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Mineral Identification and Mapping by Synthesis of
Hyperspectral VNIR/SWIR and Multispectral TIR
Remotely Sensed Data With Different Classifiers

Li Ni , Honggen Xu , and Xiaoming Zhou

Abstract—Hyperspectral data, which have fine continuous spec-
trum, have been recognized to be more suitable for the detailed
identification and classification of land surface, especially for min-
erals. The combination of the hyperspectral visible/near-infrared
(VNIR) and shortwave infrared (SWIR) data with the hyperspec-
tral thermal infrared (TIR) data is proven to be an effective way.
However, how those effects are and what are the effects of introduc-
tion of multispectral TIR data on the minerals identification and
classification are not well studied. To fully evaluate those effects,
this article tries to use both simulated data and real data to testify
the practicability of introduction of multispectral TIR data for the
accuracies of mineral identification and classification. Four classi-
fiers, i.e., spectral angle mapping, spectral feature fitting, orthogo-
nal subspace projection, and adaptive coherence/cosine estimator,
are selected in the experiment. Compared with the results using
hyperspectral data alone, the introducing of multispectral TIR data
in identification and classification has improved accuracies for both
the simulated and real data. The overall accuracies are improved
about 4%–13% for the simulated data and about 1%–5% for the
real data by using different classifiers. Those improvements prove
that the spectral diagnosed characteristics in TIR region even for
multispectral data help identify and classify minerals. Although
the improvements for real data are not well obvious due to the
low spatial resolution, the multispectral TIR data are still effective
supplements for hyperspectral VNIR and SWIR data in mineral
identification and classification.

Index Terms—Classification, emissivity, hyperspectral, thermal
infrared (TIR).

I. INTRODUCTION

M INERALS, as an unrenewable natural resource, have
been an important support for the healthy development

of economy and society. Minerals and rocks are always the
main objects of geographical scientific research as the basic
components of the crust. In the past few years, with a large
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amount of mineral resources being mined, there are less and less
minerals that can be found on the surface [1]. A more efficient
and accurate method is required to be explored to identify and
classify minerals. To realize a wide area of the mineral resources
investigation, and overcome some inconvenient transportation
and natural conditions of mineral exploration, remote sensing
technology, especially for hyperspectral remote sensing, has
become a highly efficient and convenient method for detecting
minerals.

The hyperspectral remote sensing, originated in the early
1980s, was one of the major technological breakthroughs in the
field of land observation at the end of last century. It has led a
new direction of remote sensing technology [2], [3]. Enabling
the acquisition of data with increased number of spectral bands
and higher spectral resolution, hyperspectral data have certainly
given significant impacts on the land cover and land use classi-
fication [4].

In recent years, much work has been carried out to identify
and classify minerals accurately by taking the advantage of hy-
perspectral data’s narrow bandwidth and contiguous spectral [5].
The main classifiers include the spectral angle mapping (SAM)
[6], the spectral feature fitting (SFF) [7], the orthogonal subspace
projection (OSP) [8], [9], and the adaptive coherence/cosine
estimator (ACE) [10]. The early unsupervised classification
classifiers were also used on mineral identification, such as
artificial neural network [11] and support vector machines [12],
[13]. With the rapid development of machine learning, the deep
learning [14], [15] and other classifiers have been developed
continuously.

In fact, with these large numbers of classifiers, minerals and
rocks’ identification remains with several problems. First, min-
eral identification is mainly based on the spectral characteristics
in the visible near-infrared (VNIR) bands in 0.4–2.5 μm, and
these characteristics are related to certain chemical compositions
and lattice structures of minerals and rocks [16], whereas the
spectral absorption characteristics in the thermal infrared (TIR)
bands always tend to be overlooked. Different types of minerals
with various chemical compositions have their own typical
spectral diagnosed characteristics in the given spectral region.
For example, there are diagnosed characteristics in VNIR bands
for iron oxide (FemOn), in shortwave infrared (SWIR) bands
for hydroxide (–OH) functional group, and in the TIR bands for
silicate (–SiO3) and carbonate (–CO3).
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Second, the alteration minerals contain a large number of
Fe2+, Fe3+, OH–, CO3

2–, and other ions or groups of ions. The
electronic transition, vibration, and rotation of these ions make
minerals display special spectral absorption and reflection char-
acteristics in VNIR and SWIR bands [17]. Rocks are composed
of different minerals and their spectral characteristics become
much more complex [18].

Third, the vibration intensity of the minerals and rocks cannot
be detected across the VNIR–SWIR bands even with hyper-
spectral data, which limits the ability of mineral indentation and
classification. For example, most abundant minerals have special
spectral characteristics in TIR bands in 8–14 μm [19]. The
silicon–oxygen bond (Si–O) stretching vibrations in feldspars
and quartz, as well as in other silicates, exhibit spectral char-
acteristics in the TIR band. In addition, the TIR data can also
provide some distinction characteristics amongst Al–OH, Mg–
OH bearing minerals, carbonates, and so on [1]. In TIR bands,
the radiance of the object mainly comes from itself [20], [21].
Most of the traditional research in TIR bands focuses on either
the retrieval of land surface temperature [22], [23], emissivity
[24], [25], soil moisture [26], and surface energy fluxes [27].
Obviously, the basis of mineral identification and classification
in TIR bands is its emissivity [20].

To improve mineral identification and classification accuracy
and realize fine mapping, some researches have evaluated differ-
ent classifiers for mineral mapping by using just VNIR–SWIR
and TIR data or the combination of those data [28]–[31]. It
has been found that the combined data achieved a marked
improvement compared to the results using either VNIR–SWIR
or TIR data alone. The TIR data used by those researches are
usually hyperspectral data with tens to hundreds of channels,
in which the mineral features will be well captured. It is may
not be a problem for airborne platforms because many sensors
have this ability, such as the Thermal Airborne Spectrographic
Imagery has 32 TIR channels, and the Spatially Enhanced
Broadband Array Spectrograph System has 128 TIR channels.
By contrast, the spaceborne sensor usually has a fewer TIR
channels especially for sensors with spatial resolution higher
than 100 m, such as ASTER has just five TIR channels. The
limited spectral channels may influence the mapping accura-
cies; for example, there are fewer TIR channels to enhance
the mineral features except silicates for ASTER [32]. The use
for multispectral TIR data, especially for spaceborne sensor
with less than ten channels, such as ASTER, has not been
well studied. Whether or not, the spatial and spectral resolu-
tion will affect the mapping accuracies for those multispectral
TIR sensors? This article tries to fully evaluate the effects of
combination of the hyperspectral VNIR–SWIR reflectivity with
the multispectral TIR emissivity on the accuracies of mineral
identification and classification by using both simulated data
and real data to answer this question. The sections in this article
are organized as follows. The classification methodology is
described in Section II. The data are described in Section III.
The classification analysis for both simulated data and real data
are analyzed in Section IV. Finally, conclusions are given in
Sections V.

Fig. 1. Reflectivity and emissivity (offset for clarity) of typical minerals.

II. METHODOLOGY

A. Spectral Diagnosed Characteristics of Minerals
in VNIR/SWIR/TIR

Different minerals have their own specific spectral features
and characteristics in VNIR/SWIR/TIR bands, which are closely
related to its intrinsic physical and chemical properties. Those
special spectral absorption and reflection features and charac-
teristics are reported to be the reason of the electronic transition,
vibration, and rotation of ions. In 0.4–1.3 μm spectral band,
the spectral features and characteristics are determined by the
electronic transition of ions of Fe2+, Fe3+, Ni2+, Cu2+, and
Mn2+. In 1.3–2.5 μm spectral band, the spectral features and
characteristics depend on CO3

2–, OH–, and SO4
2– ions. The

silicon–oxygen bond (Si–O) stretching vibrations in feldspars
and quartz, as well as in other silicates, exhibit spectral char-
acteristics in the TIR region. Therefore, minerals containing
these icons can be detected and identified by those spectral
features and characteristics. The different spectral absorption
and reflection features and characteristics in VNIR, SWIR, and
TIR are shortly listed in Table I. Fig. 1 shows the reflectivity
and emissivity of typical minerals, which also demonstrates
the phenomena that different minerals have their own typical
spectral characteristics in various spectral bands.

B. Review of Four Selected Classifiers

To evaluate how the accuracies of classification change when
TIR data are introduced in mineral identification and classifica-
tion, four traditional classifiers, i.e., SAM, SFF, OSP, and ACE,
are used in the following experiment. Those four classifiers,
which have been packaged as mapping methods in the ENVI
(Environment for Visualizing Images) software, are famous and
widely used in targeting minerals especially for hyperspectral
data.

1) Spectral Angle Mapping (SAM): The SAM classifier is a
classification method that uses N-dimensional angles to match
the pixel spectrum and the reference spectrum [6]. It regards
the spectrum as a multidimensional vector, and determines the
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TABLE I
MINERALS IDENTIFIED IN DIFFERENT WAVELENGTH BANDS

similarity between the two spectra by calculating the general
angle between the pixel spectral vector and the reference spec-
trum vector in the image. The smaller the angle, the more similar
will be the two spectra. The spectral angle can be calculated as
follows:

θ = cos−1

∑n
i=1 tiri√∑n

i=1 ti
2
√∑n

i=1 ri
2

(1)

where n is the number of bands, ti is the pixel spectrum of
the i band, and ri is the reference spectrum of the i band. For
the spectral angle independent of the modulus of the spectral
vector, SAM could eliminate illumination effects in the different
environment and emphasizes the similarity of the spectrum in
shape.

2) Spectral Feature Fitting (SFF): SFF is one of the classifier
nowadays used for spectral analysis about recognition and clas-
sification, which is based on spectral absorption features [7]. The
envelope line of the test spectra and the reference spectra should
be removed before spectra matching. Consequently, the curve
of the test spectra and the reference spectra after the envelope
line removal is fitted by least squares.

Due to the difference in the characteristic absorption depth
of the test spectra and the reference spectra after the envelope
line is removed, the curve shape of the reference spectra can be
adjusted by adding a constant k to best fit and match the pixel
spectrum; the calculation formula is as follows:

ρ′ =
ρ+ k

1 + k
(2)

where ρ’ is the transformed reference spectra, ρ is the original
test spectra, and k is a constant not equal to –1.

The root-mean-square error (RMSE) is used to evaluate the
matching degree of the two spectra. Each pixel spectrum can
calculate a fitting value and an RMSE value relative to the
reference spectrum. The pixel spectrum with a higher fitting
value and a smaller RMSE value is considered to match the
reference spectra. An SFF classifier is sensitive to the subtle
mineral absorption features. Even the most subtle absorption
features are highlighted. The recognition effect of SFF is better
when the absorption characteristics of the spectral curve are
obvious.

3) Orthogonal Subspace Projection (OSP): An OSP classi-
fier is based on a linear spectral mixture model, which divides the
mixed pixels into interest endmember (target) and noninterest
endmember (background). The mineral is identified by enhanc-
ing the characteristics of the target and suppressing the back-
ground signatures [8]. According to the linear mixing model,
the OSP model decomposes the endmember spectral matrix into
target d = m1 and background U = [m2, m3, . . . , mk] as

r = dα1 + UαU + n. (3)

To eliminate the feature vector of the background in the
image, the data are projected onto the orthogonal complement
matrix space of U, denoted as PU = I–U(UTU)–1UT , and the
orthogonal space projection operator is obtained by maximizing
the signal to noise ratio (SNR) principle as follows:

POSP = kPUd (4)

where k is the normalization constant. On the one hand, this
method can eliminate the influence of background spectral char-
acteristics; on the other hand, it considers the maximization of
residual signal under various noise conditions.

4) Adaptive Coherence/Cosine Estimator (ACE): An ACE
classifier takes both the statistical model and subspace projection
model into account. It assumes that the covariance structure
of the background is the same regardless of the existence of
the target. However, its variance is different, which directly
affects the area proportion of the target in background [10]. The
similarity between the test spectra and the reference spectra is
determined by calculating the cosine square of the angle between
two spectra. The formula is as follows:

DACE(x) =
xT Γ̂−1D(DT Γ̂−1D)

−1
DT Γ̂−1x

xT Γ̂−1x
. (5)

Among them, x is the spectrum of the sample to be detected,
Γ̂ is the maximum-likelihood estimation of the background co-
variance matrix, and D is the target prior knowledge expression.
Because this method is sensitive to noise, it is usually required
to remove noise before target detection.
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TABLE II
EIGHT MINERALS AND ROCKS USED TO GENERATE THE SIMULATED DATA

Fig. 2. Reflectivity and emissivity (offset for clarity) of eight targets
(1—alunite, 2—calcite, 3—kaolinite, 4—montmorillonite, 5—muscovite, 6—
gneiss, 7—marble, 8—quartz).

III. DATA

A. Simulated Data

Eight minerals and rocks were selected as the targets to be
classified from the United States Geological Survey (USGS)
Spectral Library and the Johns Hopkins University Spectral
Library. The simulated data consisting of eight patches are gen-
erated with each patch corresponding to a kind of categories from
the selected minerals and rocks. The corresponding information
is listed in Table II.

Because the reflectivity and emissivity spectral curves mea-
sured by the hyperspectral Hyperion and multispectral ASTER
are within a finite spectral bandwidth, the channel-effective
reflectivity and emissivity according to the selected minerals
and rocks are therefore a weighted average with the spectral
response function as follows [20]:

Xi =

∫ λ2

λ1
fi(λ)Xλdλ

∫ λ2

λ1
fi(λ)dλ

(6)

where X stands for the effective reflectivity and emissivity, fi(λ)
is the spectral response function in channel i, and λ1 and λ2 are
the lower and upper boundaries of the wavelength in channel i.

The Hyperion VNIR/SWIR data collect spectra in 242 con-
tinuous spectral channels covering the wavelength range from
0.356 to 2.578 μm, and 155 channels were considered according
to the quality problem in the actual situation. The ASTER TIR
data have five discrete TIR bands and cover the wavelength
range from 8.125 to 11.65 μm. Fig. 2 shows the reflectivity in

TABLE III
PROPORTION OF MIXED ENDMEMBER IN SEVEN DATASETS

Fig. 3. 3-D cubes for the datasets 1 and 7 with eight targets in each dataset.

the Hyperion VNIR/SWIR band and the emissivity in ASTER
TIR band of the eight targets, respectively. Those reflectivity
and emissivity will be taken as the reference spectra in mineral
identification and classification.

In order to simulate closer to the reality, the noise and mixture
will be taken into account. The original category of each pixel
is treated as ground truth. Both the white noises (bias is zero
and standard deviation is 0.01) and the spectrum of soil and the
spectrum of two random selected minerals in Table II are added
to each pixel. In the process of spectral mixing, the linear spectral
mixture model was used to generate the mixed reflectivity and
emissivity spectra. The proportion of soil and the two random
selected minerals are randomly determined and the maximum
and minimum values are listed in Table III.

The sum of the proportions for the original category, the
soil and two random selected minerals are equal to 1. Here,
each dataset is also processed by considering spectra response
function of Hyperion VNIR/SWIR data and ASTER TIR data.
Finally, the seven different datasets with different mixture situa-
tions were generated. There were 160 channels in each datasets
among which the first 155 channels are VNIR/SWIR reflectivity
channels for Hyperion, and the last 5 channels are TIR emissivity
for ASTER. Fig. 3 shows the 3-D cubes for the datasets 1 and
7 for demonstration purpose. Obviously, because of the higher
mixing ratio in dataset 7, the simulated image shows more salt
and pepper noise.

B. Real Data

In addition to the simulated data, the real data were also used
to evaluate the effect of introducing TIR data in the mineral
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Fig. 4. Mineral distribution in studied area.

identification and classification. The study area is the Cuprite in
Nevada, USA. The Cuprite is a popular benchmarking dataset
and extensively used for testing mineral identification and clas-
sification methods. The corresponding hyperspectral AVIRIS
reflectivity data in VNIR/SWIR bands and the multispectral
ASTER emissivity data in TIR bands were used. The AVIRIS
VNIR/SWIR data were acquired on September 20, 2006 and
the ASTER TIR data were acquired on August 15, 2006. The
original AVIRIS VNIR/SWIR data have 224 channels ranging
the wavelength from 0.37 to 2.48μm. The VNIR/SWIR channels
located in water absorptions zone and with too low SNR were
removed from the original band set, and finally 170 VNIR/SWIR
channels are left in our experiment. The original ASTER TIR
data have five channels ranging the wavelength from 8.125 to
11.65μm. In total, there are 175 channels for the joined spectrum
from two separated different channels of AVIRIS VNIR/SWIR
and ASTER TIR.

Because there is a spatial resolution difference between
VIR/SWIR data (15.7 m) and TIR data (90 m), spatial reg-
istration is first carried out on TIR data to keep those two
data in the same geographical coordinates with the same
spatial resolution. There is extensive ground truth infor-
mation available, which consists of 25 classes of minerals
(see https://archive.usgs.gov/archive/sites/speclab.cr.usgs.gov/
cuprite95.tgif.2.2um_map.gif). In consideration of the distribu-
tion of different minerals, a smaller dataset with the image size
of 400 × 400 pixels was manually selected for our experiment.
There are eight main minerals for this area including alunite,
kaolinite, montmorillonite, muscovite, chalcedony, and so on.
Fig. 4 shows the selected reference distribution of main minerals
in the study area, which is tailored from the archive mineral map

Fig. 5. Reflectivity and emissivity (offset for clarity) of eight targets (1—
alunite, 2—kaolinite, 3—montmorillonite, 4—muscovite, 5—chalcedony, 6—
alunite-kaolinite, 7—chlorite-montmorillonite, 8—calcite-montmorillonite).

of USGS and will be used as the ground truth data for assessing
classification accuracy. The black color indicated unclassified
class. Because this mineral map was derived from analyzing
the vibrational absorption features in minerals (typically in the
2–2.5 micron spectral region) common to OH–, CO3

–, and SO4
–

bearing minerals, a specific crystal structure, and subtle changes
with the same ion affecting the identification results. In addition,
other colors in Fig. 3 represent minerals other than the eight main
minerals. Therefore, the salt- and pepper- like noise will appear
in this figure. However, those noises appeared will not affect the
analysis of the results because eight main minerals are taken into
account.

Fig. 5 shows the reflectivities of selected minerals in the
VNIR/SWIR band and the emissivity in the TIR band, respec-
tively. Those spectra are gotten from the average spectra for each
mineral in the ground truth data. Compared with the spectra in
the simulated data (see Fig. 2), the spectral differences in both
VNIR/SWIR band and TIR band are not obvious.

IV. EXPERIMENTAL RESULTS

A. Classification Accuracies for Simulated Data

Four classifiers described above were used to classify the
seven datasets of simulated data, which included the hyper-
spectral Hyperion data (H), the ASTER TIR data (A), and the
combination of both (H&A). Figs. 6 and 7 show the OA of
final classification results between the Hyperion data and the
combination data, and those between the ASTER data and the
combination data, respectively.

It can be found that the overall accuracies by using the multi-
spectral ASTER TIR data alone are always lower than those by
using the hyperspectral Hyperion VNIR/SWIR data alone. The
classification accuracies are improved ranging from 4% to 13%
for the selected four classifiers after introducing multispectral
TIR data. The OA of ACE is higher, and the performance of
other three classifiers are comparable. The accuracy of SFF
is apparently not as good as those of three other classifiers
when using hyperspectral VNIR/SWIR data alone. When the
multispectral TIR data is introduced, the accuracy of SFF has
been significantly increased, even obviously better than SAM.

Compared with using either VNIR/SWIR data or the TIR
data, the overall accuracies are improved for all of datasets

https://archive.usgs.gov/archive/sites/speclab.cr.usgs.gov/cuprite95.tgif.2.2um_map.gif


3160 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6. Overall accuracy (OA) comparisons for different datasets. The dotted
lines represent the classification accuracy for the Hyperion data alone, whereas
the solid lines are for the combination of the Hyperion and ASTER data.

Fig. 7. OA comparisons for different datasets. The dotted lines represent the
classification accuracy for the ASTER data alone, whereas the solid lines are
for the combination of the Hyperion and ASTER data.

with the selected four classifiers when the combination of the
VNIR/SWIR and TIR data are used together. The introduction
of TIR assisting the classification with VNIR/SWIR makes an
obvious improvement in overall accuracies. The classification
accuracies by SFF increase the most, whereas those by ACE
were not significantly improved. The improved accuracies for
different classifiers under the different mixing conditions not
only effectively prove the contribution of TIR data in classifica-
tion, but also prove that the combining use of the hyperspectral
VNIR/SWIR data and multispectral TIR data will increase the
accuracy of mineral identification and classification.

Take the seventh simulated data for example, the confusion
matrix is used to analyze the classification accuracy in detail.
Fig. 8 shows the comparison of OA with the proposed four
classifiers using hyperspectral VNIR/SWIR data, multispectral
TIR data, and combination data. As shown in this figure, it is
also found that the introduction of TIR data helps improve the
accuracy of the SFF method mostly.

Fig. 8. OA comparisons for the selected seventh simulated data with different
classifiers.

TABLE IV
CLASSIFICATION ACCURACIES OF DIFFERENT MINERALS USING FOUR

CLASSIFIERS FOR THE SIMULATED DATA

Table IV list the OA of classification as well as detailed pro-
duction and user accuracy of each kind of material for different
classifiers. The classification accuracies of rocks are generally
lower than those of other minerals, especially for marble and
quartzite. The main reason is the mixture of several minerals in
a rock. For example, the marble contains calcite, whereas the
main compositions of quartzite are the same as those of gneiss.
Therefore, the spectral difference between different kinds of
rocks will become small. The classification accuracy of an SFF
classifier improves the most with the introduction of TIR data,
which plays a great role in improving the classification accuracy
of calcite, muscovite, marble, and quartzite.
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Fig. 9. Classification mapping results of minerals for the real data in Cuprite
with different classifiers.

B. Classification Accuracies for Real Data

Four classifiers are also used to identify minerals with real
AVIRIS data and the combination of AVIRIS and ASTER TIR
data. The result of classification is shown in Fig. 9 and the
accuracy of classification is shown in Table V. The black color
in Fig. 9 indicated unclassified classes. The overall classification

TABLE V
CLASSIFICATION ACCURACIES OF DIFFERENT MINERALS USING FOUR

CLASSIFIERS FOR THE REAL DATA

accuracies of those four classifiers are improved from 1% to 5%.
Obviously, the most accurate classifier is SFF, followed by SAM
and ACE, and the OSP classifier is not qualified.

Because all kinds of minerals have almost similar spectral
curve shown in Fig. 5 together with the effect of noise, it is
difficult for the OSP classifier to accurately separate the target
and the background after subspace projection transformation.
Therefore, overall poor accuracies for various minerals are
gotten in the OSP classifier. The ACE classifier is required to
make minimum noise fraction (MNF) transformation to maxi-
mize the image SNR and then compare the target spectra with
the background spectra, so the classification accuracy will be
significantly improved. Furthermore, the spectra of minerals in
the real data are nonlinearly mixed in VNIR/SWIR bands, and
the classification accuracies of the OSP and ACE classifiers,
which are designed with linear mixture consideration, would be
reduced.

V. DISCUSSIONS

The abovementioned experiments proved that the spectral
diagnosed characteristics in TIR region help identify and classify
minerals. However, the degree of improving the accuracy is
different for different datasets. The overall accuracies were im-
proved about 4%–13% for the simulated data and about 1%–5%
for the real data by using different classifiers. The reason for the
improvement of classification accuracy is the obvious difference
of reflectivity and emissivity spectra for the simulated data.
As shown in Fig. 2, the shape of reflectivity and emissivity
curves for different minerals are roughly different, together with
the spectral absorption characteristics. Although the spectral
differences between calcite and marble in VNIR/SWIR bands
are slight, there are significant spectral emissivity absorption
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characteristics in TIR bands between these two minerals. Fig. 2
shows that these minerals have their own significant absorption
characteristics in TIR bands, especially for muscovite and mar-
ble, with which those minerals can be well identified.

Compared with the simulated data, the improvement of clas-
sification accuracy by introducing the TIR data is not obvious
for the real data. The overall accuracies are just improved about
1%–5% by using different classifiers. The main reason may be
the relative low spatial resolution of ASTER TIR data, where
the spectral mixture of various minerals exists. It can be found
in Fig. 5 that the similarity of each kind of mineral emissivity
curves will affect the classification accuracies. In addition, the
spectrum is linear mixed in the simulated data and spectrum
mixture of minerals in the real data is nonlinear and complicated.
Furthermore, the retrieval accuracies of emissivity in ASTER
TIR bands are reported to be about 0.015 [21], which may not
be satisfied with the required accuracies in classification.

Drawn from the simulated data and real data, the results will
not be the same if those four classifiers are used in different
datasets. The overall accuracies of different classifiers rely on
the land classes in the study area, the training samples, and
the noise in the observed spectra. Both SAM and SFF depend
on spectral similarity between training samples and targets to
be classified, SAM emphasizes on spectral shape, while SFF
emphasizes on spectral absorption characteristics. For the real
data, the differences in minerals’ spectral shape are not obvious
compared with the difference in spectral absorption, the overall
accuracies of SFF are better than those of SAM. However, it is
difficult for OSP and ACE classifiers to achieve a good accuracy
when the sample spectrum is slightly different from that of the
background.

In general, the introduction of TIR band helps to improve
the classification accuracy, especially for some minerals with
diagnostic features, such as quartz, felspar, chalcedony, calcite,
dolomite, and so on. However, it is undeniable that if the spectral
difference is very small and there is a large noise, the improve-
ment of identification accuracy will be slight even if TIR band
is introduced.

VI. CONCLUSION

This article analyses the spectral characteristics of the re-
flectivity spectra in VNIR/SWIR and the emissivity spectra in
TIR for minerals. Both the simulated data and the real data
have proven that the combination of hyperspectral VNIR-SWIR
data and multispectral TIR data has a positive impact on the
identification and classification of minerals.

To evaluate the effect of introducing the multispectral TIR
data, seven datasets with different degrees of mixture of the
minerals (such as kaolinite, alunite, calcite, quartz, and ilmenite)
together with four classifiers, i.e., SAM, SFF, OSP, and ACE,
were used in the simulated data. The classification accuracies
for different classifiers are summarized and compared. The ACE
classifier gets the most accurate classification, followed behind
the OSP. The accuracies of SAM and SFF are slightly lower.
However, the classification accuracies of four classifiers are im-
proved ranging from 4% to 13% after introducing multispectral

TIR data. Especially for the SFF method, its OA is increased
about 13%, in which the identification accuracies of calcite, mus-
covite, marble, and quartzite has been obviously improved. The
main reason is the apparent absorption characteristic differences
of these minerals in TIR bands.

At the same time, the reflectivity of AVIRIS data and the
emissivity of ASTER data in Cuprite, Nevada, USA, are also
used in the real data experiment. With the different kinds of
minerals, for example, alum, kaolinite, montmorillonite, mus-
covite, and chalcedony, four classifiers are also used to identify
the effect of the combination of hyperspectral VNIR/SWIR data
and multispectral TIR data. The overall classification accuracies
of those four classifiers are improved from 1% to 5%. Some
classifiers, such as ACE and SAM, show unobvious difference in
classification accuracies because of the slight contrast between
target and background spectra. It is obvious that the classification
accuracy of real data is not excited compared with the simulated
data. The possible reasons are summarized as follows.

1) The spatial resolution of ASTER TIR data is 90 m, which
is much lower than expectation. It is easy to cause mixture
pixels.

2) The retrieved accuracy of emissivity in TIR band and
we argued what is the required accuracy of emissivity
in classification. Apparently, the accuracy of retrieved
emissivity directly affects the accuracy of classification.

3) The potential nonlinear mixture of mineral complicates
the improvement of classification.

Although the classification improvement in the real data is
not obvious, it is still shown that there is a good potential of
introducing the multispectral TIR data. The multispectral TIR
band data will be appropriate for mineral classification and
mapping as the complementary of hyperspectral VNIR/SWIR
data.

REFERENCES

[1] G. Notesco et al., “Mineral classification of land surface using multispec-
tral LWIR and hyperspectral SWIR remote-sensing data. A case study over
the Sokolov lignite open-pit mines, the czech republic,” Remote Sens.,
vol. 6, no. 8, pp. 7005–7025, Aug. 2014, doi: 10.3390/rs6087005.

[2] J. M. Bioucas-Dias, A. Plaza, G. Camps-Valls, P. Scheunders, N.
Nasrabadi, and J. Chanussot, “Hyperspectral remote sensing data analysis
and future challenges,” IEEE Geosci. Remote Sens. Mag., vol. 1, no. 2,
pp. 6–36, Jun. 2013.

[3] Q. X. Tong, Y. Q. Xue, and L. F. Zhang, “Progress in hyperspectral remote
sensing science and technology in china over the past three decades,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 1, pp. 70–91,
Jan. 2014.

[4] Y. G. Qian et al., “Evaluation of temperature and emissivity retrieval using
spectral smoothness method for low-emissivity materials,” IEEE J. Sel.
Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 9, pp. 4307–4315,
Sep. 2016.

[5] R. N. Adep, A. Shetty, and H. Ramesh, “EXhype: A tool for mineral
classification using hyperspectral data,” ISPRS J. Photogramm., vol. 124,
pp. 106–118, Feb. 2017, doi: 10.1016/j.isprsjprs.2016.12.012.

[6] F. A. Kruse, A. B. Lefkoff, and J. B. Dietz, “Expert system-based
mineral mapping in northern death valley, California/Nevada, using the
airborne visible/infrared imaging spectrometer (AVIRIS),” Remote Sens.
Environ., vol. 44, no. 2/3, pp. 309–336, Jul. 1993, doi: 10.1016/0034-
4257(93)90024-R.

[7] R. N. Clark, A. J. Gallagher, and G. A. Swayze, “Material absorption band
depth mapping of imaging spectrometer data using a complete band shape
least-squares fit with library reference spectra,” in Proc. 2nd Airborne
Visible/Infrared Imag. Spectrometer Workshop, Jan. 1990, vol. 2, pp. 4–5.

https://dx.doi.org/10.3390/rs6087005
https://dx.doi.org/10.1016/j.isprsjprs.2016.12.012
https://dx.doi.org/10.1016/0034-4257(93)90024-R


NI et al.: MINERAL IDENTIFICATION AND MAPPING BY SYNTHESIS OF HYPERSPECTRAL VNIR/SWIR AND MULTISPECTRAL TIR 3163

[8] J. C. Harsanyi and C. Chang, “Hyperspectral image classification and
dimensionality reduction: An orthogonal subspace projection approach,”
IEEE Geosci. Remote Sens. Mag., vol. 32, no. 4, pp. 779–785, Jul. 1994.

[9] C. I. Chang and A. Plaza, “A fast iterative algorithm for implementation
of pixel purity index,” IEEE Geosci. Remote Sens. Mag., vol. 3, no. 1,
pp. 63–67, Jan. 2006.

[10] S. Kraut and L. Scharf, “The CFAR adaptive subspace detector is a scale-
invariant GLRT,” IEEE Trans. Signal Process., vol. 47, no. 9, pp. 2538–
2541, Sep. 1999.

[11] B. A. Paya, I. I. Esat, and M. N. M. Badi, “Artificial neural network
based fault diagnostics of rotating machinery using wavelet transforms as
a preprocessor,” Mech. Syst. Signal Process., vol. 11, no. 5, pp. 751–765,
Sep. 1997, doi: 10.1006/mssp.1997.0090.

[12] F. Melgani and L. Bruzzone, “Classification of hyperspectral remote
sensing images with support vector machines,” IEEE Geosci. Remote Sens.
Mag., vol. 42, no. 8, pp. 1778–1790, Sep. 2004.

[13] A. Maysam, G. H. Norouzi, and A. Bahroudi, “Support vector machine
for multi-classification of mineral prospectivity areas,” Comput. Geosci.,
vol. 46, pp. 272–283, Sep. 2012, doi: 10.1016/j.cageo.2011.12.014.

[14] Y. S. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, “Deep learning-based
classification of hyperspectral data,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 7, no. 6, pp. 2094–2107, Jun. 2014.

[15] A. Romero, C. Gatta, and G. Camps-Valls, “Unsupervised deep feature
extraction for remote sensing image classification,” IEEE Geosci. Remote
Sens. Mag., vol. 54, no. 3, pp. 1349–1362, Nov. 2015.

[16] E. A. Cloutis, “Review article hyperspectral geological remote sensing:
Evaluation of analytical techniques,” Int. J. Remote Sens., vol. 17, no. 12,
pp. 2215–2242, Aug. 1996, doi: 10.1080/01431169608948770.

[17] T. T. Zhang, F. Liu, “Application of hyperspectral remote sensing in mineral
identification and mapping,” in Proc. 2nd Int. Conf. Comput. Sci. Netw.
Technol., 2012, pp. 103–106.

[18] N. Gila, O. Yaron, and B. D. Eval, “Integration of hyperspectral short-
wave and longwave infrared remote-sensing data for mineral mapping of
Makhtesh Ramon in Israel,” Remote Sens., vol. 8, no. 4, Apr. 2016, Art.
no. 318, doi: 10.3390/rs8040318.

[19] C. A. Bishop, J. G. Liu, and P. J. Mason, “Hyperspectral remote
sensing for mineral exploration in Pulang, Yunnan Province, China,”
Int. J. Remote Sens., vol. 32, no. 9, pp. 2409–2426, May 2011,
doi: 10.1080/01431161003698336.

[20] Z. L. Li et al., “Satellite-derived land surface temperature: Current status
and perspectives,” Remote Sens. Environ., vol. 131, pp. 14–37, Apr. 2013,
doi: 10.1016/j.rse.2012.12.008.

[21] S. B. Duan et al., “Validation of collection 6 MODIS land surface tempera-
ture product using in situ measurements,” Remote Sens. Environ., vol. 225,
pp. 16–29, May 2019, doi: 10.1016/j.rse.2019.02.020.

[22] S. B. Duan, Z. L. Li, and P. Leng, “A framework for the retrieval of
all-weather land surface temperature at a high spatial resolution from
polar-orbiting thermal infrared and passive microwave data,” Remote Sens.
Environ., vol. 195, pp. 107–117, Jun. 2017, doi: 10.1016/j.rse.2017.04.008.

[23] S. B. Duan, Z. L. Li, B. H. Tang, H. Wu, and R. L. Tang, “Gen-
eration of a time-consistent land surface temperature product from
MODIS data,” Remote Sens. Environ., vol. 140, pp. 339–349, Jan. 2014,
doi: 10.1016/j.rse.2013.09.003.

[24] Y. G. Qian, S. Qiu, N. Wang, X. Kong, H. Wu, and L. Ma, “Land surface
temperature and emissivity retrieval from time-series mid-infrared and
thermal infrared data of SVISSR/FY-2C,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 6, no. 3, pp. 1552–1563, Jun. 2013.

[25] C. X. Gao, Z. L. Li, S. Qiu, B. H. Tang, H. Wu, and X. G. Jiang, “An
improved algorithm for retrieving land surface emissivity and temperature
from MSG-2/SEVIRI data,” IEEE Geosci. Remote Sens. Mag., vol. 52,
no. 6, pp. 3175–3191, Jun. 2014.

[26] W. Zhao, A. Li, H. Jin, Z. Zhang, J. Bian, and G. Yin, “Performance eval-
uation of the triangle-based empirical soil moisture relationship models
based on Landsat-5 TM data and in situ measurements,” IEEE Geosci.
Remote Sens. Mag., vol. 55, no. 5, pp. 2632–2645, May 2017.

[27] W. Zhao, A. Li, and W. Deng, “Surface energy fluxes estimation over the
South Asia subcontinent through assimilating MODIS/TERRA satellite
data with in situ observations and GLDAS product by SEBS model,” IEEE
J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 9, pp. 3704–
3712, Sep. 2014.

[28] M. Black, T. R. Riley, G. Ferrier, A. H. Fleming and P. T. Fretwell, “Auto-
mated lithological mapping using airborne hyperspectral thermal infrared
data: A case study from Anchorage Island, Antarctica,” Remote Sens. En-
viron., vol. 176, pp. 225–241, Apr. 2016, doi: 10.1016/j.rse.2016.01.022.

[29] X. Chen, T. A. Warner, and D. J. Campagna, “Integrating visible, near-
infrared and short wave infrared hyperspectral and multispectral thermal
imagery for geologic mapping: Simulated data,” Int. J. Remote Sens.,
vol. 28, no. 11, pp. 2415–2430, 2007, doi: 10.1080/01431160600702624.

[30] X. Chen, T. A. Warner, and D. J. Campagna, “Integrating visi-
ble, near-infrared and short-wave infrared hyperspectral and multi-
spectral thermal imagery for geological mapping at Cuprite, Nevada,”
Remote Sens. Environ., vol. 110, no. 3, pp. 344–356, Oct. 2007,
doi: 10.1016/j.rse.2007.03.015.

[31] J. L. Feng, D. Rogge, and B. Rivard, “Comparison of lithological mapping
results from airborne hyperspectral VNIR-SWIR, LWIR and combined
data,” Int. J. Appl. Earth Observ., vol. 64, pp. 340–353, Feb. 2018,
doi: 10.1016/j.jag.2017.03.003.

[32] F. D. Van Der Meer et al., “Multi- and hyperspectral geologic remote
sensing: A review,” Int. J. Appl. Earth Observ., vol. 14, no. 1, pp. 112–128,
Feb. 2012, doi: 10.1016/j.jag.2011.08.002.

Li Ni received the Ph.D. degree in cartography and geographical information sys-
tem from the Institute of Remote Sensing and Digital Earth, Chinese Academy
of Sciences, Beijing, China, in 2015.

She is currently an Associate Researcher with the Aerospace Information
Research Institute, Chinese Academy of Sciences. Her research interests include
the land surface temperature retrieval and application of hyperspectral remote
sensing.

Honggen Xu received the B.S. and Ph.D. degrees in photogrammetric engi-
neering and remote sensing from Wuhan University, Wuhan, China, in 2003 and
2008.

He is currently a Senior Engineer with Wuhan Center of China Geological
Survey (Central South China Innovation Center for Geosciences), Wuhan, China.
His research interests include remote sensing data processing and application of
hyperspectral remote sensing.

Xiaoming Zhou received the Ph.D. degree in cartography and geographical
information system from the Institute of Geographic Sciences and Natural
Resources Research, Chinese Academy of Sciences, Beijing, China, in 2015.

He is currently an Associate Professor with the Lanzhou University of Tech-
nology, Lanzhou, China. His research focuses on the thermal infrared remote
sensing and application of remote sensing.

https://dx.doi.org/10.1006/mssp.1997.0090
https://dx.doi.org/10.1016/j.cageo.2011.12.014
https://dx.doi.org/10.1080/01431169608948770
https://dx.doi.org/10.3390/rs8040318
https://dx.doi.org/10.1080/01431161003698336
https://dx.doi.org/10.1016/j.rse.2012.12.008
https://dx.doi.org/10.1016/j.rse.2019.02.020
https://dx.doi.org/10.1016/j.rse.2017.04.008
https://dx.doi.org/10.1016/j.rse.2013.09.003
https://dx.doi.org/10.1016/j.rse.2016.01.022
https://dx.doi.org/10.1080/01431160600702624
https://dx.doi.org/10.1016/j.rse.2007.03.015
https://dx.doi.org/10.1016/j.jag.2017.03.003
https://dx.doi.org/10.1016/j.jag.2011.08.002


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


