-rank matrix.

The rest of this article is organized as follows. Section II
introduces the basic knowledge of the LRaSMD and SNMF
algorithms. Then, Section III presents the proposed algorithm.
In Section IV, the experiments, implemented for five data sets,
are depicted and discussed. Finally, Section V concludes this
article.

II. RELATED WORK
A. Low Rank and Sparse Matrix Decomposition

The low-rank property of the matrix indicates that the columns
and rows of the matrix are highly correlated. In the HSI domain,
itcan be interpreted that the HSIis composed of limited materials
and the pixels of the same materials are continuous [30]. Due
to the low probability and small occupation of the pixels, the
anomaly targets are labeled as the sparse instead of the low-rank
property.

Based on the different properties of the ground objects, the
model of LRaSMD for HSI is expressed as follows:

X=L+S+F (1)
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where X € R"™ (b is the number of the spectral bands and n
is the number of the pixels in HSI, L is the low-rank matrix, S
is the sparse matrix that contains the anomaly targets, and F is
the noise.

To find an optimal solution of (1), the decomposition error
minimization objective function is constructed. The rank of L
and the sparseness of S also are controlled during the search
for the solution of (1). Therefore, the problem is converted as
follows:

min | X — L - S|%
s.t. rank(L) < k,card(S) < rn 2)

where k is the upper bound rank number of matrix L and rn
reflects the sparseness degree of matrix S.

The optimization problem of (2) can be converted into two
subproblems. Then, (2) is replaced by

L,=arg min | X —-L-S8, .|

rank(B)<k

|X — L1 —S|%. 3)

min
card(S)<rn

S; = arg

The matrices L and S are updated alternately. Then the sparse
matrix, which includes the anomaly targets, and the low-rank
matrix are obtained.

B. Sparse Nonnegative Matrix Factorization

The low rank of the HSI background can be restored through
several basis vectors and corresponding coefficients. The low-
rank theory of the HSI background is vastly consistent with
the parts-based representation theory in NMF. NMF considers
that the natural signal can be stored effectively by learning a
parts-based representation [23]. The general formula of NMF is

X ~WH “4)

where X is the original matrix, W is the basal low-rank matrix,
and H is the coefficient sparse matrix.

Then, a proper objective function is needed to find the solution
of the matrices W and H . There are two widely used objective
functions [31]

P X -wHP =Y (x, - (wh),) )

X
P (X ||WH )= Z (XijIOgm - X+ (WH)ij>
ij
(6)

where i and j are the row and column number of matrix X,
respectively.

Equation (5) measures the Euclidean distance between the
original matrix and the reconstructed matrix, (6) is a variant of
the Kullback-Leibler divergence that measures the similarity
between matrix X and matrix WH.

Then, we consider the solution of NMF as the optimiza-
tion problems of two alternative formulations according to (5)
and (6)

min|| X — WH|?
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st. W >0,H >0 %)
min P (X |WH)

st. W >0,H > 0. )

Then, the multiplicative update rules of matrices W and H
can be given by the gradient descent method

Wik + Wi(XHT), /(WHH"),,

Hyj + Hiyj(W'X),,;/(W'WH),;
st.W >0,H >0 )

Wik [Wzk Zj (ijXij/(WH)ij)} /Z]. Hy;

Hyj « [ij Zl (WikXij/(WH)ij)} /Zi Wi

st. W >0,H >0 (10)

where k is the number of the basis vectors in W.

The convergence of the multiplicative rules was proved in [23]
and [31].

The learning speed of the basis matrix and coefficient matrix
is closely related to the sparseness of the training data [15], [23].
From another perspective, controlling the number of the basis
vectors in recovering each pixel of the background of HSI can
reduce the redundancy and pinpoint the most accurate solution.

The SNMF selects the second objective function to ensure the
completely multiplicative update rules of matrices W and H.
Then, the cost function of SNMF [32] is defined as

(WH);;
+ « Z hkj
koj

where « is the positive constant.

X

(1)

III. PROPOSED METHOD

A. PRLRaSAD Model for HSI

The matrix L in the LRaSMD model represents the low-
rank component in HSI. This model is holistic, which means
that it searches the low-rank matrix solution from an overall
perspective. As we know, each HSI is comprised of several
different ground objects. In other words, a linear representation
relationship exists between the basis vectors and each pixel in
HSI [7]. The basis vectors can be viewed as all the endmembers
in HSI. Taking the linear representation relationship between
the basis vectors and each pixel in HSI into consideration, the
model of PRLRaSAD can be described as

X = B xCrxj + Sixj + Niyj (12)

where Xis the two-dimensional hyperspectral matrix; i is the
number of the bands and j is the number of the pixels in HSI;
B is the basal low-rank matrix; k is the number of the basis
vectors and it can be interpreted as the number of the endmember
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categories in the background; matrix C' is the sparse coefficient
matrix; S is the sparse matrix including the anomaly targets and
N represents the noise.

The advantages of the PRLRaSAD model can be summarized
as follows. First, it preserves the representation advantage of
the LRaSMD model, which divides the HSI as the sum of the
low-rank component, sparse component, and noise. Second, the
PRLRaSAD model fully utilizes the parts-based representation
and global representation. The background component has a
low-rank property that is easily projected into a low-dimensional
space. The potential basis structure of the background would be
clearer in the low-dimensional space. Then, the background is
reconstructed as the parts-based representation. The sparseness
property of the anomaly target makes it difficult to store via
the basis vector. Therefore, the anomaly target is modeled by
a holistic representation. When we consider both the internal
connection, which is between the basis vectors and each pixel
in HSI, and the external connection, which is between the low
rank and sparse component, the decomposition accuracy can be
improved.

B. PRLRaSAD Method

Based on the description model of (12), the solution of (12)
can be acquired by solving the following optimization problem:

. (X - S)ij
min P = Z <(X — ,S')”]QgW _

C)U> + achj
kj

(X — S)ij

s.t. rank(B)

13)

In (13), there are three matrices that must be solved. The
optimization problem in (13) can thus be converted into three
subproblems

B, = arg Hm{{rggn)qc P(B,Cy-1,S5:-1) (14)
C;=argmin P (B;_1,C,S;_1) (15)
S, = i P(B,_1,C:_1,8S). 16

! arg carj?&lvglﬁ’rn ( b ) (16)

The SNMF method is employed to solve the basis matrix B
and coefficient matrix C'. When we solve the matrices B andC,
matrix S is fixed. Then, the objective function is converted as

/

. X'ij
min P = Z (X’ijlog (BC;
—|—0¢ZC;€]'
kj

B)<k Y By=1B>0,C>0

- X/ij + (BC)U‘)

ij
s.t. rank( a7

whereX'=X — S.

<k, Y By=1, card(S)<rn, B>0, C >0.
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When updating matrix B, matrix C'is fixed. Matrix B is thus
converted to

B = argmin L(B) = argmin P(B, C)

s.t.rank(B

)<k Y Byx=1,B>0. (I8)

In (18), a sum-to-one constraint is added to matrix B. This
is an effective strategy to avoid the invariance of three matrices
during the update process.

Followed by Lee and Seung [31], we define the auxiliary
function to solve (18)

= (@ iloga’s; —'ij)

%)
+Z (BC),; — >
0,5,k

Ckj
— log k J —|—a§ Clj
Zzl zcly

where b}, and B’ are the results of the previous step.

The auxiliary function has the following properties:
G(B,B) = L(B) and G(B, B') > L(B) [23]. Then the aux-
iliary function can be seen as the upper bound of function L(B).
We minimize the auxiliary function to solve (18) and the update
rule of matrix B is expressed as follows:

G(B,B)

b ik k]
i L lo bz ;
J Zzl b/ 1l ( g( kckrj)

19)

B, = argminG(B, B'). (20)
C

Then, matrix B can be solved by 0G(B, B’)/0b;;, = 0. The
update rule of matrix C' can be solved through the same method.

Finally, the completely multiplicative update rules of matrix B
and C are as follows:

zk Z ij

By

Zi Bk

Cij [ij > (BuX'y/(BC),;)| /(1+a).

/ZCM

'Lk<_ ”/ BC

Bik —

(21)
i
The subproblems (14) and (15) can be solved by (21). Then,
the matrix .S can be updated according to

Si=Po (X — Bi-1C1) (22)

where  is the first rn largest nonzero vectors in |X —
B; 1C; 1| and P, implements the projection of matrix S
onto ).

The final update rules of the entire solution for the PRL-
RaSMD method combine (21) and (22). Three matrices are
updated alternately.

After obtaining the sparse matrix .S, the PRLRaSAD detector
can be defined as:

Dprirasap=|Six;ll5- (23)
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Algorithm 1: Parts Representation-Based LRaSMD
Anomaly Target Detector.

Input: a) X € R"™™", the two-dimensional HSI matrix
b) k, the maximal rank number of matrix B
¢) r, the cardinality of matrix S
d) ¢, the iteration number

Output: a) B, approximation of the basis vector matrix

b) C, approximation of the coefficient matrix
¢) S, approximation of the sparse component
d) Dpri,rasAD, the detection result of the
PRLRaSAD detector
Procedure (1) Initialize: a) By <using RXD

b) Cy, Sy < calculated by (24)

2) o <—calculated by (26)

3) while (1)

4) update the matrices B;, C;, S; by (21) and

(22)

S5)ifi >t

6) break

7) end if

8) end while

9 return B,C, S

10) DprrrasaD < calculated by (23)

The anomaly target prominently shows a large value in the
results.
The procedure of PRLRaSAD is shown in Algorithm 1.

C. Initialization and Termination Condition

In the traditional LRaSMD-based and NMF-based algo-
rithms, the initialization of the matrices B, C, and S is
selected as random. However, the random initialization may
lead to extremely uncertain factorization results, which could
subsequently affect the performance of the proposed detector
randomly.

In the proposed method, we use the global RXD detector to
initialize the basis vectors in matrix B. The pixel vectors in the
original HSI, which have the small corresponding values in the
RXD result, are selected to compose the initialized matrix B.
Then, matrices C' and S can be initialized as

Cc=(B"B) 'BTX

S=X - BC. 24)

The accuracy of matrix S has a close relationship with ma-
trices B and C'. Therefore, we can use the empirical method in
the NMF-based algorithms to terminate the update process of
the three matrices.

Lee and Seung [23] have proved that the original NMF al-
gorithm, which uses the random method to initialize matrices
B and C, can mostly converge after 50 iterations. The iteration
number was set to 500 in the experiments of that study. In many
NMEF-based algorithms, the iteration number ranges from 10
to 200 [31], [32]. Therefore, the iteration number used in the
following experiments was set to 100. Since the initialization
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Fig. 1. (a) San Diego scene. (b) Location of anomaly targets. (c) Spectra of
main materials in the San Diego scene.

(@ (b) ©

Fig. 2. (a)PaviaC scene. (b) Location of anomaly targets. (c) Spectra of main
materials in the PaviaC scene.

method is more stable than the traditional NMF-based algo-
rithms, 100 iterations are enough to achieve the stable factoriza-
tion results for matrices B and C.

IV. EXPERIMENTAL RESULTS
A. Hyperspectral Data

Five data sets were utilized to verify the effectiveness of the
proposed method, including San Diego, PaviaC, Texas coast,
pushbroom hyperspectral imager (PHI), and Cri data sets.

The first data setis shown in Fig. 1(a) with the size of 100x 100
pixels. The corresponding ground truth location is shown in
Fig. 1(b). The San Diego airport data set was acquired by the
airborne visible/infrared imaging spectrometer (AVIRIS) sensor.
The San Diego data set has 189 effective spectral channels and
excluded a low signal to noise ratios or other bad bands. The
wavelength ranged from 370 to 2510 nm. Three white aircraft
were selected as intended anomaly targets. The spectra of the
main ground objects are shown in Fig. 1(c).

The second data collection is a part of Pavia Centre and
University data set (referred to as the PaviaC data set) covering
an area of 105 x 105 pixels, as shown in Fig. 2(a). It was collected
by the reflective optics system imaging spectrometer sensor. The
ground truth of the anomaly target in the PaviaC scene is shown
in Fig. 2(b). The PaviaC scene is mainly composed of water,
bridge, and several cars. The spectra of the cars are distinctly
different from the other ground objects, and thus, the cars are
the intended anomaly targets. The spectra of the main ground
objects are shown in Fig. 2(c).

The third data set is one of the ABU data set [34], with a size
of 100x 100 pixels, and is shown in Fig. 3(a). This data set was
captured by the AVIRIS senor at the Texas coast. The ground
truth of the Texas coast scene is depicted in Fig. 3(b). The main
ground object in the Texas coast scene is the vegetation. The
spectra of the main ground objects are shown in Fig. 3(c).



2668

—target
background|

spectral range

speciral bands "

(a) (®) (©)

Fig. 3. (a) Texas coast scene. (b) Location of anomaly targets. (c) Spectra of
main materials in the Texas coast scene.

[~ vegetation
water

——cement

—]

spectral range

0w » w w0
spectral bands

(a) (b) ©

@ @ @

Fig. 4. (a) PHI scene. (b) Location of anomaly targets. (c) Spectra of main
materials in the PHI scene.
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Fig. 5. (a) Cri scene. (b) Location of anomaly targets. (c) Spectra of main
materials in the Cri scene.

The fourth data set was acquired by the PHI with a size
of 240x240 pixels [as shown in Fig. 4(a)]. In the PHI scene,
100 cement pixels with different abundances were embedded.
The anomaly targets in the first row were comprised of 90%
background and 10% cement. The remaining targets followed
the rule that the background decreased by 10% per row and the
cement increased by 10% per row. The locations of the anomaly
targets and the spectra of the main materials in the PHI scene
are depicted in Fig. 4(b) and (c).

The fifth data set is shown in Fig. 5(a) with a size of 400x400
pixels and was collected by the Nuance Cri imaging spectrom-
eter. It is mainly composed of grass and ten rocks. Compared
with the grass, the spectra of the rocks are distinctly different.
Thus, the rocks were considered as the intended anomaly targets.
The locations of the anomaly targets and the spectra of the
main materials in the Cri scene were depicted in Fig. 5(b)
and (c).

B. Experimental Results and Discussion

1) Parameter Analysis: There are three important parame-
ters in the proposed method. They are positive constant coef-
ficient <, the number of basis vectors k, and sparsity param-
eter r. Since the positive constant « determines the weight

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

e

0.9995

o085

AUC value
AUC value

0.998

I R © s e 7
value of k value of k

(@) (b)

—e—5—a—

AUC value
I
AUC value

094
001 002 003 004 005 006 007 008 009 01
value of r

0.997

Rl o

0.996

20995

AUC value

0.992

0991

0.99

001 002 003 004 005 006 007 008 009 0.1
value of r

(© ®

0 005 01 015 02 025 03 035 04 045 05
value of r

Fig. 6. AUC values of PRLRaSAD with respect to different £ for (a) San
Diego, (b) PaviaC, and (c) Texas coast. AUC values of PRLRaSAD with respect
to different r for (d) San Diego, (e) PaviaC, and (f) Texas coast.

of the sparseness constraint term in solving the matrices B
and C, the value of « should be set according to the spe-
cific situation. In [35], a sparse code model is proposed as
follows:

E = — [preserve information]

— ) [sparseness constrain on coefficient] (25)

where A is the positive constant, which has the same meaning
of a.

The value of A is determined by A/o = 0.14, where o is the
standard deviation. The values of o and A are related to the
discreteness of the original HSI. Therefore, the value of « in the
following experiments is determined by:

> norm(X (i) — mean_X)
o =
n—1

(26)

where mean_ X is the mean vector of the normalized HSI and
X1 (%) is the normalized vector of the original pixels in the HSI.

The remaining parameters are the number of basis vectors k
and sparsity parameter r. To explore the value setting of k and r,
we designed a group of experiments, in which k and r were set
to different values. These experiments utilized the San Diego,
PaviaC, and Texas coast data sets. In this section, a detection
performance criterion AUC was used. A detailed explanation of
AUC is introduced in Section IV-B3.

The AUC values in Fig. 6 show the performances of PRL-
RaSAD with respect to k and r. For the San Diego data set,
PRLRaSAD performed the best when k was set to 5 and the
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® @ o

Fig. 7. (a) Low rank and (b) sparse component acquired by LRaSMD. (c)
Low rank and (d) sparse component acquired by PRLRaSAD in the San Deigo
scene. (e) Low rank and (f) sparse component acquired by LRaSMD. (g) Low
rank and (h) sparse component acquired by PRLRaSAD in the PaviaC scene. (i)
Low rank and (j) sparse component acquired by LRaSMD. (k) Low rank and (1)
sparse component acquired by PRLRaSAD in the Texas coast scene.

detection ability of PRLRaSAD was stable when k was less
than 5. When k was greater than 5, the AUC value rapidly
decreased. For the PaviaC data set, the AUC value reached its
maximum when k£ was set to 2 and then maintained a stable
detection performance. Conversely, AUC decreased when k was
greater than 8. For the Texas coast scene, the AUC value of
PRLRaSAD reached its maximum when k£ was set to 2. Then, the
AUC value decreased suddenly. The above-mentioned analysis
demonstrated that k was generally set to a small value. Similar
conclusions were drawn in [14], [20], and so on.

Interestingly, the k value has a positive correlation with the
number of the main ground objects in the original HSI. The San
Diego scene contained more objects than the other two data sets.
As aresult, the k value used in the San Diego scene was greater
than the other two data sets. A weak empirical approach can
be used in setting the parameter k to the number of the main
materials in the original HSI.

Sparsity parameter r is related to the ratio of the anomaly
targets in HSI [14]. Fig. 6 demonstrates that the detection per-
formance was more stable when r was set to different values.
Thus, it is reasonable to set an r range of 0.05-0.1. Therefore, r
was set to 0.05, 0.06, and 0.05 for the San Diego, PaviaC, and
Texas coast data, respectively.

2) Effectiveness of Decomposition Evaluation: In this sec-
tion, we design a group of experiments to intuitively show
the decomposition effectiveness of the low rank and sparse
component. Fig. 7 shows the decomposition result of the low
rank and sparse component of HSI utilizing LRaSMD and the
improved LRaSMD in PRLRaSAD, respectively. These images
both select the 100th band of the low rank and sparse component.

From Fig. 7, we can find that the background and anomaly
target are not separated very well using the original LRaSMD
method. For example, some background information still re-
mains in the sparse component in Fig. 7(a) and the situation in
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TABLE I
AUC VALUES OF NINE ALGORITHMS IMPLEMENTED FOR FIVE DATA SETS

Datasets
YR S T e S o
RXD 0.9077 0.9947 0.9861 0.9081 0.9069
KRXD 0.9563 0.9267 0.9613 0.8944 0.7425
SSRX 0.9942 0.8095 0.9538 0.9565 0.9701
CRD 0.9200 0.9736 0.9793 0.9091 0.9752
BACON 0.8975 0.9954 0.8664 0.8912 0.8977
EDLRaSMD 0.9834 0.9916 0.9854 0.9698 0.9589
LSDRAD 0.9914 0.9843 0.9929 0.9265 0.9674
SC-CNMF
based 0.9857 0.9783 0.9802 0.9381 0.9785
detector
PRLRaSAD 0.9972 0.9998 0.9977 0.9856 0.9846

Fig. 7(d) can be better. The same situation exists in the other two
data sets.

3) Detection Performance Evaluation: In this section, some
traditional anomaly target detection algorithms are used for a
comparison purpose, including global RXD [10], kernel RXD
[36], SSRXD [13], collaborative representation detector [37],
LSDRAD [21], SC-CNMF anomaly detector [27], BACON
[12], and EDLRaSMD [20]. Then, the eight comparative al-
gorithms and the PRLRaSAD were implemented for the five
data sets. Finally, we chose three widely used evaluation criteria
to evaluate the performances of nine algorithms: receiver oper-
ating characteristic (ROC), area under ROC curve (AUC), and
target-background separability map.

In the EDLRaSMD and LSDRAD, the rank number setting
of the low-rank matrix is set using the empirical approach
mentioned in Section IV-B1.

The lateral axis of the ROC curve is the false alarm rate and
the vertical axis is the detection rate. The ROC curve intuitively
depicts the detection performances of nine algorithms under
the same false alarm rate. When two ROC curves intersect,
it is difficult to observe the detection performance. Then, the
AUC value can be used to further evaluate the performance. The
AUC value is the area under the ROC curve and its maximum
value is 1. The closer the AUC is to 1, the better the detector
performance is.

The AUC values of nine algorithms are depicted in Table I. We
can find that the proposed method achieved a superior perfor-
mance compared with the other eight traditional algorithms and
it maintained a stable detection performance in all five data sets.
This result shows that the PRLRaSMD has distinct advantages
in describing HSI compared with the traditional algorithms.
Additionally, the proposed method also improved the accuracy
of the low rank and sparse components.

The ROC curves of all algorithms implemented for five data
sets are shown in Fig. 8. The results show that the proposed
algorithm outperformed the other algorithms. The proposed
method achieved a detection rate over 99% and controlled the
false alarm rate under 1% in five data sets. Especially PaviaC and
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Fig. 8. ROC curves of five algorithms implemented on (a) San Diego scene, (b) PaviaC scene, (c) Texas coast scene, (d) PHI scene, and (e) Cri scene.
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Fig. 9. Separability maps of five algorithms implemented on (a) San Diego scene, (b) PaviaC scene, (c) Texas coast scene, (d) PHI scene, and (e) Cri scene.

Cri scenes in which the background are simple, the advantages were created for experiments. There are two boxes in each
of the parts-based representation in the proposed method are separability map. As shown in Fig. 9, the green box represents
obvious. the distribution of the targets statistical detection values and the

Since the separation degree between the anomaly target and red box is the distribution of the background detection statistic
background also is an important index for evaluating the perfor-  values. The distance between the two boxes reveals the separa-
mance of the detector, the separability maps of all algorithms tion degree between the target and background. The farther the
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distance is, the higher the separation degree between the target
and background is.

The separability maps of nine methods implemented on five
datasets are depicted in Fig. 9. Fig. 9 shows that the red boxes
for the proposed method in the five separability maps are shorter
than in the other methods. This demonstrates that the proposed
method achieved a superior performance in suppressing the
background information. In addition, the distance between the
red box and green box of the proposed method is also farther
than that in the other methods. These results also prove that the
proposed method can separate the target and background more
effectively.

We, therefore, conclude that the model in our proposed
method can describe the background more effectively than the
traditional model. Finally, the anomaly target detection ability
of the PRLRaSAD was further improved.

V. CONCLUSION

In this article, we proposed a novel anomaly target detection
algorithm that improved the original LRaSMD algorithms to
obtain a more accurate decomposition of HSI. The advantage
of the proposed method was that it combines the parts-based
and holistic-based representation to model the original HSI. The
background was based on the parts-based representation. The
anomaly target was based on a holistic-based representation due
to its sparse properties. Based on the above-mentioned descrip-
tion of HSI, the proposed method divides the HSI decomposition
optimization problem into three subproblems to compute the ba-
sis vector matrix, coefficient matrix, and sparse matrix, respec-
tively. In both the original and improved LRaSMD, the accuracy
of the sparse component was closely related to the accuracy of
the low-rank component. Therefore, we introduced the SNMF to
assist in solving the low-rank component and further improved
the accuracy of the sparse component. Finally, the basis vector
matrix, coefficient matrix, and sparse matrix were solved by new
update rules. Since the anomaly targets existed in the sparse
component, the sparse matrix was thus employed to implement
the anomaly detection. Extensive experiments clearly show that
the proposed method achieved a superior detection performance.
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