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Infrared Dim and Small Target Detection Based on
Greedy Bilateral Factorization in Image Sequences

Dongdong Pang ™, Tao Shan
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Abstract—Fast and stable detection of dim and small infrared
(IR) targets in complex backgrounds has important practical sig-
nificance for IR search and tracking system. The existing small IR
target detection methods usually fail or cause a high probability of
false alarm in the highly heterogeneous and complex backgrounds.
Continuous motion of a target relative to the background is impor-
tant information regarding detection. In this article, alow-rank and
sparse decomposition method based on greedy bilateral factoriza-
tion is proposed for IR dim and small target detection. First, by an-
alyzing the complex structure information of IR image sequences,
the target is regarded as an independent sparse motion structure
and an efficient optimization algorithm is designed. Second, the
greedy bilateral factorization strategy is adopted to approximate
the low-rank part of the algorithm, which significantly accelerates
the efficiency of the algorithm. Extensive experiments demonstrate
that the proposed method has better detection performance than
the existing methods. The proposed method can still detect targets
quickly and stably especially in complex scenes with weak signal-
to-noise ratio.

Index Terms—Greedy bilateral factorization, image sequences,
infrared (IR) dim and small targets detection, low-rank and sparse
decomposition (LSD).

I. INTRODUCTION

NFRARED search and tracking system is a passive detection
I system and is widely used in video target monitoring and
other fields. Compared with radar and visible light systems,
infrared (IR) system has the advantages of strong antijamming
ability and good concealment. Because the target is far from the
imaging sensor, the target usually appears as a point target with
several pixels, resulting in the lack of fine structural features
such as texture and shape. Moreover, the background of target
imaging is complex, including cloud clutter, building and strong
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sunlight clutter, which leads to the very low signal-to-noise ratio
(SNR) of target and brings great challenges to target detection.
Fig. 1 shows four representative IR small target images.

Many methods have been proposed to detect dim and small IR
targets. Traditional detection methods mainly include two cate-
gories: single-frame detection methods and sequential detection
methods. Typical single-frame detection methods include top-
hat filtering [1], max-mean/max-median filtering [2], 2-D least
mean square adaptive filtering [3], etc. Most of these methods
are based on morphological filtering to detect targets by sup-
pressing the background. These methods show good detection
performance in a simple and uniform background. Then, based
on human visual attention mechanism, many IR small target
detection methods are proposed, such as local contrast measure
(LCM). LCM proposes a local contrast descriptor to measure
the difference between the current position and its neighborhood
to enhance the target while suppressing the background, so as
to improve the image SNR [4]. On this basis, many improved
LCM (ILCM) methods are proposed [5], such as multiscale
relative LCM [6], high-boost-based multiscale LCM [7], mul-
tiscale patch-based contrast measure [8], and Gaussian scale-
space enhanced LCM [9]. From the perspective of local image
segmentation, an effective IR small target detection algorithm
inspired by random walks (RW) is presented combined with
local contrast characteristics and global uniqueness of small
targets [10]. Qin et al. proposed a local contrast descriptor based
on afacet kernel filtering and RWs (FKRW) algorithm for clutter
suppression and target enhancement [11]. Huang et al. proposed
an IR small target detection method based on density peak search
and maximum gray area growth, where the target and back-
ground were segmented by selecting seed growth points [12].
These methods achieve better detection performance in complex
scenes. Aiming at the chaotic cloudy/sea—sky background, Deng
et al. proposed a multiscale fuzzy metric method [13] and a
weighted local difference measurement method [14]. Based on
the derivative information, the derivative entropy-based contrast
measure method [15] and a derivative dissimilarity measure
method [16] are proposed for small target detection. In addition,
single-frame-based small target detection methods include mul-
tiscale gray difference weighted image entropy [17], multiscale
gray and variance difference measurement [18], entropy-based
window selection [19], etc.

Compared with single-frame detection methods, sequential
detection methods can get better detection performance in low
SNR. This is due to the fact that sequential detection methods
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Fig. 1.

(©) (d)

Representative targets and corresponding 3-D maps in different backgrounds. Targets are marked by red circles on a 3-D map. (a) Heavy cloudy clusters.

(b) Strong sunlight radiation. (c) Building with radiation. (d) Dark sky with cloud clutter and buildings.

have more target and background information available, such as
motion information. Therefore, the detection algorithm based on
multiframe has a better development prospects. Typical sequen-
tial detection methods include 3-D matched filtering [20], tem-
poral profiles [21], hypothesis testing [22], maximum-likelihood
estimation, and dynamic programming [23], [24]. However,
these methods are not suitable for the detection of small target.
Recently, many new sequential detection methods have been
proposed. A new method based on in-frame and interframe
information is proposed [25]. A small IR target detection method
based on spatial-temporal enhancement using the quaternion
discrete cosine transform (QDCT) is proposed by fusing the
kurtosis feature, two-directional feature maps, and motion fea-
ture of image sequences [26]. Similarly, temporal and spatial
information of sequential images is used to extract objects of
interest in [27] and [28]. In addition, many methods based on
sparse representation have been proposed for IR small target
detection [29]-[31]. However, the current sequential detection
methods do not achieve better detection performance.

By investigating the abovementioned literature, it is found that
the single-frame detection methods only have good detection
performance in specific scenes. However, sequential detection
methods can utilize more target and background information.
In order to solve the problem of IR small target detection,
especially in the case of very low SNR, a new low-rank and
sparse decomposition (LSD) method based on greedy bilateral
factorization is proposed. In this article, the target is regarded
as an independent sparse motion structure. An LSD model is
established based on the time-domain motion information of
the target. The theory guarantees that the target can be separated
from the background and noise. The main contributions of this
article are summarized as follows.

1) By analyzing the incoherent structure of IR image se-
quences, we separate the small IR target as an independent
sparse motion structure from the background and noise.
It overcomes the problem that the existing methods fail
to detect the target in a highly heterogeneous scene. It is
worth mentioning that the proposed method only takes

about 0.8 s to process 30 frames with a resolution of
540 x 398. Moreover, the frame rate of the IR sensor
is 30 frames per second. It is of great significance to the
real-time performance of the algorithm.

2) The low-rank approximation based on greedy bilateral
factorization is adopted in the background of the model,
which significantly improves the detection efficiency of
the algorithm. Also, the rank estimation of the low rank
part is adaptive. Therefore, the proposed method can
achieve fast and robust detection while using the inter-
frame motion information.

3) In this article, the proposed method is verified in 8 real
datasets. Compared with the existing datasets, the back-
ground of the datasets in this article is more complex, and
the image SNR is very weak, which makes the proposed
method more competitive than the existing methods.

The rest of this article is organized as follows. The related
work of IR small target detection based on LSD is summarized
in Section II. The detection framework of the proposed method,
algorithm flow, and theoretical analysis are given in Section III.
The results of the experiment in different scenes are shown, and
the performance of different methods is analyzed with a series of
evaluation indexes in Section I'V. Finally, the work of this article
is summarized and the future work is prospected in Section V.

II. RELATED WORK

With the rise of matrix decomposition theory, a number of
IR small target detection methods based on LSD have emerged.
Since the method in this article is also based on LSD, we briefly
review the existing LSD-based IR small target detection methods
in this section.

The most representative one is the method based on an IR
patch-image (IPI) model, which uses the local nonautocorrela-
tion of the image to transform the detection of IR small targets
into the low-rank and sparse optimization problem [32]. Based
on an I[P model, Wang et al. think that different radiation sources
in the IR image background come from different subspaces,
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Fig. 2. Framework of the proposed method.

and then map the background to multiple subspaces. A method
of IR dim and small target detection based on stable multiple
subspace learning (SMSL) is proposed, where the background
model of multi-subspace is constructed to realize the detection
of IR dim and small target in complex scenes [33]. There are
several methods to suppress background or enhance target by
constraining a sparse term. Zhang ef al. introduced structured
{5 1 norm to eliminate background strong residual and proposed
a novel method based on nonconvex rank approximation mini-
mization joint {3 ; norm (NRAM) [34]. Zhang et al. used £,, norm
to strengthen the sparse term constraint. A new IR patch-tensor
(IPT) model is proposed, which uses the prior information of
image structure [35]. Based on the IPT model, a novel nonconvex
low-rank constraint method named partial sum of tensor nuclear
norm (PSTNN) joint weighted ¢; norm is proposed [36]. The
time information of image sequences is combined with the
theory of low-rank matrix decomposition, and the IR small target
is regarded as a special sparse noise component of complex
background noise, which is modeled by Gaussian mixture and
Markov random domain [37]. This method has achieved good
results in complex environment, but it has a high computational
complexity.

Matrix decomposition theory injects new vitality into IR small
target detection, and has been widely used in the field of IR small
target detection. However, most of the existing methods based
on LSD are single-frame detection methods, which have high
probability of false alarm under weak SNR. Also, most of the
optimization algorithms have high computational complexity,
which seriously restrict the real-time performance of the algo-
rithm. Therefore, it is still a great challenge to detect IR small
targets quickly and stably in complex environment.

III. PROPOSED METHOD

In this section, we first analyze the low-rank and sparse
characteristics of IR image sequences in time domain. On this
basis, we build an IR small target detection model and give the
detection framework of the proposed method as shown in Fig. 2.
Then, we describe the optimization algorithm based on greedy
bilateral decomposition in detail and give the implementation

Tl mIeeE=EEw

k‘

10 20

30 40 50
Singular values

(b)

(a) IR image scene. (b) Matrix singular value distribution.

60 70 80

Fig. 3.

steps of the algorithm. Finally, the computational complexity of
the algorithm is analyzed.

A. Model Construction and Detection Framework

Compared with a single frame image, image sequences
have the following two characteristics. First, most backgrounds
change slowly from frame to frame and are therefore correlated
in the time domain, whereas targets typically change quickly
relative to backgrounds. As shown in Fig. 3, the distribution
of singular values of the data observation matrix containing 80
frames is drawn, and it can be seen that its singular value con-
verges rapidly. Therefore, it is considered that the background
is low rank in time domain and the target is sparse. Second,
compared with noise, the motion of small target is continuous in
the space—time domain, and the distribution of noise is random
in the space—time domain.

Most of the existing IR small target detection methods are
based on single frame detection. Generally speaking, the target,
noise, and background of IR image are independent of each
other, which can be regarded as the superposition of three com-
ponents. Here, the same IR image sequences model is considered
as follows:

fo=fe+fr+fn ()

where fp and fr represent background image and target image
respectively, and fyy is a noise image. Among them, fp satisfies
the low-rank property, fr satisfies the sparse property, and f is
usually random noise.
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Fig. 4.
each figure.

In order to make full use of the temporal information of
image sequences to achieve better detection performance, an
LSD model is established. Fig. 2 shows the framework of the
proposed IR small target detection method. First, the pixel value
of each frame in the image sequences is vectorized into a column
vector in the spatiotemporal observation matrix. Then, LSD is
implemented based on greedy bilateral factorization. Finally, the
IR small target is extracted by reconstructing the spatiotemporal
full-size images matrix. Three frames are extracted from a
sequence scene, and the detection results of each frame obtained
by the proposed detection framework are shown in Fig. 4.
The decomposition includes a low-rank background, a sparse
component containing IR moving targets, and a dense noise part.

B. Optimization Algorithm

Here, the following mathematical model of IR image se-
quences is established:

D=B+T+N (2)

where D is the observation data matrix of IR image sequences,
B is the background matrix, T is the target matrix, and N is the
noise matrix.

For background matrix B, based on the abovementioned anal-
ysis, it is considered as a low-rank matrix and its rank satisfies

rank(B) <r 3)

where ris the rank of the matrix B that is a constant, and the size
of r is related to the correlation of the background. Generally,
the smaller r is, the larger the background correlation will be,
and the larger r is, the smaller the background correlation will
be.

Accordingly, for the target matrix 7, it is considered to be a
sparse matrix, which satisfies the following requirements:

1Tl < )

Three-frame example (including target, background, and noise.). The target is marked with a red circle and a close-up is shown in the left-bottom part of

where || - |lo is the £y norm and j represents the number of
nonzero entries, and 7 < m x n (m X nis the size of T), which
means that most of the entries of the matrix T are zero.

In order to separate target 7 from background B and noise
N, the problem of small target detection is transformed into
the problem of low-rank and sparse matrix decomposition. In
practice, the /1 norm is typically used to approximate the £y norm
and simplify the optimization problem. The following update
rules are formulated:

1D =B = T|% +*(T)Il,

min
B,T
s.t. rank(B) <r 5)
where || - ||1 and || - || 7 are the ¢; norm and the Frobenius norm,

respectively, and X is a regularization parameter.

The low-rank parts of the existing LSD-based model are
approximated by the first few principal components [38]. It is
not difficult to find that the update of the low-rank part will call a
complete singular value decomposition (SVD) per iterate. Thus,
they suffer from a very low calculation efficiency. Especially
for sequential detection methods, it is difficult to guarantee
the real-time performance of the algorithm. Inspired by Zhou
and Tao[39], the greedy bilateral (GreB) paradigm is chosen to
model the low-rank part as bilateral factorization and update
the left and right factors in a mutually adaptive and greedy
incremental manner. The following update rules can be obtained
by replacing B with its bilateral factorization B = XY:

. 2
in - |[D = XY =T + 4|71,

s.t. rank(X) =rank(Y) <r (6)

where X is a tall matrix and Y is a broad matrix. It starts from X
and Y, respectively, containing a very few columns and rows, and
optimizes them alternately. It can be found that the object value
in (6) is not determined by a single X or Y, but by the product
XY. Different (X, Y) pairs can produce the same XY. Alternately
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optimizing X, Y, and 7 in (4) immediately yields the following
updating rules:

Xp= (D =T )Y, (Ve Y,
Vi = (XFXp) XF(D — Ty1) (7
T, =S (D — XkYk)

where subscript & is the variable in the kth iterate and { is the
Moore—Penrose pseudoinverse, and S, is an elementwise soft
thresholding operator with threshold A as follows:

S, D = max {|D| — 4,0} - sgn(D). (8)

By observing (7), the following equation can be obtained:

X1V = X0 (XEX)IXT(D =Ty 1) = Px, (D — T 1)

©))
where P is an orthogonal projection operator. In other words,
XYy is equal to the orthogonal projection of (D—Tj_1) on
the column space of Xj;. However, the column space of Xj
can be indicated by any orthogonal basis for the columns of
(D—Tk,l)Yffl. Here, we can calculate it as Q by QR decom-
posing

(D-T,1)Y,", = QR. (10)
Thus, product X, Y}, can be calculated as
XY =Po(D =Ty 1) =QQ"(D =Ty ). (11)

Therefore, the update process of the kth iteration in (7) is given
by QR decomposition

X = Q.QR((D — Ti )V ,) = QR
Vi = QT (D —Ti1)
Ty = Si(D — Xi.Yy)

12)

where the updates in (12) are iterated for K times or until the
objective function converges. Then, add Ar extra rows into Y as
the new directions for decreasing the object value. For Ye R"0*"
with a small integer r(, augment the rank of Y to r; =rg + Ar,
where Ar is the rank step size. It is theoretically proved that the
proposed method has the same approximate accuracy as SVD
in [40]. The convergence is proved in [39], [41], and[42].

Here, we apply the strategy in [39] to select the added Ar
rows as the top Arright singular vectors of the following partial
derivative:

2
0D —-XY —T|% (13)
aYy
where the selected Ar rows maximize the magnitude of (13).
Thus, the decomposition error can be reduced as quickly as
possible.

The detailed algorithm steps are listed in the following table.
Referring to the table, we can see that the algorithm contains
two layers of loops. The inner for loop is to find a (X, Y) pair,
so that it is the same as the (Xj,Y}) product in (7), and the outer
while loop is to find the loop after the fixed rank.

The proposed algorithm has the following two advantages.
First, through the adaptive updation of X and Y, the optimization
of the algorithm does not require the cyclic iteration of SVD.
Second, the proposed algorithm repeatedly increases the rank
until a sufficiently small decomposition error is achieved. So the

=D-XY-T
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Algorithm 1: Proposed Target Detection Method Based on
Greedy Bilateral Factorization.

Input: IR image sequences observation matrix D; rank step
size Ar; power K; tolerance T
Output: low-rank matrix XY and sparse matrix 7
Initialize Y € R™*™ and T
while residual error < 7 do
for k =1to K do
Update X, Y and T by alternating minimization
rules, calculate (12) and find a pair of (X, Y") that
have the same product as (X}, Y%) in (7);
5 end for
6: Calculate the top Ar right singular vectors v of (13);
7: Augment the rank of Y to r; = rg + Ar;
8.
9

Ll

SetY :=[Y;v];
end while

rank of the low-rank component is adaptively estimated and does
not relies on initial rank value. Based on the theory, compared
with the single-frame detection methods, the proposed method
can use the interframe motion information to achieve fast and
robust detection.

C. Computational Complexity

In this part, we briefly analyze the complexity of the pro-
posed algorithm. For Xe R™*" and Y& R"*"™, (12) can be
performed in 3mnr; + mr; flops. Under the GreB paradigm,
the time complexity of completing the whole matrix is
O(max{||Q| o7 ,(m+n)r3}), where Q is the sampling set, m x n
is the size of the observation matrix, and r is the rank of the
matrix. In the iteration, the convergence speed of the algorithm
can be accelerated by selecting the optimization direction with
formula (13). However, for robust principal component analysis
methods with SVD, the computational complexity is O(mnr?).

IV. EXPERIMENTS AND ANALYSIS

Here, we introduce several commonly used IR dim and small
target detection and evaluation indexes. In order to verify the
effectiveness of the algorithm, we have carried out experiments
on IR images in different scenes, and compared the proposed
algorithm with the current algorithm with the best performance.
In the experiment, the parameters of all algorithms are adjusted
to achieve the best detection results.

A. Evaluation Metrics

In order to further quantify the advantages of the proposed
algorithm, the performance of all methods is evaluated by using
areceiver operating characteristic (ROC) curve. The ROC curve
reflects the relationship between the probability of detection (P4)
and probability of false alarm (Pf). Py and Py are defined as
follows:

Ny

P, = 14

d Ny (14
_ny

Py = (15)
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TABLE I
DETAILS OF EIGHT IR TARGET DATASETS

Frame Image Background Description Average SNR
Number Resolution Value
Scene 1 80 256 x 320 Sky scene with heavy cloudy clusters 2.2555
Scene 2 200 200 x 256 Complicated background with sunny sky 1.9972
Scene 3 200 318 x 210 Gloomy sky scene with cloudy clusters 2.1903
Scene 4 40 300 x 300 Gloomy sky scene with building 3.1495
Scene 5 200 330 x 230 Gloomy sky scene with building and cloud 3.2508
Scene 6 400 258 x 200 Sky scene with cloudy clusters and building 2.9202
Scene 7 100 540 x 398 Building scene with strong radiation bright spot suspected target 2.8465
Scene 8 200 480 x 358 Building scene with tower crane and tower crane hanger suspected target 4.6886
TABLE II }
CALCULATION TIME OF DIFFERENT FRAMES (S)
Frame Number 10 20 30 40
Scene a 0.1135  0.2104  0.3027  0.3944
where ny, Ny, ny, and N represent the number of detected true © % aseslammates Fa)
pixels, ground-truth target pixels, false alarm pixels, and the total (a) (b)

number of pixels in the image sequences, respectively.

The SNR is used to describe the difficulty of detecting IR
small targets. Usually, the higher the SNR, the easier the target
will be detected. The SNR is defined as follows:

Imean)/U

where I, is the maximum gray value of the image, Ijean 1S the
mean value of the image, and o is the standard deviation. The
SNR gain (SNRG) is defined as follows:

SNRG = 20 x loglo(SNRout/SNRin) (17)

where SNR;, and SNR,, represent the SNRs of the input im-
age and the output image, respectively. Generally, the higher
the SNRG is, the better the target enhancement ability of the
corresponding algorithm will be.

Another commonly used evaluation index is background sup-
pression factor (BSF). BSF is used to describe the ability of
background suppression. Generally, the higher the BSF is, the
stronger the ability of background suppression will be. BSF is
defined as follows:

Cin
Cou‘c

where Cj, and C,, represent the standard deviations of clutter
in the input and output image, respectively.

BSF =

(18)

B. Experimental Setup

1) Datasets: The effectiveness and robustness of the pro-
posed method are verified by the image sequences of eight
real scenes. Table I gives a detailed description of the target
and background of all datasets. The target is a small UAV. The
background of Scenes 1—3 is relatively simple. In Scene 4, the
local background of the target is more uniform, and there are
brighter buildings. Scenes 5—8 are highly heterogeneous scenes,
where the target is mixed in the cloud layer and buildings, and
there are suspected targets, such as point cloud and tower crane
pendant. The average SNR values are given in Table I (data sets).

Fig.5. ROC with different frames on the image sequences. (a) Representative
frame of image sequences. (b) Corresponding ROC curve of the proposed
method.

2) Number of Frames: Compared with single-frame detec-
tion method, sequential detection methods require higher perfor-
mance, such as hardware storage. We choose one of the scenes to
experiment in groups from 10 to 40 frames. Fig. 5 shows the ROC
curves of each group of experiments. It can be seen that when P
is low, P, increases with the increase in the number of frames.
Table II shows the time cost of each group of experiments. It
can be seen that the time cost increases with the increase in the
number of frames. The time cost of the proposed method for
processing 30 frames is only about 0.3 s. The sampling rate of
the IR sensor is 30 frames per second. Considering these factors,
30 frames were selected for each group of experiments. All the
experiments are conducted on a computer with 8 GB of main
memory and Intel Core i17-2600K CPU with 3.40 GHz. The code
was implemented in MATLAB R2018b.

3) Baseline Methods: In order to reflect the performance
of the proposed method, the classical methods and the current
methods with better performance are used as the baseline meth-
ods. Classical methods include top-hat [1], max-mean/max-
median [2], and LCM [4]. Methods based on LSD include
IPI [32], NRAM [34], SMSL [33], and PSTNN [36]. These
methods have achieved good detection performance in specific
scene. However, these methods often fail to detect the target in
complex environment. In addition, IPI and NRAM also have
high computational complexity. QDCT [26] is a sequential
detection method. FKRW [11] based on image segmentation
is one of the best methods at present. The parameters of vari-
ous methods are adjusted to achieve the best detection results.
Table III shows the parameter settings for all methods.

C. Comparison of Detection Performance

The proposed algorithm is verified in eight real sequence
scenes. Figs. 6-9 show the detection results of different methods
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Detection results and 3-D gray distribution map obtained by different methods on Scene 1 and Scene 2. The real target on the ground is displayed as a red

PARAMETER SETTINGS OF DIFFERENT METHODS

No. Methods Acronyms Parameter settings
1 Local Contrast Measure [4] LCM Local window size: N=1,3,5,7
2 Max-mean Filter [2] Max-mean Local window size: 5x5
3 Max-median Filter [2] Max-median Local window size: 5x5
4 Top-hat Filter [1] Top-Hat Local window size: 5x5
5 Facet Kernel and Random Walks [11] FKRW K=4,p=6,=200,windows size:11x 11
6 Quaternion Discrete Cosine Transform [26] QDCT Gaussian Filter:o=1.5,7=1,Patch size:7x7
7 Stable Multiple Subspace Learning [33] SMSL Patch size:30x30,sliding step:10,)\=3/\/mm(m7 n),
10=0.5%s4,71=0.05%s5,6=10—7
8 Non-convex Rank Approximation NRAM Patch size:50%50,sliding step:10,)\=1/\/mm(m7 n),
Minimization [34] u0=3y/min(m,n),y=0.002,C=\/min(m, n)/2.5,e=10""
9 IR Patch-Image [32] IPI Patch size:50x 50,sliding step:10,A\=1/y/min(m,n),e=10—"
10 Partial Sum of Tensor Nuclear Norm [36] PSTNN Patch size:40x40,sliding step:40,
\=0.6/r/min(n1,na) * n3,e=10"7
11 Proposed rank=2,Ar=1,7=10"3,K=3
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Fig. 7.
rectangle with a close-up version in the left-bottom part of each figure.

and the corresponding 3-D display. The target is marked by ared
rectangle, and each target is given a close-up in the lower left
corner. The 3-D distribution of image can show the performance
of detection method intuitively. From the 3-D distribution of the
image, it can be seen that the detection results of the proposed
method only retain the target, and there is almost no background
noise. For Scene 1-3, the background is relatively single and
the target has maximum brightness. The baseline methods such
as SMSL, NRAM, PSTNN, and IPI have higher P;. Compared
with Scenes 1-3, the background building in Scene 4 is brighter.
FKRW, NRAM, and the proposed method are still valid. It

Detection results and 3-D gray distribution map obtained by different methods on Scene 3 and Scene 4. The real target on the ground is displayed as a red

can be seen from the 3-D distribution that FKRW and NRAM
still retain a small amount of background clutter. The proposed
method only retains the target. Although other baseline methods
can also detect the target, their weak ability to suppress the
background results in a high P . Scenes 5—8 have more complex
backgrounds, which greatly increases the difficulty of target
detection. Most baseline methods have a high false alarm rate
or fail to detect the target. For Scene 8, the local background
of the target is relatively clean, and tower crane hangers form
interference targets. It can be found that in the detection re-
sults of QDCT, the real target has higher brightness than the
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Fig. 8.
rectangle with a close-up version in the left-bottom part of each figure.

suspected target. QDCT can suppress background clutter by
using multiframe target motion information. FKRW can also
detect targets. FKRW thinks that the background clutter tends
to spread in a certain direction in a local small area, and uses
the consistency of the direction of the background clutter to
suppress the background clutter [11]. It can be seen from the
close-up that the target detected by the proposed method is
smoother than that those detected by FKRW and NRAM. It
can be seen from the 3-D distribution that there are still a few
edge background clutter in FKRW, and the proposed method has
no background clutter. Our method suppresses the background
while using timing information. For Scene 7, when the target
and the building in the background overlap, other baseline
methods will cause higher P, and the proposed method is still
effective.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020
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Detection results and 3-D gray distribution map obtained by different methods on Scene 5 and Scene 6. The real target on the ground is displayed as a red

SNRG and BSF of all methods in different scenes are shown
in Tables IV and V, respectively. The — mark indicates that the
value is negative. Black bold type indicates the maximum value,
and the second best method is marked with a horizontal line.
It can be seen that the recently proposed baseline methods of
FKRW, NRAM, PSTNN, and the proposed methods have higher
SNRG and BSF values than those by traditional methods. This
indicates that these methods have strong target enhancement
capabilities and background suppression capabilities. In Scenes
1-3 and Scene 7 and 8, NRAM has the maximum SNRG value
and the maximum BSF value, and the method proposed in this
article is the second best. In other scenes, the proposed method
has the largest values of SNRG and BSF. Although NRAM
and PSTNN also achieve considerable SNRG and BSF, these
methods fail to detect target in complex scenes. The proposed
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Fig. 9.
rectangle with a close-up version in the left-bottom part of each figure.

method has high SNRG and BSF and high P; in complex
scenes. This is due to the fact that the proposed method uses the
correlation of the background in the time domain to suppress the
background.

Fig. 10 shows the ROC curves of different methods. In gen-
eral, ROC curves in the upper left corner achieve better detection
performance. In Scenes 1—4, the background is relatively sim-
ple. The baseline methods (such as IPI, NRAM, and PSTNN)
still have a high P;. The detection performance of the proposed
method is not as good as that of IPI in Scene 1. The proposed
method in other scenes has the highest P, and the lowest Py.
However, the target is almost drowned in the background clutter
in Scene 5. In Scene 6, the target is mixed into the cloud layer
making it difficult to distinguish it from a suspicious target (such
as a point cloud). In Scenes 7 and 8, some bright points with

Detection results and 3-D gray distribution map obtained by different methods on Scene 7 and Scene 8. The real target on the ground is displayed as a red

large gray values in the background of the building will be
mistaken for the target. These factors increase the difficulty of
target detection, and single-frame detection methods often fail.
However, our method still has higher P4 and lower Py. The
motion information of the target relative to the background is
important information to separate the background and the target,
and has been well applied in this article. We also calculated
the area under curve (AUC) values for the different methods in
Table VI. The AUC value is in the range of 0—1. Generally, the
larger the AUC value is, the better the detection performance
of the corresponding method will be. In Scene 1, IPI has the
largest AUC value, and our method has the second-largest AUC
value. In other scenes, the proposed method has the largest AUC
value. For the AUC value of Scenes 5—8, it can be seen that
the AUC value of the baseline method is significantly reduced,
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TABLE IV
AVERAGE SNRG COMPARISON OF EIGHT REAL SCENES

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8

LCM 0.5422 0.6418 3.0637 — — 1.7610 — —
Max-mean 23.3732 28.7375 23.7427 18.7178 16.8791 18.9916 21.6193 14.1895
Max-median 28.1977 32.3088 26.6737 26.6568 21.3538 18.2323 22.875 18.0342
Top-Hat 23.6409 26.2656 21.2774 15.8134 11.8479 13.9506 14.8745 10.5898
QDCT 26.4598 30.0192 26.6616 20.0066 13.4383 14.0775 20.4572 13.6057
FKRW 31.8615 35.1092 35.1889 32.5099 25.4191 31.6078 28.1477 27.4779
SMSL 26.043 32.0394 28.0161 21.0922 23.3699 19.8353 23.7241 20.6692
NRAM 36.1998 38.8672 36.8084 35.6703 33.2739 34.4124 40.5591 30.5525
IPT 29.5591 34.0517 34.6835 26.9477 18.4188 19.1971 25.1887 18.5475
PSTNN 28.1908 34.1955 34.5214 31.1643 20.5305 28.3407 25.0365 29.327
Proposed 32.1690 37.2854 40.1779 32.8293 33.8658 35.3668 35.4444 30.0353

TABLE V

AVERAGE BSF COMPARISON OF EIGHT REAL SCENES

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8

LCM [4] 1.0045 0.9757 1.2724 0.9923 0.9873 1.0697 0.9833 0.9158
Max-mean [2] 10.5285 11.1632 8.8915 6.766 5.2988 5.0345 7.0080 3.7551
Max-median [2] 17.9915 16.677 12.4635 16.8251 8.8445 4.6343 8.0875 5.8318
Top-Hat [1] 10.7357 8.4923 6.8232 4.9222 3.0220 2.8808 3.2706 2.5064
QDCT [26] 14.5172 12.9514 12.7576 8.2248 3.8896 3.0938 6.3728 3.7882
FKRW [11] 25.2927 229133 32.4096 32.8665 14.2599 23.7078 15.0286 17.6812
SMSL [33] 12.9632 16.5419 14.6048 8.8521 11.1468 5.5127 8.9642 7.8956
NRAM [34] 45.1349 35.7154 38.9739 47.3806 34.9799 29.2106 63.1183 24.5325
1PT [32] 18.5387 21.8735 34.6484 25.1968 13.8484 13.3562 16.3613 10.2242
PSTNN [37] 16.6766 20.6397 29.9991 28.515 8.0320 14.6025 10.3477 21.3021
Proposed 26.3101 29.5695 55.1762 35.4860 37.1501 33.3278 34.5064 23.2706
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Fig. 10.  (a)—(h) ROC curves of 11 methods in real sequence Scenes 1-8.

TABLE VI
AUC VALUES OF ALL METHODS IN EIGHT REAL SCEQUENCE SCENES(x 1073)

Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
LCM 24.6861 13.7885 20.3979 28.4788 20.3971 15.6825 67.0016 54.5429
Max-mean 0.5952 0.4587 0.5201 0.6661 0.5504 0.4782 0.9776 0.6351
Max-median 0.9532 0.6910 0.8103 0.9285 0.8563 0.7597 1.5708 1.1933
Top-Hat 0.1004 0.0977 0.1762 0.1034 0.1005 0.1085 0.1142 0.0130
QDCT! 0.6371 0.5468 0.6445 0.6257 0.6107 0.5227 1.0020 0.8824
FKRW 0.2212 0.1573 0.1457 0.2138 0.1510 0.2446 0.5964 0.242
SMSL 0.5832 0.7868 0.5711 0.7707 0.8508 0.7342 2.5293 1.9382
NRAM 3.0587 1.6591 2.6978 6.8566 3.0284 1.6416 44.2619 2.9419
IPI 21.2892 3.8154 16.1176 27.5263 13.4202 7.8853 267.656 117.2631
PSTNN 0.3614 0.0732 0.1218 0.4051 0.1371 0.1137 1.0114 0.7538

Proposed? 0.3101 0.2055 0.2963 0.2353 0.2614 0.2136 0.7975 0.6452
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Fig. 11.  Ground-truth and detected trajectories based on the proposed method in real sequence Scenes 1-8.
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Fig. 12.  Histograms of detected error distributions of real sequence scene 1-8.

whereas the AUC value of the proposed method is still close to
1. This indicates that the proposed method has better detection
performance in complex scenes.

Considering that the target keeps moving in each image
sequence, we choose the method presented in [13] to draw
the ground-truth trajectory and detection trajectory curves in
Fig. 11. In general, if the pixel error between centers of the
ground-truth and the detected result is within 4 pixels, the de-
tection is considered to be correct. Scene 2 contains 200 frames
of images. From Fig. 11(b), it can be found that the vertical
coordinate change range of the target in Scene 2 is 115-185,
and the horizontal coordinate change range is only 113-118.
This is because the target keeps hovering during the motion,

that is, the target’s motion speed is less than one pixel/frame.
However, the proposed method still has high P; and low Py.
Fig. 12 shows the corresponding histograms of error distribu-
tions. The horizontal coordinate is the pixel error and the vertical
coordinate is the frequency of pixel error. It can be seen from
Fig. 12 that the frequency of 4-pixel errors only appears in Scene
1. In other scenes, the horizontal pixel error and the vertical pixel
error are less than 3 pixels, which indicates that the proposed
method can detect the target stably. It can be seen that the
detection trajectory is basically consistent with the ground-truth
trajectory.

Table VII shows the calculation efficiency of different meth-
ods. All the experiments are conducted on a computer with 8 GB
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TABLE VII
TIME COSTS COMPARISON OF ALL METHODS IN EIGHT REAL SCEQUENCE SCENES(S)
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6 Scene 7 Scene 8
LCM 999.662 999.7579 996.88 966.8916 887.1712 898.9821 978.0812 982.3507
Max-mean 999.8581 999.9925 999.9968 993.6711 999.6702 996.3887 996.9701 997.6538
Max-median 923.4513 999.9923 999.9961 995.2515 999.9588 973.7911 973.1402 990.1002
Tophat 999.961 999.9927 999.995 999.2128 992.2031 991.9392 997.649 997.1258
QDCT 999.3715 999.9808 999.9585 998.0179 996.0453 963.4565 996.5837 998.2294
FKRW 969.6772 967.2972 962.7143 828.0099 528.6116 564.6276 894.1434 858.8568
SMSL 999.9745 999.9948 999.9881 993.7382 917.678 966.4786 996.9383 998.3261
NRAM 902.6114 899.4947 999.9981 727.7632 499.939 499.969 684.0679 716.1567
IPI 999.9968 999.9956 999.9974 999.6397 999.4278 897.1913 998.9054 999.5087
PSTNN 999.9808 999.9953 999.9936 570.7328 987.3153 499.5339 712.5133 499.8646
Proposed 999.9953 999.9983 999.9985 999.9941 999.9975 999.9926 999.9945 999.9924

!Time costs of 2 frames.
2Time costs of 30 frames.

of main memory and Intel Core i7-2600K CPU with 3.40 GHz.
The code was implemented in MATLAB R2018b. Among them,
QDCT and the proposed method are sequential detection meth-
ods. QDCT selects at least two frames for experiments, and
the proposed method selects 30 frames for experiments. Other
methods are single-frame detection methods. Due to the use of
multiscale, LCM takes a long time to process one frame. Other
morphological methods, such as max-mean and max-median,
take less time in a frame, and top-hat has the lowest time cost.
However, these methods have lower Py or higher Py. SMSL,
NRAM, PSTNN, and IPI are LSD-based methods. SMSL uses
an optimization method based on acceleration approximate gra-
dient, which results in lower time cost. However, this method
does not obtain a high P; and is not robust enough to noise. The
time costs of NRAM and IPI are relatively large. The resolution
size of Scene 7 is 540 x 398, and the resolution size of Scene 8 is
480 x 358. NRAM takes about 44 s and 3 s to process one frame,
respectively, and IPI takes more than 100 s to process one frame.
This is because the nuclear norm is used to approximate the low
rank part, and each iteration requires SVD decomposition, which
is time consuming. With the improvement of image resolution,
the time costs of NRAM and IPI have increased significantly. In
particular, IPI can hardly guarantee the real-time performance
of the algorithm. Although the proposed method is a sequential
detection method, it takes less time to process 30 frames. In
addition, the proposed method uses SVD-free decomposition
to ensure the real-time performance of the sequential detection
method.

V. CONCLUSION

In this article, aiming at the problem of IR dim and small target
detection, an LSD method based on greedy bilateral factorization
is proposed. By using the interframe timing information of
image sequences, the target is regarded as an independent sparse
motion structure, which overcomes the problem of detection
failure of existing methods in complex backgrounds. For most
methods based on LSD, the optimization model is usually solved
by SVD cycle iteration, which makes the algorithm less real
time. In view of this, the proposed method uses GreB paradigm
to model the low-rank part so as to avoid the cycle iteration
of SVD. The proposed method can still use a small number

of frames and a small amount of time cost to achieve better
detection performance. Extensive experiments demonstrate that
the proposed method achieves better detection performance
compared with the other baseline methods. Especially in Scenes
5-8, the proposed method has obvious advantages. However,
the proposed method struggles to overcome backgrounds that
change significantly from frame to frame. This is a subject of
future work. In addition, we will consider whether the proposed
algorithm is suitable for multitarget situations.
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