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Hyperspectral Image Dimension Reduction Using
Weight Modified Tensor-Patch-Based Methods

Boyu Feng

Abstract—Dimension reduction (DR) addresses the problem
known as the curse of dimensionality in myriad hyperspectral
imagery applications. Although the spatial pattern may assist in the
distinction between different land covers that have close spectral
signatures, it is often neglected by the current DR methods. In order
to overcome this defect, two solutions: patch-based and tensor-
patch-based, are studied in this article for a group of graph-based
DR methods. To date, only a few attempts have been made in the
patch- and tensor-patch-based variations for the graph-based DR
methods. This article proposed two weight modified tensor-patch-
based methods, namely weight modified tensor locality preserving
projections and weight modified tensor neighborhood preserving
embedding. Specifically, as graph-based DR methods heavily rely
on the construction of adjacency graphs, this paper proposes a new
use of the weighted region covariance matrix in the calculation of
adjacency graphs. We found that the two proposed tensor-patch
methods outperform the up-to-date methods.

Index Terms—Dimension reduction (DR),
imagery, patch, spectral-spatial, and tensor.

hyperspectral

1. INTRODUCTION

PECTRAL variability is the main advantage of hyperspec-
S tral imaging over other existing remote sensors. In order
to benefit from the abundant spectral information from the
hyperspectral image, algorithms were designed to analyze the
spectral bands [1], [2] and to explore the possibility of using
the spectral variability with other data [3], [4]. On the other
hand, the huge number of spectral bands also arose the problem
known as the curse of dimensionality in myriad hyperspectral
imagery applications [5], when dimension reduction (DR) will
be conducted to obtain the useful underlying information. The
traditional DR methods often consider a hyperspectral image
as a 2-D matrix with rows of observations and columns of
variables. However, the actual hyperspectral image is a 3-D cube
with two spatial dimensions and one spectral dimension. By
flattening the original image along the spectral dimension, the
spatial information is lost. The motivation of this research is to
improve the situation of treating the hyperspectral image as 2-D
matrix in DR and include the spatial information in the original
data through 3-D processes. Initial attempts have been made in
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supervised DR to preserve spatial information through image
texture during DR process. A hybrid supervised DR method
was performed in a raw spectral-spatial feature space, where
spatial features are represented by the grey level co-occurrence
matrix of each spectral channel [6]. Zhou et al. [7], proposed
a spatial and spectral regularized local discriminant embedding
method to include the spatial information through spatial fil-
tering and spatial discriminant analysis. However, these initial
attempts to preserve spatial information is by extracting the
spatial information into additional layer of information and then
still work with a flattened 2-D hyperspectral image. Starting in
computer vision, the concepts of patch and tensor-patch were
proposed to preserve information along each dimension during
data processing. Briefly speaking, the patch-based framework
considers each pixel along with its neighbors as an integrated
patch containing both spectral and spatial information; and the
tensor-patch-based framework considers the 3-D hyperspectral
data as it is and performs data processing along each dimension.
From the late 2000s, this idea sheds light on hyperspectral appli-
cations. The image patch distance (IPD) [8] is an initial patch-
based proposal for spectral-spatial similarity measurement in
hyperspectral study. It considers both the spectral and spatial
information through patches from the hyperspectral image. The
IPD patch-based framework has been adopted in supervised
DR [9], [10]. Unfortunately, the patch-based framework can
only preserve the local spatial information within the decided
patch, while the global spatial information still lose in the
flattening of the hyperspectral data. On the other hand, the idea of
tensor-based DR appeared around the year of 2010. The tensor-
based framework have been adopted into a few supervised DR
methods [11]-[13], which requires ground truth data. Several
unsupervised tensor-based DR methods for computer vision
problems have been proposed, including multilinear principle
component analysis (PCA) [14], concurrent subspaces analy-
sis [15], and tensor canonical correlation analysis [16]. These
methods usually work with a group of tensors. However, in the
case of hyperspectral image DR, we only have one tensor. In
[17], [18], the single hyperspectral image is first treated as a 3-D
tensor, where DR is applied along the spectral dimension, and
low-rank approximation is applied along the spatial dimensions
as noise reduction. However, the DR and low-rank approxi-
mation are performed separately on the data and introduces
complexity. Similarly, An et al [19], adopts a multiscale idea
in the tensor-based low rank decomposition to automatically
find the best rank for each dimensions. Since then, the concept
of low rank tensor representation/approximation/decomposition
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becomes popular, which aims to find the intrinsic data structure
for better feature extraction and does not necessarily relate to
DR [20]-[22]. Later, inspired by the patch alignment frame-
work [23], a new tensor-patch-representation was proposed for
hyperspectral image [24]-[26]. Under this tensor-patch-based
framework, the input hyperspectral image needs to be first
divided into local patches. In this way, the hyperspectral image
becomes a 4-D data, composed of a group of 3-D tensors. In [24]
and [25], the tensor-patch-representation has been first applied
to supervised DR solutions (discriminant locality alignment and
linear discriminant analysis). Unfortunately, the ground truth
data asked by the supervised DR solution may not accessible
for some study sites.

Although the concept of patch and tensor-patch have great
potential in a group of unsupervised graph-based DR methods
[27], related studies are limited [28], [29]. This group of methods
learns the data local structure from adjacency graphs/weight
matrices that only consider a certain number of the nearest pixels
in the spectral space rather than all pixels in the image [30].
Four representative graph-based DR methods are locally linear
embedding (LLE) [31], neighborhood preserving embedding
(NPE) [32], Laplacian eigenmaps (LE) [33], and locality pre-
serving projections (LPP) [34]. By introducing the patch-based
weight calculation, the spatially coherent LLE was able to
preserve spatial information [35]. Hong et al. have successfully
introduced the spatial information through patch-based idea in
LLE and LE [36]. Not until 2018, Deng et al. [28], adopted the
patch alignment framework in the TLPP especially for hyper-
spectral DR. However, the use of the regional covariance matrix
(RCM) in [28] treats each pair of data points in the region of in-
terest equally, which may not reflect the locational-variated real-
world situation. This article uses a weighted RCM (WRCM) to
account for this shortage. Furthermore, the majority of existing
papers tend to focus on only one method from the graph-based
methods for possible improvements, while a comprehensive
experiment on all the possibilities should be made. This arti-
cle proposed two weight modified tensor-patch-based methods,
namely weight modified tensor locality preserving projections
(WMTLPPs) and weight modified tensor neighborhood pre-
serving embedding (WMTNPE). Comprehensive experiments
have been provided for the patch- and tensor-patch-variations
in the graph-based DR methods. It has been found that the
two proposed tensor-patch methods outperform the up-to-date
methods.

II. METHODS

A. Locally Preserving Projections and
Neighborhood Preserving Embedding

The LPP and NPE methods are two of the early graph-based
method attempts. They separately simplified the nonlinear LE
and LLE methods and have great flexibility. They share the same
solution procedure containing three steps listed later and shown
in Fig. 1, except that they solve different eigenproblems due to
their different objective functions.

1) Constructing the adjacency graph G: The adjacency graph

G locates a group of adjacent pixels around the target pixel.
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Original 3D hyperspectral data x.

2D Matrix X.

Construct the adjacency graph G using
Euclidean distance/patch-based distance.
.
Generate weight matrix W using
heat kernel (LPP) or reconstruction error (NPE).

Solve a generalized eigenproblem on the
embedded 2D matrix.

v
The obtained eigenvector is the
dimension reduction projection

Fig. 1. Flowchart of the LPP/NPE DR methods.

The most common way to decide the adjacency of one
pixel is the k-nearest neighbors (kKNN) method [37], [38].
With a manually chosen k value, k nearest neighbors will
be selected based on the Euclidean distance in traditional
method or patch-based distance (e.g. IPD, RCM, and
WRCM) in proposed methods. This patch-based modi-
fication shown as red font in Fig. 1 is the key change
in the proposed methods and is discussed in depth in
Section II-B.

2) Generating the weight matrix W: After obtaining the ad-
jacency graph, the relation between each pixel and its
adjacent pixels is decided using a weight matrix. The
weight matrix is a sparse matrix, where each element
depicts the relation between two pixels and equals to zero
if the two pixels are not each other’s adjacent pixel. This
relation described by the weight matrix is the key criteria
that the graph-based DR uses to preserve the original data
structure during the DR process. Such relation is the key
preserved through the graph-based DR transformation.
Such relation is the key preserved through the graph-based
DR transformation.

3) Solving the eigenfunction: The objectives of both the LPP
and NPE can be described as two different minimization
problems, which then were justified to be equivalent to
solving two different eigenfunctions [32], [34]. The de-
rived eigenvector is the projector that leads to the resulting
DR projection.

In the step (1), the two methods of LPP and NPE are exactly
the same. In the step (2), LPP and NPE have a different equation
to calculate the weight matrix. For LPP, the value of weight
matrix for any two adjacent pixels x; and x; is determined by
heat kernel [34]

| zi — zj|*

Wij=e—
1j=¢e "

ey
where |||| is the Euclidean norm; and # is the power of weight set
to be 1 and has little effect on the final results in the hyperspectral
application of this manuscript. For NPE, the value of weight
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matrix for any two adjacent pixels x; and x; is determined by
minimizing reconstruction error [32]

min Y [l @ — Y Wijay | ©)
2 J

with constraint Zj Wii=1 j=1,2,...,n, and n is total
number of pixels in the hyperspectral image.

Regarding the different weight matrices, the objective func-
tions in step (3) are different between the two methods LPP and
NPE. For LPP, the objective is to ensure that if two data points
are close to each other in the original space, they should stay
close in the projected feature space. If two pixels are not each
other’s adjacent pixel and their weight is zero, their relation will
not be considered in the DR transformation. It can be realized
through the minimization problem

min Y || yi — ;> Wi, 3)
ij

where y; and y; are data points in the projected feature space;
and W, is the weight matrix obtained in the step (2). For
adjacent pixels, their closeness will be scaled by their weight,
and larger weights exert more penalty on their difference. He
and Niyogi justified that the above minimization problem is
equivalent to solve the eigenfunction [34]

XLXTa=2XDX"a, 4)

where the Laplacian matrix L = D — W; D;; =5 i Wiiis
a diagonal matrix with column sums of W; and A and a are the
eigenvalue and eigenvector we want to solve.

For NPE, the objective function is to minimize the reconstruc-
tion error among each neighborhood

min Y [l yi — Y Wiyl (5)
i i

where y; and y; are pixels in the projected feature space. Thus,
if pixel y; is not y;’s adjacent pixel and their weight is zero, y;
will be not included in the reconstruction of y;. For y; that is
adjacent to y;, it will be scaled by their weight, and larger weight
exert more influence in the reconstruction. This minimization
problem can be also simplified as an eigenfunction:

XMXTa=2XX"a (6)

where M = (I — W)T(I — W) and I = diag(1,...,1); and
A and a are the eigenvalue and eigenvector we want to solve.

B. Tensor Locality Preserving Projections and
Tensor Neighborhood Preserving Embedding

In the LPP and NPE process, the 3-D hyperspectral image
needs to be raster-scanned along the spectral dimension, when
the spatial information are lost. Although the introduction of
patch-based distance calculation in the adjacency graph con-
struction considers the local spatial information, the eigenprob-
lem in the LPP and NPE methods is based on the 2-D data
and fail to include the global spatial information. There is a
need to upgrade them into tensor versions [39], [40]. The TNPE
and TLPP methods keep the original dimensions of the data
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Original 3D hyperspectral data x.

Segment the hyperspectral data into multiple 3D|
patches, among which select a group of patches to|
compose a 4D training dataset.

Construct the adjacency graph G on the training
dataset using Euclidean distance/patch-based distance.

Generate weight matrix W using
heat kernel (TLPP) or reconstruction error (TNPE).

Tnitialize the three eigenvectors
correspondingly along the two spatial and T

one spectral as identity matrix.
No

Update the training dataset by multiplying the
eigenvectors along two dimensions fi and fi.

Solve a generalized eigenproblem on the training
dataset along the other

If the generalized
eigenproblem is solved along each
of the three dimension to update
the three eigenvectors

Yes

If the maximum iteration -
times is reached or the threshold for
reconstruction error is reached

The maximum iteration times/ /

the threshold for reconstruction error -~

Yes

reduction projectior

£2
( The obtained three eigenvectors compose the )

Fig. 2. Flowchart of the TLPP/TNPE DR methods.

and solve three eigenproblems on each dimension sequentially.
Three eigenvectors are obtained and are used to project the data
along each of the three dimensions.

In TLPP and TNPE, preprocess is needed for the given 3-D
hyperspectral image X € R**?*?  where a and b are the row
and column numbers representing the spatial location and d is
the spectral band number. The image is first spatially segmented
into n 3-D patches with the same window size X, € R¥*®*d,
where n = a x b is the number of pixels in the image and w is
the size of the window. This process creates a new 4-D dataset
from the original 3-D data when one pixel vector along the
spectral dimension becomes a cube composed by a group of
pixel vectors in a spatial neighborhood. Then, a certain number,
¢ < n, of training patches are randomly selected as input to
the TLPP/TNPE algorithms with the following three steps and
shown in Fig. 2.

1) Constructing the adjacency graph G: The TLPP and
TNPE use the kNN methods. With a manually cho-
sen k value, k nearest neighbors will be selected based
on the Frobenius distance in traditional method or
patch-based distance (e.g. IPD, RCM, and WRCM)
in proposed methods. This patch-based modification
shown as red font in Fig. 2 is the key change in
the proposed methods and is discussed in depth in
Section II-B.

2) Generating the weight matrix W: The TLPP and TNPE
use the similar methods correspondingly as the above
LPP and NPE methods. Specifically, in the heat kernel
and reconstruction error methods, the Euclidean norm in
LPP/NPE used for the vectors will be replaced by the
Frobenius norm in TLPP and TNPE for the matrices, as
the 3-D node is matrixed as a 2-D matrix along the spectral
dimension.

3) Solving the eigenfunction: The TLPP and TNPE has the
same objectives accordingly with LPP and NPE, but their
objective functions are in 3-D version. Specifically, three
eigenvectors were solved sequentially through the tensor
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calculations discussed below along each dimension for the
original 3-D hyperspectral data.

In the step (3), a basic tensor terminology and a tensor
operation are used and explained later.

Terminology 1: Given a m-mode tensor A € Rt /2>
the f-mode unfolding of tensor A is denoted as A /). It ﬂattens
the tensor A into a matrix A € Rl Ir1lpsiIm The
columns of AF) is obtained by fixing all but one mode.

Operation 1: A f-mode product between a m-mode tensor
A € RIvI2xxIm and a matrix U € R77*!5 gives a tensor
Ax U € RI1*-Tr-xJpxdpeaxIm The element presentation
of the f~mode product is

X Iy,

Iy
g AiyipyigisorimUjpis-

ip=1

(N

Using the Terminology 1, the f~mode unfolding of the f~mode
product results can be expressed as

(Ax,U)) =

(AxrU),, .

cdp1ggipgae

=UAY ®)

In the step (3), the objective function of TLPP is the mini-
mization problem [39]:

minz Y — Y; ||%7 Wi ©
¥

where Y; and Y; € R" xwxL are hyperspectral training patches
in the projected feature space transformed from the original
hyperspectral training patches X; and X; € R**“*K in the
image space, where w is the size of the window, L is re-
duced dimension, and the K is the spectral band number. This
minimization problem can be solved by the three eigenfunction

W (v -y (Y - y) ) o
i

= (Z rygf)rygf)T

%

Dii> Upf=1,2 3,f=1,2 3 (10)

where D;; = Zj W i ygf) and ygﬂ are the f~mode unfolding
of the hyperspectral training patches Y, and Y ; respectively, and
Uy, f=1, 2, 3 are the three target eigenvectors.

The objective function of TNPE is to keep the reconstruction
error among each neighborhood small

2
min} |\ Y= > WY,
i J P

The earlier minimization problem can be solved by the three
eigenfunction

Sy -3 wyyl?
j

an

T

y *Z Wz-j‘yéf) Uy
j

i

12)

= (Zy@yﬁ”) Usf=1,2 3.
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For both TLPP and TNPE, the eigenfunction is solved along
each of the three dimensions to obtain the three eigenvectors
Uy, f=1, 2, 3 as projectors.

C. Patch-Based Adjacency Maps

In the traditional graph-based methods, the single pixels are
used to calculate the adjacency map, which only considers the
spectral information. Three different methods considering both
spectral and spatial information in the data were used in this
article to produce adjacency maps: IPD, RCM, and WRCM.
The three methods are based on patch representation of the data.
Before introducing the three spatial-spectral methods, we first
consider the three different patches according to three different
pixel locations: at the corner, on the edge and in the image. For
a given pixel, a group of w x w surrounding pixels is decided
as the patch, where w is the window size. If the pixel is located
in the image, the moving window can naturally cover its spatial
neighbors. If the pixel lies on the edges or at the corner of the
image, we used a reflection transformation to fill the non-existing
spatial neighbors.

The IPD is especially proposed for adjacency-graph based
methods like LPP and NPE. For any two pixels in the hyperspec-
tral image, the IPD calculate their similarity based on the small
neighborhood (spatial window) of the two pixels. Given two
pixels 2; and x; from a hyperspectral image, a spatial window
of size w is used to find the neighborhoods for the two pixels
x; and x;. The neighborhoods are correspondingly denoted

asQ(z;) = {a1, a,...,ap2}and Q(z;) = {b1, ba,...,by2}.
The IPD is defined as
7_U2
drpp (xi, ;) Zdu ar, by)
1=1
du ab = i d 7b ’ i d ba
(a1, br) = max (bgszzz) (a,8), min d (b a>)

13)

where d(a,b) is a spectral similarity function comparing a
to b. Using this equation, the similarity between two pixels
is measured with their surrounding neighbors. Thus, the IPD
incorporates both the spatial and spectral information.

The RCM is a region descriptor proposed by Tuzel et al. [41].
In the hyperspectral image X € R2*P*d 3 region of interest
R € Rw*wxd (3 is the window size) is represented by a d x d
covariance matrix

(14)

where n = w X w is the amount of pixels in the patch; r; is
a single d-dimensional pixel in R; and p = % oy is the
mean value. It has a few properties: if two feature bands (d; and
ds) tend to increase together, then C'gr[d;, ds] > 0; if feature
band d; tends to decrease when feature band d, increases, then
Crld1,ds] < 0; and if two feature bands are independent, then
CRrldy,ds] = 0. The measure of distances between weighted
covariance matrices are adopted from the original RCM method
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Fig. 3. Example of RCM/WRCM.

[41] and is based on an eigenproblem

d
D (Ch,Ch) = \/ >, % (CR.CH) (19
where 1,(C%, C%) is the generalized eigenvalues of C’, and
C%. computed from

AC%a; —Clha; =0,i=1,....d (16)

where z; are the generalized eigenvectors.
The WRCM is developed from the RCM. It rewrites (14) from
RCM as [42]

CR = (’I"i — Tj) (’I“i — ’l"j)T (17)

1

1 n

n
nxn —

[N

(2

1

by replacing p as

3

S|

i=1

‘LL:

In (14), each pair of pixels in the current patch contributes
equally to the final results. The WRCM method introduces a
weight term in the calculation

19)

Q
-
I
N =
—_
(]
INgh
—
3
-
<
<
~—
—
3
~
<
<
N
~
5

where W;; is calculated as (1). The measure of distances
between weighted covariance matrices are adopted from the
original RCM method [41] shown in (15) and (16). Based on
the RCM, the WRCM reflects the weighted feature correlation,
which assigns more weights to points pairs that are spatially
closer. Fig. 3 shows an easy example in computer vision, with
the commonly used image features of pixel locations (x, y),
color (RGB) intensity, and the norm of the first order derivatives
of the intensities with respect to x and y. After performing
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TABLE I

NAMING OF THE PROPOSED GRAPH-BASED DR METHOD
Graph-bas  Adjacenc  Name Graph-bas ~ Adjacenc  Name
ed method  y graph ed method  y graph
LPP Euclidea  LPP TLPP Euclidea  TLPP
LPP IPD IPD-LPP | TLPP IPD IPD-TLPP
LPP RCM MLPP* TLPP RCM MTLPP
LPP WRCM WMLPP | TLPP WRCM WMTLPP
NPE Euclidea ~ NPE TNPE Euclidea ~ TNPE
NPE IPD IPD-NP TNPE IPD IPD-TNP
NPE RCM MNPE* TNPE RCM MTNPE*
NPE WRCM WMNPE | TNPE WRCM WMTNP

RCM/WRCM, the 3-D image patch turns into a matrix of size
d x d, where d is the band number.

D. Weight Modified Graph-Based DR Methods

According to the abovementioned workflow of the graph-
based DR methods and the patch-based adjacency graph cal-
culation, a group of patch- and tensor-patch-based methods can
be derived. Deng er al. [28] has modified the TLPP method
by replacing the Euclidean distance with RCM method in
the adjacency graph calculation and called it modified TLPP
(MTLPP). This manuscript further improve this replacement
with the weighted RCM and called this modified new method
the weight WMTLPP and weight modified tensor neighborhood
preserving embedding (WMTNPE). Based on the naming strat-
egy, the tested graph-based DR methods are given in Table I.
Names with one asterisk sign suggest methods proposed in this
manuscript.

E. Evaluation of the DR Method

In order to evaluate the DR results, classification was per-
formed on the series of dimension-reduced images. The support
vector machine (SVM) classifier was used in this article. As
comparison, we also applied the SVM classifier on the original
image, the PCA dimension-reduced result and the dimension-
reduced results from two up-to-date spectral-spatial DR meth-
ods: robust local manifold representation for DR (RLMR) [36],
and spatial and spectral regularized local discriminant embed-
ding for DR (SSRLDE) [7]. We used two testing hyperspectral
images with different spatial resolution. The two images are
separately located in urban and rural environments, focusing
on targets of different scales. The differences between the two
images allow us to compare the impact of different images
on the choice of window size in the calculation of the patch-
based adjacency maps and weight matrix. In the results, the
classification overall accuracy (OA), average accuracy (AA),
and Kappa coefficient are provided. The OA is the number of
pixels correctly classified divided by the number of total pixels.
The AA is the sum of producer class accuracies divided by the
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Fig. 4. Surrey, BC, CASI hyperspectral image in RGB (selected study area is
in red rectangle).

Fig. 5. Indian Pines, AVIRIS hyperspectral image in RGB.

number of classes, where the producer’s accuracy reflects the
omission error when a class A pixel fails to be classified as
class A. The Kappa coefficient measures inter-rater agreement
for classified items. Statistically, the Kappa coefficient considers
the possibility of the agreement occurring by chance. For all the
three indexes, larger values suggest better classification results.

III. EXPERIMENTS AND RESULTS

A. Studied Hyperspectral Images and Setup

This article used two real hyperspectral images. The first
hyperspectral image depicts the urban area in City of Surrey, BC,
Canada (see Fig. 4). It was obtained by the airborne CASI-1500
sensor during April 2013. The image contains 72 spectral bands
from visible to near-infrared portion (0.36 to 1.05 pum) with a
9.6 nm band interval. The spatial resolution of the images is 1 m.
The original image size is 1671 x 1646, which is too large con-
sidering the associated computation complexity for our current
computing unit. Thus, we selected a small part from the CASI
hyperspectral data of size 150 x 150. The size of 150 x 150
was selected as it was similar to the second widely-used study
hyperspectral image (Indian Pines) thatused a size of 145 x 145.
The different patterns of these two images may have impact
on the efficiency of the proposed methods. Thus in order to
make the experiments on the two images comparable in terms

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 6.

University of Pavia, ROSIS hyperspectral image in RGB.

of computation complexity, their size was set to be similar. In
regards to the location of the cropped area, it is a typical urban
scene in residential area, containing large amount of impervious
surface area as well as green spaces.

The second image is the widely-used test data: Indian Pines
(see Fig. 5). The Indian Pines dataset is collected by the AVIRIS
sensor in 1992 over an agricultural area in Northern Indiana,
IN, USA. The spectral bands of the Indian Pines data span from
400-2500 nm. After deleting the 20 bands affected by water
absorption, 200 bands were used in this study. The Indian Pines
image has a size of 145 x 145 and contains 10249 samples in
16 different classes.

The third image is also a widely-used test data: University of
Pavia (see Fig. 6). This scene is acquired by the ROSIS sensor
during a flight campaign over Pavia, northern Italy. It has 103
spectral bands, and a spatial resolution of 1.3 m. The size of the
data is 610 x 340. The image ground truths differentiate nine
classes.

To fulfill the objectives of this research, we designed our
experiment as follows. A total of 16 DR methods were tested:
two of them were traditional methods (LPP and NPE), six of
them were patch-based methods (IPD-LPP, MLPP, WMLPP,
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Fig. 7. Original image and PCA (preserved dimensions) image classification
for Surrey, CASI image.

RLMR (22) SSRLDE (28)
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Fig. 8. Ground truths, original image classification, and PCA (preserved

dimensions) image classification for Indian Pines, AVIRIS image.

IPD-NPE, MNPE, and WMNPE), and eight of them were tensor-
patch-based methods (TLPP, IPD-TLPP, MTLPP, WMTLPP,
TNPE, IPD-TNPE, MTNPE, and WMTNPE). In order to obtain
an appropriate local window size and reduced dimensionality,
several cross-validation experiments were performed respec-
tively. For the 14 patch- and tensor-patch-based methods, the
window sizes of 3 x 3, 5 x5, 7x7,9 x9, 11 x 11, and
13 x 13 were tested. A set of preserved dimensionality (2, 4,
6,8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30) was chosen.
The dimension-reduced images were then classified using SVM
classifier. The optimal preserved dimensionality is the one that
derives the best overall accuracy value and will be used to
represent the performance of the tested DR methods. For the
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E No ground truth
I Asphalt

:l Meadows

- Gravel

- Tree

- Painted metal sheets
:I Bare soil

B Bitumen

I seif-blocking bricks

- Shadows

RLMR (24) SSRLDE (28)

Fig. 9. Ground truths, original image classification, and PCA (preserved
dimensions) image classification for University of Pavia, ROSIS image.

classification purpose, we manually selected training samples
for the first studied image (Surrey, BC, CASI), covering eight
land cover/land-use types: grass, bush, tree, concrete, asphalt,
dark shingle, dark roof panel, and roof paint. For the Surrey,
BC, CASI image with 1 m spatial resolution, we used the
orthophoto data taken one month earlier as reference data. The
orthophoto data has a 10 cm spatial resolution and contains
three bands of RGB. In the case of the second studied image,
reference data are available on GIC’s website.! In the rural scene,
16 land cover/land-use types were identified: alfalfa, corn-no-
till, corn-min-till, corn, grass-pasture, grass-tree, grass-pasture-
mowed, hay-windrowed, oats, soybean-no-till, soybean-min-
till, soybean-clean, wheat, woods, building-grass-tree-drive, and
stone-steel-tower. A group of 1071 training samples, a group of
2610 training samples, and a group of 2000 training samples
were separately generated for the Surrey, BC, CASI, Indian
Pines, AVIRIS, and University of Pavia, ROSIS images. For
comparison, the SVM classification results of the original image
and the PCA, RLMR, and SSRLDE dimension-reduced results
were also generated. In the case of PCA, RLMR, and SSRLDE
DR, classification was performed with 15 sets of preserved
bands (2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, and
30). To evaluate the classification results, one set of 9,913, one
set of 7,288, and one set of 40,000 random testing points were

![Online]. Available: http://www.ehu.eus/ccwintco/index.php?title=
Hyperspectral_Remote_Sensing_Scenes
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TR
IPD-NPE (9)
Fig. 10.

window sizes for the highest overall accuracy).

TABLE I
OVERALL ACCURACY OF EXISTING UNSUPERVISED/SUPERVISED DR METHODS

Overall accuracy Original PCA RLMR SSRLDE
image

Surrey, CASI 79.1% 79.0% 87.1% 88.3%

Indian Pines, 80.1% 83.4% 95.8% 96.9%

AVIRIS

University of 82.3% 85.5% 90.7% 91.8%

Pavia, ROSIS

generated separately for the Surrey, BC, CASI, Indian Pines,
AVIRIS, and University of Pavia, ROSIS images.

B. Classification Results for Comparison

Figs. 7-9 show the classification results of the original image,
and the best classification results from the PCA, RLMR, and
SSRLDE correspondingly for the Surrey, BC, CASI, the Indian
Pines, AVIRIS, and University of Pavia, ROSIS images. The
overall accuracies of the four comparison classification results
are given in Table II. The newer spectral-spatial-based DR
methods (RLMR and SSRLDE) provide much higher accuracies
for both the studied images. In the classification results of the
Surrey, BC, and CASI image, the most noticeable error occurs
in shadow areas in circles A and B, where trees are misclassified
as dark shingle. The other noticeable error is that the painted
asphalt areas are misclassified as concrete, which is the case in
circle C. In the classification results of the Indian Pines, AVIRIS
image, both the original- and PCA-derived classification maps
have small-misclassified areas within most croplands. Yet, the
PCA works better in several crop lands in circles A, B, and C. The
results from the RLMR and SSRLDE provide much smoother

¥
w .
MNPE (11)

WMNPE (13)

Classification maps for patch-based DR results with highest overall accuracy for Surrey, BC, CASI image (numbers in parentheses are the corresponding

classification maps. In the classification results of the University
of Pavia, ROSIS image, circles A, B, and C contain a lot of errors
when the classification is performed on the original and PCA
images. These errors greatly eliminated by the spatial-spectral
methods RLMR and SSRLDE.

C. Patch-Based DR Results

Four LPP-based and four NPE-based DR methods were used
to derive a group of dimension-reduced images. The results were
then classified by the SVM classifier The best classification
results are shown in Fig. 10 for Surrey, BC, CASI image, in
Fig. 11. for Indian Pines, AVIRIS image and in Fig. 12. for Uni-
versity of Pavia, ROSIS image. Compared to the classification
results from the original and PCA-derived images in Fig. 7, the
tree area in shadow (circle A) in Fig. 10. is better classified
and the painted asphalt areas are less frequently misclassified
as concrete (circle C). Yet, the tree areas in shadow (circle B)
still suffer from misclassification. In the Surrey, BC, and CASI
image classification maps (see Fig. 10.), the LPP-based methods
appear to be more accurate in determining concrete roof (circle
D) then the NPE-based methods. On the other hand, NPE-based
methods appear to be more accurate in determining dark shingle
roof (circle E). Further, LPP-based methods tend to misclassify
tree areas as grass areas (circle F). Considering the three different
patch-based adjacency map calculation methods, the IPD-based
method provides the worst results in both LPP- and NPE-based
DR. In the Indian Pines, AVIRIS image classification maps (see
Fig. 11), the small portion of misclassified areas were eliminated,
compared to the classification maps in Fig. 8 and the RCM- and
WRCM-based methods seem to provide better results than the
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NPE IPD-NPE (3) MNPE (11) WMNPE (11)

Fig. 11. Classification maps for patch-based DR results with highest overall accuracy for Indian Pines, AVIRIS image (numbers in parentheses are the
corresponding window sizes for the highest overall accuracy).

NPE+IPD (5) NPE+RCM (13) NPE+WRCM (13)

Fig. 12.  Classification maps for patch-based DR results with highest overall accuracy for University of Pavia, ROSIS image (numbers in parentheses are the
corresponding window sizes for the highest overall accuracy).
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Fig. 13.
corresponding window sizes for the highest overall accuracy).

TNPE (5) IPD-TNPE 3)

Fig. 14.
corresponding window sizes for the highest overall accuracy).

IPD-based method. In the University of Pavia, ROSIS image
classification maps (see Fig. 12), errors in Circle A and B have
been mitigated on different levels compared to the classification
maps in Fig. 9. However, errors in circle C stay.

C. Tensor-Patch-Based DR Results

Four TLPP-based and four TNPE-based DR methods were
used to derive a group of dimension-reduced images. The results

MTNPE (7) WMTNPE (9)

Classification maps for tensor-patch-based DR results with highest overall accuracy for Surrey, BC, CASI image (numbers in parentheses are the

n _
n 4

]

—
WMTLPP (9)

-
MTNPE (11)

WMTNPE (11)

Classification maps for tensor-patch-based DR results with highest overall accuracy for Indian Pines, AVIRIS image (numbers in parentheses are the

were then classified by the SVM classifier The best classification
results are shown in Fig. 13. for Surrey, BC, and CASI image,
in Fig. 14. for Indian Pines, AVIRIS image, and in Fig. 15. for
University of Pavia, ROSIS image. Compared to the above clas-
sification results from patch-based methods, the classification
results from tensor-patch-based methods suffer much less from
small misclassified areas in all of the studied images. In Fig. 13,
the problem of misclassified trees under shadows that appears
at different levels in the results of PCA, LPP, and NPE methods
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TNPE (9) TNPE+IPD (5)

Fig. 15.
the corresponding window sizes for the highest overall accuracy).

is greatly alleviated (circles A and B). The misclassification
of painted asphalt is alleviated in TLPP, TNPE, and their IPD
versions, and is completely avoided in RCM- and WRCM-based
TLPP and TNPE methods (circle C). The misclassifications of
concrete and dark shingle roofs (circles D and E) and grass
(circle F) are also eliminated in the tensor-patch-based meth-
ods compared to patch-based methods. In Fig. 14, the small
misclassified areas within most of the croplands are avoided.
In circles A and D, TNPE-based results show better accuracy
than the TLPP-based method. In Fig. 15, the misclassification
happening in circles A, B, and C have been greatly improved
from the patch-based results in Fig. 11.

IV. DISCUSSION

From the classification results, we can deduce that both patch-
and tensor-patch-based DR methods increase the OA, AA,

TNPE+RCM (9)  TNPE+WRCM (13)

Classification maps for tensor-patch-based DR results with highest overall accuracy for University of Pavia, ROSIS image (numbers in parentheses are

and Kappa coefficient from the traditional and up-to-date DR
methods provided in 3.2 Classification results for comparison.
The highest overall accuracies among different window sizes
are given in Tables III-V for the patch-based methods and in
Tables VI-VIII for tensor-patch-based methods. For the three
tested images the tensor-patch-based methods achieve better
classification results than the patch-based methods. The ap-
propriate window sizes for the patch- and tensor-patch-based
methods vary regarding the specific method and the target image.
We found that in general, the IPD-based methods usually achieve
better overall accuracy with smaller window sizes (<11), and
the RCM- and WRCM-based methods usually require larger
window sizes to achieve better overall accuracy (>11). The ap-
propriate window sizes for the patch-based methods are usually
larger than the appropriate window sizes for the tensor-patch-
based methods. In the end, the use of the first ten principal
components in the RCM/WRCM calculation provides a practical
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TABLE III
OVERALL CLASSIFICATION ACCURACY AMONG PATCH-BASED DR METHODS (SURREY, BC, CASI)

OA AA Kappa
Existing methods LPP 79.6% 76.4% 0.73
NPE 86.3% 83.6% 0.81
Best roposed | IPD-LPP (3) 80.2% 75.2% 0.73
methods RCM-LPP (7) 87.3% 87.6% 0.82
WRCM-LPP (7) 87.3% 88.0% 0.83
IPD-NPE (9) 85.3% 85.0% 0.80
RCM-NPE (11) 86.8% 86.1% 0.82
WRCM-NPE (13) | 87.1% 86.9% 0.84
TABLE IV

OVERALL CLASSIFICATION ACCURACY AMONG PATCH-BASED DR METHODS (INDIAN PINES, AVIRIS)

OA AA Kappa
Existing methods LPP 79.7% 87.6% 0.77
NPE 73.6% 83.8% 0.70
Proposed methods IPD-LPP (3) 77.8% 86.1% 0.75
RCM-LPP (13) 85.6% 86.8% 0.84
WRCM-LPP (13) 85.7% 91.3% 0.84
IPD-NPE (3) 80.0% 88.5% 0.77
RCM-NPE (11) 86.6% 92.5% 0.84
WRCM-NPE (11) | 86.7% 92.9% 0.85
TABLE V

OVERALL CLASSIFICATION ACCURACY AMONG PATCH-BASED DR METHODS (UNIVERSITY OF PAVIA, ROSIS)

OA AA Kappa
Existing methods LPP 69.6% 75.2% 0.62
NPE 79.6% 83.0% 0.79
Proposed methods IPD-LPP (3) 70.7% 77.9% 0.69
RCM-LPP (13) 77.2% 85.6% 0.75
WRCM-LPP (11) 77.8% 86.9.% 0.78
IPD-NPE (5) 82.9% 86.1% 0.80
RCM-NPE (13) 88.6% 90.1% 0.88
WRCM-NPE (13) | 89.5% 92.6% 0.89
TABLE VI

OVERALL CLASSIFICATION ACCURACY AMONG TENSOR-PATCH-BASED DR METHODS (SURREY, BC, CASI)

OA AA Kappa
Existing TLPP (5) 86.8% 85.1% 0.82
methods IPD-TLPP (3) 89.8% 86.9% 0.86
RCM-TLPP (12) 91.1% 90.3% 0.87
TNPE (3) 84.0% 78.6% 0.78
Proposed WRCM-TLPP (12) | 91.3% 90.2% 0.88
methods IPD-TNPE (5) 89.2% 86.6% 0.85
RCM-TNPE (7) 90.6% 88.7% 0.87
WRCM-TNPE (9) 90.6% 89.4% 0.87

solution to the high computation associated with the huge hy- patch/tensor methods often achieve the best overall accuracy
perspectral datasets and removes redundant informationin spec- among the three different patch-based adjacency map/weight
tral bands. Furthermore, it can be observed that WRCM-based matrix calculation methods.
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TABLE VII
OVERALL CLASSIFICATION ACCURACY AMONG TENSOR-PATCH-BASED DR METHODS (INDIAN PINES, AVIRIS)
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OA AA Kappa
Existing TLPP (5) 93.3% 96.1% 0.92
methods IPD-TLPP (13) 94.7% 96.9% 0.94
RCM-TLPP (7) 98.4% 98.8% 0.98
TNPE (5) 95.1% 96.7% 0.94
Proposed WRCM-TLPP (9) 98.5% 99.2% 0.99
methods IPD-TNPE (3) 95.0% 97.0% 0.94
RCM-TNPE (11) 98.3% 98.8% 0.98
WRCM-TNPE (11)  99.4% 99.8% 0.99
TABLE VIII

OVERALL CLASSIFICATION ACCURACY AMONG TENSOR-PATCH-BASED DR METHODS (UNIVERSITY OF PAVIA, ROSIS)

OA AA Kappa
Existing TLPP (9) 88.9% 87.9% 0.88
methods IPD-TLPP (11) 89.3% 90.2% 0.89
RCM-TLPP (9) 93.7% 95.6% 0.91
TNPE (9) 84.8% 85.3% 0.86
Proposed WRCM-TLPP (9) 94.3% 92.6% 0.93
methods IPD-TNPE (5) 87.0% 88.7% 0.89
RCM-TNPE (9) 89.5% 90.6% 0.87
WRCM-TNPE (13) 90.1% 91.6% 0.90

*The number in each parenthesis after the method is the corresponding window size for the highest overall

accuracy among different window sizes.

V. CONCLUSION

This article proposed weight modified graph-based DR meth-
ods: WMTLPP and WMTNPE. Experiments were conducted
on two airborne hyperspectral images with different spatial res-
olutions separately in urban and agricultural scenes. The tensor-
patch-based representation employs the spatial information in
the processes of generating adjacency map/weight matrix and
solving the three target eigenproblems along each dimension.
Three major findings were observed from the results. First, we
find that the proposed weight modified graph-based DR meth-
ods: WMTLPP and WMTNPE by preserving more spatial in-
formation outperform the PCA and the two up-to-date methods.
Second, in the experiments in this article, LPP- and TLPP-based
methods outperformed the NPE- and TNPE-based methods in
the Indian Pines image; and the NPE- and TNPE-based methods
outperformed the LPP and TLPP-based methods in the Surrey,
BC image. Third, the proposed use of the principle components
in the RCM and WRCM calculation provided reasonable results,
while computing time and data redundancy were reduced.
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