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Modeling Alpine Grassland Above Ground Biomass
Based on Remote Sensing Data and Machine

Learning Algorithm: A Case Study in East of the
Tibetan Plateau, China

Baoping Meng , Tiangang Liang, Shuhua Yi, Jianpeng Yin , Xia Cui, Jing Ge ,
Mengjing Hou, Yanyan Lv, and Yi Sun

Abstract—Effective and accurate assessment of grassland above-
ground biomass (AGB) especially via remote sensing (RS), is crucial
for forage-livestock balance and ecological environment protection
of alpine grasslands. Because of complexity and extensive spatial
distribution of natural grassland resources, the RS estimation
models based on moderate resolution imaging spectroradiometer
(MODIS) data exhibited low accuracy and poor stability. In this
study, various methods for estimating the AGB of alpine grassland
vegetation using MODIS vegetation indices were evaluated by
combining with meteorology, soil, topography geography and in
situ measured AGB data (during grassland growing season from
2011 to 2016) in Gannan region. Results show that 1) five out of ten
factors (elevation, slope, aspect, topographic position, temperature,
precipitation and the concentration of clay and sand in the soil)
exert significant effects on grassland AGB, with R2 0.04–0.39, and
RMSE 859.68–1075.09 kg/ha, respectively; 2) the accuracy and
stability of AGB estimation model can be improved by constructing
multivariate models, especially using multivariate nonparameter
models; 3) the optimum estimation model is constructed on the
basis of random forest algorithm (RF). Compared with univari-
ate/multivariate parameter models, RMSE of RF model decreased
26.45%–44.27%. Meanwhile, RF models can explain 89.41% vari-
ation in AGB during grass growing season. This study presented
a more suitable RS inversion model integrated MODIS vegetation
indices and other effect factors. Besides, the accuracy based on
MODIS data was greatly improved. Thus, our study provides a sci-
entific basis for effective and accurate estimating alpine grassland
AGB.
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I. INTRODUCTION

GRASSLAND ecosystem, as the largest terrestrial ecosys-
tem on earth’s surface [1], accounts for about 40% of land

area [2], its net primary productivity accounts for 20% of the
total terrestrial ecosystem capacity [3]. Above ground biomass
(AGB), usually expressed as dry grass weight of aboveground
portion within one unit area [4], is an important indicator of
regional carbon cycle [5], [6]. Its temporal and spatial patterns
reflect carbon sink potential of grassland vegetation [7], [8]. In
addition, grassland AGB and its change directly reflect degree of
grassland degradation, soil erosion [9]–[11], and desertification
[12]. In practice, changes in grassland AGB can be used to mon-
itor pasture overgrazing and land use change [13]. Therefore,
accurate estimation of grassland AGB is of great significance for
grassland management, grass and livestock balance, grassland
growth assessment, and ecological environmental protection
[14]–[16].

Ground measurement and remote sensing (RS) inversion are
two major methods in grassland AGB estimation. RS inversion
methods have gradually replaced traditional ground measure-
ment methods, and showed more application possibilities with
significant advantage of macroscopic, rapid, economical, and
informative information [17]. RS inversion has become the most
effective method for collecting continuous spatial and temporal
data at regional or even global scales [18]–[23].

Normalized vegetation index (NDVI) was first applied to
study natural grasslands in the early 1970s, seemingly, research
on the linkage between vegetation indices and AGB had a history
extending over several decades [24], [25]. For example, Li and
Liu estimated wetland vegetation biomass based on Landsat
ETM NDVI and field sampling data in Poyang Lake, the correla-
tion between biomass and NDVI showed high coefficient of 0.80
[26]. Xu et al. constructed grassland AGB inversion model based
on MODIS NDVI and field measurement data in the Tibetan
Plateau from the end of July to September in 2007 [27]. Cui et
al. used MODIS NDVI at 500 m resolution to construct AGB
regression model for the alpine meadow grassland [21].
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Fig. 1. (a) Location of study area and (b) distribution of sampling sites in the pastoral area of Gannan region, China. Black spots in Fig. 1(b) represent location of
permanent sampling sites, other symbols represent random sampling sites, each sampling site corresponded to one MODIS pixel, and the growth status of grassland
was relatively uniform.

High-resolution satellite image such as MSS, TM, and SPOT,
has been used in grassland AGB monitoring in several studies
exhibited higher accuracy, but it is severely constrained by
several factors such as passing time, coverage, and cloud rain.
Although MODIS has a low spatial resolution, it has a high
temporal resolution (every day) and a large spatial coverage
(width of 2330 km). Those features are suitable for monitoring
of grassland AGB and its dynamic changes especially for large
areas [24]. However, univariate parameter RS inversion models
based on MODIS data have low accuracy and poor stability
in alpine meadow grassland [23], [28], [29], because of the
extensive spatial distribution, complex grass species, and high
spatial heterogeneity [14], [29], [24]. Hence, it is essential to
explore a new grassland AGB monitoring method based on
MODIS data. Quan et al. improved the accuracy of AGB esti-
mation by using PROSAILH radioactive transfer model, with R2

increased by 0.16 than empirical statistical models [30]. He et al.
presented a physical method based on assimilate data retrieved
from MODIS to improve the AGB estimation accuracy [31].
Ali et al. analyzed applicability of multiple linear regression
(MLR), artificial neural network (ANN), adaptive neuro-fuzzy
inference system (ANFIS) models, results showed that ANFIS
has produced improved estimation of biomass as compared
to the ANN and MLR [32]. Furthermore, additional critical
factors like topographic, meteorological, soil and vegetation
biophysical indicators are taken into construction of RS in-
version model [20], [22], [24], [27], [29], [33]–[36]. Various
form and structure of RS estimation models have been applied
in AGB estimation study, i.e., multivariate parameter models
include linear, logarithmic, power and reciprocal formula forms
[23], [34], [35], multivariate nonparameter models include back
propagation artificial neural network (BP-ANN), support vec-
tor machine (SVM), random forest (RF) [20], [36]–[40], and
so on.

In this study, the major aims are as follows:
1) examine the critical factors (meteorology, soil, topogra-

phy, geography and remote sensing vegetation indices) in
estimating AGB of alpine meadow;

2) compare and analyze the performance of three types
of AGB estimation models (univariate parameter mod-
els, multivariate parameter and multivariate nonparameter
models) in alpine meadow;

3) propose a method with easy-operation and high accuracy
for alpine grassland AGB estimation.

Based on the above results, this study will provide scientific
support for high-precision remote sensing inversion of large-
scale grassland AGB.

II. METHODS AND MATERIALS

A. Study Area

Gannan region (33°60′–35°44′ N, 100°46′–104°44′ E) is one
of the important agricultural and pastoral intersections in the
northeastern Qinghai-Tibet Plateau (see Fig. 1), located on the
transition zone of Loess Plateau to the Tibetan Plateau. Mean
elevation is greater than 3000 m. As its vast area (account
for 70.28% of the total area), livestock grazing is the primary
activity in this region and closely related to human well-being.
This region has a continental plateau climate: mean annual air
temperature ranges from 1 to 3 °C, annual precipitation varies
from 400 to 800 mm, and annual mean sunshine duration is
2000–2400 h. Rain and heat are concentrated in June to August,
which are peak period of grassland growth. The main grassland
types are alpine meadow and alpine shrub meadow.

B. Sampling Strategy and Data Collection

Field survey data were obtained from both permanent and
random sampling sites (see Fig. 1). Permanent sampling sites
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Fig. 2. (a) Permanent site, distribution of five quadrats (1.5 × 1.5 m) in each
plot (30 × 30 m). Each plot consists of nine quadrats (0.5 × 0.5 m), the quadrats
identification number (1–9) was the order that used to sample grass each time
in each of year, e.g., quadrat 1 was used the first time and quadrat 2 in second
time of the same year, etc. (b) Random plot, distribution of 5 quadrats (0.5 ×
0.5 m) in each plot of 100 × 100 m. constant.

were designed in Yangji Community with 272.26 × 104 ha cov-
ered in Gannan region. Random sampling sites were established
throughout the Gannan region. For all sampling sites, plots were
selected based on two criteria: 1) with relative uniformity and
spatial representativeness of grassland growth status; and 2) the
area of the sampling sites should reflect grassland status within
one MODIS pixel. Besides, the random plot site should ensure
a 5 km horizontal distance and homogeneity between plots in
both vegetation and land use.

Totally 13 permanent sites were established inside Yangji
Community. In each permanent site, a 30 × 30 m plot was
established for data acquisition. In each plot, five quadrats (1.5
× 1.5 m) were designed [see Fig. 2(a)]. The entire plot was
reflected by central point and other four corner quadrats. In
random sampling site a 100 × 100 m plot was set up for ground
sampling. In each plot, five quadrats (0.5 × 0.5 m) were used,
one for central point and others for corner point [see Fig. 2(b)]. A
total of 27 field investigations were conducted during grassland
growth season from 2011 to 2016, including 1325 permanent
quadrats and 828 random quadrats (see Table I). The whole
observed grassland AGB data were used to construct and analyze
the biomass estimation model. In each quadrat, above ground
grass was cut using shears with nonplant material removed. Then
samples were dried in the lab at 64 °C, grass AGB data were
recorded until the weight remained constant.

C. MODIS Vegetation Data Preprocess

MOD13Q1 vegetation indices (NDVI and EVI) were down-
loaded from the United States National Aeronautics and Space
Administration (images orbit number h26v05), Totally 27 im-
ages with resolution of 250 m were obtained during 2011 to
2016. Map projection of MOD13Q1 NDVI and EVI were trans-
formed and registered to Albers by MODIS reprojection tool,
the spatial resolution resampled to 250 m.

D. DEM, Soil, and Meteorological Data Preprocess

DEM data were obtained by shuttle radar topography mis-
sion images (version V004),1 with 90 m spatial resolution and

1Online. [Available]: http://srtm.csi.cgiar.org/

TABLE I
DATA BETWEEN MODIS IMAGES AND FIELD MEASUREMENTS IN

PERMANENT/RANDOM PLOT

Geo-TIFF format. The slope, aspect, and topographic position
index (TPI) were calculated based on DEM. Soil data were
downloaded from.2 Both sand and clay concentrations in surface
soil (0–30 cm) and bottom soil (30–60 cm) were downloaded,
here represented as clay1, sand1, clay2, sand2. Meteorological
data were downloaded from the dataset of daily surface observa-
tion value of China (V3.0).3 Daily temperature and precipitation
data were downloaded from 38 meteorological stations and
surrounding areas in Gannan region from 2011 to 2016 (see
Fig. 3). In each station, the monthly mean air temperature and
cumulative precipitation were calculated. Anusplin software
package was used to interpolate the station-specific data with
thin plate smoothing spline interpolation method [29].

For further processing, projections of DEM, slope, aspect,
TPI, soil, and selected meteorological data were defined as
Albers. Value of each factor and corresponded observation data
were obtained by ArcGIS software. Modeling and accuracy
evaluation were processed in MATLAB.

E. Grassland AGB Estimation Models

The grassland AGB estimation models included univariate
parameter models, multivariate parameter, and multivariate non-
parameter models. The univariate parameter models include
linear, exponential, logarithmic, and power separate regression
models. These models were constructed based on 12 variables
[topography factor: DEM, slope (S), aspect (A) and TPI; soil
factor: sand1 (S1), clay1 (C1), sand2 (S2) and clay2 (C2);

2Online. [Available]: http://globalchange.bnu.edu.cn/research/soil
3Online. [Available]: http://cdc.cma.gov.cn/

http://srtm.csi.cgiar.org&sol;
http://globalchange.bnu.edu.cn/research/soil
http://cdc.cma.gov.cn/
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Fig. 3. Locations of the meteorological stations in Gannan region and surrounding area.

meteorological factor: monthly average air temperature (T) and
cumulative precipitation (P); MODIS vegetation index: NDVI
and EVI and measured grassland AGB data].

Multivariate parameter models included linear, logarithmic,
power, and reciprocal multivariate regression models (1)–(4).
Variables of multivariate parameter models were selected by cal-
culating their correlations with grassland AGB. The multivariate
parameter models were expressed as follows:

y = β1 + β2x1 + β3x2 + · · ·+ βi+1xi + ui (1)

y = β1 + β2 lnx1 + β3 lnx2 + · · ·+ βi+1 lnxi + ui (2)

y = Axβ1

1 xβ2

2 . . . xβi

i eui (3)

y = β1 + β2 (1/x1) + β3 (1/x2) + · · ·+ βi+1 (1/xi) + ui

(4)

where y represented grassland AGB; x1, x2, . . . , xi were
variable; β1, β2, . . . βi+1 were model-fitting coefficients; and
ui represented error term.

Multivariate nonparameter models employed in this study
were BP-ANN, SVM, and RF models. Variables of these models
were in consistent with multivariate parameter models. BP-ANN
referred to a multilayer network structure consisting of an input
layer, an output layer, and one or more hidden layers. The
Levenberg–Marquardt function algorithm was selected for ANN
training in this study. The number of neurons and hidden layers
were determined based on a trial-and-error process. In this study,
BP-ANN model was constructed and validated with MATLAB
Neural Network toolbox. SVM was a supervised learning model
with associated learning algorithms, and was constructed by a
set of hyperplanes in high- or infinite-dimensional space, and

these could be employed for classification, regression, and other
tasks. Generally, the higher the functional margin, the lower
the generalization error of the classifier and regression. In this
study, the radial basis function was used as the kernel function,
and the optimal cost and gamma values were obtained using
the “Libsvm” package [41] in MATLAB. RF approach applies
a set of decision trees to improve prediction accuracy, and the
RF algorithm is based on the classification tree algorithm. RF
regression used bootstrap sampling, and each bootstrap sample
was employed to construct a decision tree. The training samples
were constantly selected to minimize the sum of the squared
residuals until a complete tree was formed. Multiple decision
trees were formed, and voting was used to obtain the final
prediction. The model was established and validated using the
RF function in the “RF_MexStandalone-v0.02” package within
MATLAB.

F. Model Accuracy and Stability Evaluation

Performance of above-mentioned grassland AGB estimation
models were evaluated with 10-fold cross-validation method.
All data were divided into ten groups, each group contained an
approximate equal number of samples for cross validation. In
each evaluation, 10% of the samples (1/10 of the total samples)
were used as a test set, and the remainder as training set (except
for the case of BP-ANN, 10% of samples consist test set, another
10% as validation set, and remaining 80% as training set). For
each dataset, the value of RMSE and R2 were calculated. Process
was repeated 10 times until each group had been employed as
both a test set and a training set. Mean RMSE and R2 were used to
reflect model’s performance obtained in the 10 runs. The higher
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TABLE II
DESCRIPTIVE STATISTICS OF MEASURED GRASSLAND AGB DURING GROWTH

SEASON OF 2011–2016 IN STUDY AREA (N = 2053)

Note: Std depicts standard deviation, CV depicts coefficient of variation.

R2 value and the smaller RMSE value, the higher the precision.
Standard deviation (SD) of RMSE and R2 of test set (denoted by
SDRMSE and SDR

2) were used to reflect model’s stability, the
closer SD to 0, the higher the stability of model. RMSE and SD
were calculated as follows:

RMSE =

√∑n
i=1 (Biomassi − fBiomass (i))

2

n
(5)

SD =

√∑n

i=1
(xi − x̄)2/N (6)

where Biomassi represented the ith observed grassland
biomass, fBiomass(i) represented the ith grassland biomass
estimated by model, n represented the plots of the test set, xi

was repeated RMSE and R2 of the test set, x̄ was the average of
xi, andN was the number of modeling and validation repetition.

III. RESULTS

A. Characteristics of Observed Grassland AGB
in Gannan Region

The measured grassland AGB in Gannan region during 2011
to 2016 was shown in Table II. There was a considerable differ-
ence in grassland AGB in a total of 2053 sampling quadrats dur-
ing grass growing season. The average grassland AGB ranged
from 1067.83 to 2800.42 kg/ha and coefficient variation (CV)
ranged from 0.47 to 0.73. The maximum and minimum biomass
differed greatly, with 9394 and 178 kg/ha, respectively. The
largest average biomass showed in Maqu, with AGB and CV
of 2800.42 kg/ha and 0.54, respectively. The lowest showed in
Diebu (1067.83 kg/ha and 0.73, respectively). The average AGB
in other countries followed by Luqu, Zhuoni, Hezuo, Xiahe, and
Lintan, ranged from 1570.82 to 2584.95 kg/ha, and CV within
0.47–0.60. For entire study area, the average AGB and CV were
2389.54 kg/ha and 0.54, respectively.

B. Univariate Parameter Models

Results of accuracy evaluation, through 10-fold cross vali-
dation for univariate parameter grassland AGB models were
shown in Table III. In four types of univariate models based
on MODIS vegetation indices exhibited the best performance,
with R2 in a range of 0.32–0.35, and RMSE ranging from 876.65

TABLE III
VALIDATION RESULTS THROUGH 10-FOLD CROSS VALIDATION FOR

UNIVARIATE PARAMETER AGB ESTIMATION MODEL

Note: T and P represent monthly average air temperature and cumulative precipitation, S,
A, and TPI represent slope, aspect, and topographic position index, clay1, sand1, clay2,
sand2 represent sand and clay concentrations in surface soil (0–30 cm) and bottom soil
(30–60 cm), units of RMSE is kg/ha and the bold fonts represent the best performance
in four types of model.

TABLE IV
RESULTS OF MODEL FITTING WITH THE OPTIMUM INVERSION MODELS BASED

ON UNIVARIATE FACTOR

Note: ∗represent p<0.05; ∗∗represent p < 0.001; a and b represent the constant and
exponential term of the models, respectively; T and F are the significant values according
to the T and F tests. T and P represent monthly average air temperature and cumulative
precipitation, S, A, and TPI represent slope, aspect and topographic position index, clay1,
sand1, clay2, sand2 represent the sand and clay concentrations in surface soil (0–30 cm)
and bottom soil (30–60 cm).

to 906.64 kg/ha. These were followed by atmosphere, with R2 of
0.11–0.23, RMSE of 951.56–1039.65 kg/ha. Univariate models
based on soil and topography showed low accuracy, R2 was lower
than 0.1, and RMSE ranged within 1070.76–1085.08 kg/ha.

According to the accuracy evaluation, the parameter estima-
tion of each univariate parameter model and the results of T
and F test are shown in Table IV. Univariate parameter AGB
estimation model is shown in Table V. Variables of DEM,
T, P, TPI, Clay2, EVI, and NDVI passed the significant test
(P < 0.05). The optimum models based on MODIS EVI and
NDVI were exponential, with R2 of 0.35 (both) and RMSE of
876.65 and 877.87 kg/ha, respectively, followed by exponential
model based on precipitation and logarithmic model based on
temperature. Linear models based on DEM, S, A, TPI, Clay1,
and Clay2 exhibited best performance. Logarithm model based
on Sand1 and Sand2 performed best. However, models based on
topography and soil factors showed low R2 and high RMSE.



MENG et al.: MODELING ALPINE GRASSLAND AGB BASED ON REMOTE SENSING DATA AND MACHINE LEARNING ALGORITHM 2991

TABLE V
BEST FITTED MODELS CONSTRUCTED BASED ON UNIVARIATE FACTOR

Note: T and P represent monthly average air temperature and cumulative pre-
cipitation, TPI represent topographic position index, and clay2 represent the clay
concentrations in bottom soil (30–60 cm).

TABLE VI
ACCURACY ASSESSMENT OF THE DIFFERENT MULTIVARIATE PARAMETER

MODELS USING THE 10-FOLD CROSS-VALIDATION METHOD

Note: units of RMSE is kg/ha; T and P represent monthly average air temperature and
cumulative precipitation, TPI represent topographic position index, clay2 represent the
clay concentrations in bottom soil (30–60 cm), blod fonts represent the best performance
in four types of model.

TABLE VII
BEST FITTED MODELS CONSTRUCTED BASED ON MULTIVARIATE

Note: ∗represent p < 0.05, ∗∗represent p < 0.01; T and P represent monthly average
air temperature and cumulative precipitation, TPI represent topographic position index,
clay2 represent the clay concentrations in bottom soil (30–60 cm).

C. Multivariate Parameter Models

The accuracy evaluation (through 10-fold cross validation) for
multivariate parameter models based on six variables (significant
correlated with grass AGB in Section III-B) and 2153 sample
data in Gannan region were shown in Table VI. Multivariate
power model exhibited the best performance, with R2 and
RMSE of 0.44 and 817.48 kg/ha, respectively (see Table VI,
bold words). Followed by multivariate linear and logarithmic
models, with R2 of 0.42, and RMSE of 833.88–840.50 kg/ha.
The accuracy of multivariate reciprocal model exhibited the
worst, with R2 of 0.41 and RMSE of 843.00 kg/ha. According
to parameter estimation for each multivariate model and F test
(see Table VII), the multivariate AGB estimation models were
obtained, as shown in Table VII. All models passed the F test
with significant level of P < 0.001. Among all the multivariate
models, the power model has the highest R2 (0.44), and recip-
rocal model has the lowest R2 (0.41).

TABLE VIII
BEST FITTED MODELS CONSTRUCTED BASED ON MULTIVARIATE

Note: T and P represent monthly average air temperature and cumulative precipitation, TPI
represent topographic position index, and clay2 represent the clay concentrations in bottom
soil (30–60 cm).

TABLE IX
STABILITY OF UNIVARIATE PARAMETRIC MODELS IN PREDICTION OF

GRASSLAND AGB

Note: T and P represent monthly average air temperature and cumulative precipitation,
TPI represent topographic position index, clay2 represent the clay concentrations in
bottom soil (30–60cm), and SDR

2 and SDRMSE represent standard deviation of RMSE
and R2.

D. Multivariate Nonparameter Models

The accuracy evaluation through 10-fold cross validation for
BP-ANN, SVM, and RF models is shown in Table VIII. In three
types of machine learning methods, RF model exhibited best per-
formance, with R2 of 0.78, and RMSE of 601.26 kg/ha. The per-
formance followed by SVM model, with R2 and RMSE of 0.70
and 694.59 kg/ha, respectively. BP-ANN model showed the low-
est performance with R2 and RMSE of 0.56 and 745.33 kg/ha.

E. Stability of Different Models

Stability of univariate parametric models was showed con-
siderable variety. These models with high accuracy did not
have high stability (see Table IX). The SDR

2 and SDRMSE for
EVI and NDVI showed lower stability while a higher accuracy.
Among all the models, the stability of optimum model based
on Clay2 was the highest, with SDR

2 of 0.041 and SDRMSE of
107.620 kg/ha; and those based on EVI exhibited lowest, with
SDR

2 and SDRMSE of 0.149 and 159.729 kg/ha.
The stability of multivariate models was showed in Table X.

For parametric models, the power model showed highest stabil-
ity, with SDR

2 of 0.095 and SDRMSE of 117.262 kg/ha. For non-
parametric models, the model based on RF algorithm exhibited
best stability, with SDR

2 of 0.074 and SDRMSE of 64.061 kg/ha.
Among three types of grassland AGB model, the multivariate
non-parametric models (based on machine learning algorithm)
exhibited highest stability, followed by multivariate parametric
models. Univariate parametric models showed lowest stability.
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TABLE X
PERFORMANCE OF MULTIVARIATE PARAMETRIC MODELS IN THE PREDICTION

OF GRASSLAND AGB

Note: T and P represent monthly average air temperature and cumulative precipitation,
TPI represent topographic position index, and clay2 represent the clay concentrations
in bottom soil (30–60 cm).

Fig. 4. Simulated results of grassland AGB based on RF algorithm test set
data. (a) Test dataset. (b) Training dataset. (c) All dataset.

Combined with the accuracy assessment (see Table VIII), RF
model was the most suitable for reflecting inversion of grassland
AGB in study region. This model could account for 89.41% of
the variation in grassland AGB in growing season (see Fig. 4).

IV. DISCUSSION

A. Influence of Various Factors on Grassland AGB
in Gannan Region

Univariate parameter model is one of the most simple and
commonly applied model in grassland AGB estimation via
remote sensing approach. Studies on estimating grassland AGB
based on MODIS vegetation indices have made great achieve-
ments [20], [21], [25], [27], [42]. Furthermore, previous studies
indicated that grassland AGB has a significant correlation with
temperature and precipitation [15], [20], [43], [44]. The soil
texture (including sand and clay content) also deeply influenced
the grassland AGB [45]. Liang et al. and Yang et al. (2017)

indicated that grassland AGB was not only correlated with
remote sensing vegetation indices but also correlated with the
grass biophysics, topography and geographical location (with
correlation coefficient of 0.185–0.425) [24], [28].

This study aimed to explore the best method for grassland
AGB estimation, the MODIS vegetation indices and ten factors
(DEM, S, A, TPI, Clay1, Sand1, Clay2, Sand2, T, and P) are
considered. Generally, the parametric models based on univari-
ate have lower accuracy and poor stability. Univariate grassland
AGB estimation models based on MODIS vegetation indices
accounted for 35.3%–35.6% of the variation in AGB, while
single factor accounted for only 1.5%–36.3% of the variation in
AGB during the growing season. The SDR

2 and SDRMSE of all
univariate models ranged from 0.041–0.149 and 97.479 kg/ha–
159.729 kg/ha, respectively. These results were similar to studies
of Liang et al., (2016) and Yang et al., (2017) in Three-River
Headwaters Region.

B. Performance of Three Types of AGB Estimation Models

Compared with univariate parameter models, multivariate
parameter models showed higher performance. Lv indicated that
the accuracy of grassland AGB parameter model (based on com-
bination of MODIS EVI, effective precipitation, temperature,
and dryness) was higher than MODIS NDVI or EVI alone, with
R2 increased 0.065–0.090, precision increased 2.80%–4.09% in
Xilingguole grassland [44]. Han constructed the multivariate pa-
rameter AGB model based on Landsat TM image band, vegeta-
tion indices, slope, aspect and elevation in Yongding river basin.
His study indicated that this model exhibited higher performance
than the model constructed by TM NDVI and RVI, respectively,
with R2 increased 0.098–0.150, precision increased 7.37%–
9.74% [46]. Diouf et al. studied the semi-arid grassland in
Sahel region, their research indicated a combined photosynthetic
radiation and meteorological data model performed better (R2 =
0.69 and RMSE= 483 kg DW/ha) than univariate model of pho-
tosynthetic radiation or meteorological data (R2 = 0.63 and 0.55
and RMSE = 550 kg DW/ha and 585 kg DW/ha, respectively)
[45]. Liang et al. studied the alpine meadow grassland AGB
inversion model in the Three-River Headwaters Region, research
indicated that a multivariate model showed decreased RMSE by
14.5% as compared with the optimum univariate model [24].
Yang et al. used BP-ANN constructed an AGB model based on
five variables and showed that BP ANN achieved better results
than traditional multi-factor regression models (R2: 0.75–0.85
versus 0.40–0.64, RMSE: 355–462 versus 537–689 kg DW/ha)
[28].

This study showed that accuracy of AGB estimation model
based on MODIS vegetation index can be greatly improved
when considering various factors crucial for grass growth, these
results are in consistent with previous studies [23], [24], [29].
Performance of multivariate nonparameter models are highest
among three types of AGB estimation models, followed by
multivariate parameter models and univariate parameter models
perform poorly (see Table XI). Compared with the univari-
ate/multivariate parameter models, the RMSE of RF model
decreases 26.45%–44.27%. Meanwhile, the models can explain
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TABLE XI
STABILITY OF UNIVARIATE PARAMETRIC MODELS IN PREDICTION OF

GRASSLAND AGB

Note: Combination represents different combinations: 1, Topography, Atmosphere, soil,
and MODIS vegetation index; 2, the combination of Topography, Atmosphere and
MODIS vegetation index; 3, Atmosphere and MODIS vegetation index. T and P represent
monthly average temperature and cumulative precipitation, TPI represent topographic
position index, and clay2 represent the clay concentrations in bottom soil (30–60 cm),
respectively.

89.41% of the variation in AGB during grass growing season in
Gannan area (see Fig. 4).

C. Comparision of Optimum Parameter/Nonparameter
Models Based on Different Variable Combinations

To further confirm the performance of multivariate AGB
models, the same 2053 samples and 10-fold cross validation
method were used to construct RF and multivariate power mod-
els based on different combinations (Topography, Atmosphere,
soil, and MODIS EVI; for each time one type of factor removed,
which had lower correlation with grassland AGB than others).
Results showed that nonparameter models performed better than
corresponding parameter models in accuracy, with 0.45–0.78
versus 0.39–0.44 for R2, 601.26–796.17 kg/ha versus 809.39–
834.62 kg/ha for RMSE on test dataset. Meanwhile, the value
of SD for R2 was similar in nonparameter and corresponding
parameter models. However, the model SDRMSE was lower in
non-parameter models, with 106.352 kg/ha–117.262 kg/ha vs.
64.061 kg/ha–104.764 kg/ha. With number of variables decreas-
ing, SDRMSE of parameter models presented a decreasing trend.
However, in RF models, SD for R2 and RMSE presented an
increasing trend.

D. Factors Affecting the Accuracy of Grassland AGB
Estimation via Remote Sensing Approach

The optimum AGB estimation model was investigated by
comparing univariate parameter models, multivariate parame-
ter/nonparameter models. However, there is still some limita-
tions and uncertainty for these inversion models. The representa-
tiveness of the ground sampling plot [24] and temporal matching
between ground sampling sites and remote sensing data are
the main cause of the uncertainty [25], [28]. Compare with
parametric models, RF model is a data-driven method. The RF
model can automatically retrieve and interpret data, moreover,

the algorithm is flexible. With the increase of input dataset,
the estimation results of models are improved correspondingly
[41], [46], [47]. RF model composes of a large sample decision
tree based on high-dimensional data training and has a strong
tolerance for data error [48], [49]. However, it is difficult to
train RF model effectively with small samples dataset, because
it requires a large amount of marked and ground measured data,
and usually a certain of programming basis is also required [47],
[50]. Besides, this kind of model involves many independent
variables, and some variables (such as atmosphere factors) have
large errors in spatial quantization. Therefore, the model still
has some limitations and uncertainties [15], [51].

Although RF model has higher retrieval accuracy, there are
still unavoidable factors that affect model accuracy. First, spa-
tiotemporal inconsistency exists between field-measured data
and satellite data. MODIS images are more susceptible to clouds
over the Tibet plateau in summer, the approximate monthly
MODIS product is generated by averaging two MODIS prod-
ucts over 16-day intervals. This phenomenon minimizes the
impacts from bad pixels and cloud pixels. Therefore, to ensure
a large amount of valid data to train the RF model, we used
the monthly MODIS data to match the field-measured data. The
representation of the sample plots was not perfect because the
study area had complicated topography. When grassland tends
to degenerate, other surface features (i.e., bare soil and rock)
in the MODIS pixel had some influence on vegetation indices
(e.g., NDVI and EVI), which were used in establishing models.
Hence, we will consider using high spatiotemporal resolution
images in future research. Second, the uneven distribution of the
sample plots produced some errors and uncertainty in construc-
tion models. Most of the sample plots were distributed in the
eastern part of the Tibet Plateau, while the number of sample
plots in the middle and western regions was limited due to
restrictions of road access and altitude. Third, due to the uneven
distribution of meteorological stations on the Tibet Plateau, there
were some errors in the spatial interpolation of meteorological
data.

V. CONCLUSION

Based on the factors significantly correlated with grassland
AGB in Gannan region, this study examined univariate paramet-
ric and multivariate parametric/nonparametric AGB inversion
models, then evaluated their accuracy and stability. The main
conclusions are as follows:

1) six out of ten factors (DEM, TPI, T, P, Clay2 and EVI)
exert a significant effect on grassland AGB in study area;

2) the accuracy and stability of grassland AGB estimation
model can be improved using multivariate method, espe-
cially multivariate nonparameter models;

3) considering the accuracy and stability, in alpine grassland
the multivariate nonparameter model based on RF algo-
rithm (variables including DEM, TPI, T, P, Clay2 and EVI)
is selected as the AGB monitoring model, the RMSE of
RF model decreased 26.45%–44.27% than other models.

Meanwhile, RF model can explain 89.41% of the variation of
grassland AGB during grass growing season in Gannan region.
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