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Abstract—Lack of labeled training samples is a big challenge
for hyperspectral image (HSI) classification. In recent years, cross-
scene classification has become a new research topic. In cross-scene
classification, two closely related HSI scenes are considered, one
contains adequate labeled samples, namely source scene, while
the other one contains only a few labeled samples, namely target
scene. The goal of cross-scene classification is utilizing the labeled
samples in source scene to benefit the classification in target scene.
In most cases, different HSIs are imaged by different sensors,
leading to different feature dimensions (numbers of bands) in
different scenes. In this situation, heterogeneous transfer learning
is demanded. In this article, we propose a heterogeneous transfer
learning algorithm namely semisupervised dual-dictionary non-
negative matrix factorization (SS-DDNMF). SS-DDNMF consists
of two contributions. 1) Dual-dictionary nonnegative matrix fac-
torization (DDNMF): DDNMF trains two dictionaries for source
and target scenes, respectively, aiming at projecting the source and
target features to a shared low-dimensional subspace, eliminating
the difference between feature spaces. In DDNMF, within-scene and
cross-scene graphs are built to maintain the similarities between
pixels. 2) Semisupervised learning for target scene: as the limited
number of labeled pixels in target scene will affect the graph
building of DDNMF, semisupervised learning is adopted in target
scene. In details, superpixel segmentation is adopted to generate
pseudolabels for some unlabeled pixels, thus more “labeled” pixels
can be considered for building better graphs. The effectiveness of
SS-DDNMEF is verified by experiments on cross-scene HSIs.

Index Terms—Cross-scene classification, dual-dictionary
learning, graph embedding, heterogeneous transfer learning,
hyperspectral image, semisupervised learning.
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I. INTRODUCTION

IXEL classification is one of the hot applications on hy-
P perspectral images (HSIs). One big challenge of HSI clas-
sification is lack of labeled samples due to the high labor cost
spent on labeling the pixels. Meanwhile, an inspiring fact is that
similar HSI scenes may share similar land cover objects. For
example, urban scenes always contain buildings, roads, water
areas, plants, etc. In recent years, a great number of researches
have tried to find connections between similar HSIs, especially
which share common land cover classes [1], [2]. It is believed
that utilizing the shared information between similar HSI scenes
can improve the classification accuracy in the case of small
sample size. Suppose there are two HSIs, one with only a
few labeled samples (called target scene), and the other with
a great number of labeled samples (called source scene). In
this situation, the target scene can utilize the labeled samples of
source scene to help classification [3]. This special classification
problem is named as cross-scene HSI classification.

However, two challenges occur in cross-scene HSI classifi-
cation. 1) Feature shift: it happens in the cases where source
and target scenes are captured by the same HSI sensor. Due to
the influence of illumination and atmospheric conditions [2],
even the same land cover class will have feature shift between
spectrums. This phenomenon is also called spectral shift, data
shift, or population drift [4], [5]. 2) Different feature spaces:
more commonly, source and target scenes are captured by dif-
ferent HSI sensors, which leads to different number of bands and
different wavelengths between source target scenes. This results
in different feature spaces of two scenes. Information sharing
becomes more difficult in this case. To handle these challenges,
transfer learning technique is desired.

First, a general overview of transfer learning is presented.
Traditional machine learning has achieved significant perfor-
mance [6], [7]. A common assumption in traditional machine
learning is that training samples and test samples are in the same
feature space and follow the same data distribution. However,
this assumption cannot be satisfied in many real applications. In
order to solve this problem, transfer learning can be adopted [8].
It is a technique which utilizes the existing knowledge to help
learning new knowledge in another new domain. Different from
traditional machine learning, the domains and tasks between
training data and test data can be different but related in transfer
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learning. Transfer learning can be divided into three settings ac-
cording to whether the labels are available among source domain
and target domains, namely inductive transfer learning, trans-
ductive transfer learning, and supervised transfer learning [9].
Meanwhile, the approaches of transfer learning can be divided
into four cases. The first one is instance-based transfer learning.
In this case, labeled data in source domain need to be reweighted
in order to be successfully used for target domain. In [10], Peng
et al. proposed a discriminative transfer joint matching (DTIM)
method by utilizing /5 ;-norm on the embedding matrices for
instance reweighting. It preserves the local structure and maps
the data from source and target domains into kernel principal
component analysis space. This method is effective under the
case that the only the source domain has labeled samples. In
this context, DTJM can deliver knowledge transfer in a certain
low-dimensional subspace. The second case is called parameter
transfer, which aims at finding out the shared parameter of priors
between source domain and target domain. Once the common
parameters or priors are found, it can be encoded and then be
used for transfer learning. In [11], Bruzzone et al. proposed
that the parameters of maximum-likelihood classifier can be
adjusted according to the data distribution of new image. The
parameter of this classifier can be obtained through supervised
learning on a certain image, then be modified according to
unsupervised learning on another new image. In this way, the
classifier is able to build a new land-cover map so that it can
have high accuracy even if without relational training set. The
third case is relational knowledge transfer, which will transfer
relation among data between source domain and target domain.
In [12], in order to improve the performance and speed of trans-
fer learning, Mihalkova et al. proposed transfer via automatic
mapping and revision, which can map a source Markov logic
networks to the target domain and modify the incorrect structure
for better performance. The last case is feature representation
transfer, which is expected to mining unified feature representa-
tion for both source domain and target domain. In [1], Matasci
et al. focused on semisupervised transfer component analysis
(SSTCA), matching the probability distribution of projections
from target scene with available labels from source scene. By
utilizing this approach, cross-scene classification is projected
to get better performance, owing to better class discrimination
and domain invariance. In this way, changes (result from illumi-
nation, atmospheric, ground conditions, etc.) in the probability
distributions of the classes can be optimally decreased. In the
view of feature space, transfer learning can be divided into
two categories: one category is homogeneous transfer learning,
which is a common method to solve feature shift. The other
category is heterogeneous transfer learning, which has good
performance in dealing with different feature spaces between
source scene and target scenes. Generally, the latter one is more
frequently to be used but more complicated compared with the
former one.

After the overview of transfer learning, the applications of
transfer learning in remote sensing are introduced in the follow-
ing, especially the cases on HSI classification. In [13], globally
align local manifolds (GALMs) was proposed. This method
considers both global and local characteristics of source target
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scenes, aligning two globally similar manifolds and minimizing
the influence of locally spectral changes. In that work, essential
global and local characteristics are kept in joint manifold space.
Meanwhile, samples from two scenes are leveraged. There-
fore, to some extent, GALMs can truly reduce the influence
of spectral shift. In [2], multitask nonnegative matrix factor-
ization (MTNMF)-based dictionary learning was proposed for
feature-level domain adaption. It extracts essential information
from source and target scenes into a unified low-dimensional
subspace by using multitask joint dictionary learning. Mean-
while, with the help of multitask sparse logistic regression, the
performance of solving spectral shift can be promoted when
source scene has available labeled samples. In [14], in order
to solve the problem that one HSI only has limited number of
labeled samples, deep feature alignment neural network was
presented to execute the domain adaption. A few recurrent layers
and convolutional layers build up two convolutional recurrent
neural networks. Transfer learning-based domain adaption was
used to map features from both domains into an embedding
space. In this way, cross-scene feature invariance is expected to
be achieved, leading to the performance gain on cross-scene HSI
classification.

Although a lot of methods are applicable for transfer learn-
ing, the cross-scene classification on HSIs is still challenging
due to following reasons: first, many methods can only handle
homogeneous transfer learning cases with slightly different
feature distributions. However, most cross-scene HSI classi-
fication problems need heterogeneous transfer learning, since
source and target scenes are more likely to be captured by
different sensors. Second, many heterogeneous transfer learning
algorithms require one-to-one sample correspondence between
source and target domains, which cannot be obtained in most
cross-scene HSI classification problems. Third, Some heteroge-
neous transfer learning algorithms only work well with a large
number of labeled training samples. In the cases that target scene
lacks enough labeled samples, these methods may produce poor
results.

To solve aforementioned problems, we propose a novel algo-
rithm in this article by extending our previous work [15]. In [15],
we proposed a homogenous transfer learning algorithm based
on multitask nonnegative matrix factorization with manifold
regularization (MTNME-MR), which is a variation of the graph
regularized nonnegative matrix factorization (GNMF) [16]. The
knowledge transfer is completed by 1) sharing a common dictio-
nary between source and target scenes, 2) imposing a manifold
(graph) regularization on the factorization model to maintain
the sample similarities across scenes. It showed a success in
homogenous transfer learning problems on HSIs. However, the
drawback of MTNMF-MR is that it cannot handle heteroge-
neous transfer learning problems. In this article, we propose
a semisupervised dual-dictionary nonnegative matrix factoriza-
tion (SS-DDNMF) model as the extension of MTNMF-MR,
which can be used in heterogeneous transfer learning cases. The
contributions of this article include:

1) A dual-dictionary nonnegative matrix factorization

(DDNMF) model is developed to handle different feature
dimensions between source and target scenes.
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2) Unlike most existing heterogeneous transfer learning al-
gorithms, DDNMF does not require one-to-one sample
correspondence between source and target domains. It
only needs class cooccurrence between two domains, and
thus DDNMF is a more flexible model.
3) A semisupervised learning algorithm is brought for HSIs
through spectral-spatial joint segmentation, which en-
hances the cross-scene graph for DDNMF.
Experiments on cross-scene HSI datasets prove that SS-
DDNMF is a valid heterogeneous transfer learning algorithm.

The rest of this article is organized as follows. Section II in-
troduces the basics of nonnegative matrix factorization (NMF),
GNMF and their applications in HSIs, and then presents the
DDNMF model for heterogeneous transfer learning, together
with its optimization algorithm and implementation details.
After that, to handle the problem of insufficient labeled samples
in target scene, a semisupervised learning algorithm based on
the SLIC segmentation is proposed in Section III, leading to an
improved cross-scene graph building for DDNMF. Experimental
results on cross-scene HSI datasets are shown in Section IV,
which show effectiveness of SS-DDNMEF in heterogeneous
transfer learning. After that, discussions are included in Sec-
tion V. Finally, conclusion is drawn in Section VI.

II. DDNMF FOR HETEROGENEOUS TRANSFER LEARNING
A. NMF and GNMF

Assume that we have a nonnegative input data matrix X €
]RTXP , where m stands for feature dimension, and p is the num-
ber of samples. NMF [17] factorizes X into two low-dimensional
matrices, i.e.,

X~UWV)"* )]

where U € R is called basis matrix, V € ]Rﬂ’r” is called
coefficient matrix, and r is the rank of the factorization. Typi-
cally, we set 7 < m to ensure a compressed (low-dimensional)
representation, i.e., NMF uses a small set of nonnegative latent
basis vectors to represent original data. If Euclidean distance is
adopted for measuring the approximation, (1) can be rewritten
as

. . T2
min | X —U(V) x

st. U>0,V>0 2)

where || - || F is the Frobenius norm.

NMF has been widely adopted in HSI processing and ap-
plications. For example, with the good performance in blind
source separation, NMF is frequently applied in HSI unmix-
ing, where the endmembers are included in the basis matrix
of NMF, while the corresponding abundances are included in
coefficient matrix [18], [19]. NMF can also be employed in
HSI fusion, e.g., sparse constraint NMF was utilized for the
HSI fusion with panchromatic image in [20]. In details, un-
mixing is first performed, producing endmember-matrix and an
abundance-matrix, then abundance-matrix is sharpened with the
panchromatic image, and finally, the fused HSI is generated by
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solving the spectral constraint optimization problem. Moreover,
NMF can be utilized to accomplish the task of HSI denoising,
e.g., in [21], the low-rank property of NMF was used, and a mul-
titask sparse NMF model was proposed for joint spectral-spatial
denoising.

Beyond aforementioned applications, NMF can also be
adopted as a powerful dimension reduction algorithm. In (2),
X is the input data matrix and (V)T can be regarded as the
output feature matrix, so the feature dimension is reduced from
m to r. NMF-based dimension reduction has been adopted
in object extraction and classification of HSIs [22]. However,
the original NMF cannot model the intrinsic geometrical and
discriminating structure of data. To overcome this shortcoming,
Cai et al. combined NMF with manifold regularization, resulting
in a GNMF [16]. In GNMEF, a graph is built to maintain the local
manifold structure of the data during the factorization, i.e., two
similar samples in the input matrix X should keep similar in the
output feature matrix (V)T. Extensions of GNMF have been
proposed to handle the dimension reduction problem of HSIs.
In [23], a discriminative graph was built based on whether two
samples belong to the same class, and nonnegative discrimi-
native manifold learning was accomplished based on GNMF.
The research work in [24] combined three regularization terms
for NMF: the smooth regularization on basis matrix, the sparse
regularization on coefficient matrix, and the graph (manifold)
regularization on coefficient matrix.

In our previous work [2], [15], NMF and GNMF-based di-
mension reduction algorithms are applied to domain adaptation
between different HSI scenes. In [2], a common dictionary
(basis) matrix is shared between source and target scenes, in
order to extract common components. To further preserve the
manifold structure, a manifold (graph) regularization was added
to NMF in [15]. These methods have successfully handled the
problem of domain adaptation via NMFs. However, the models
in[2]and [15] have their limitations, i.e., they can only be applied
in the cases of homogeneous transfer learning, which requires
the same feature dimension between source and target scenes.
When source and target scenes are captured by different HSI
sensors, feature dimension varies from one scene to the other,
hence heterogeneous transfer learning is desired. In this work,
we have developed a DDNMEF for the purpose of heterogeneous
transfer learning.

B. Proposed DDNMF Model

The aim of heterogeneous transfer learning is projecting
two feature spaces with different dimensions to a shared low-
dimensional subspace. For this aim, dual-dictionary learning
technique is incorporated into the NMF-based dimension re-
duction model, where two dictionaries are trained for source and
target scenes, respectively. The newly proposed model is named
DDNMEF, which can be regarded as an extension of [15], focus-
ing on heterogeneous transfer learning. The DDNMF contains
two NMF tasks

XS ~ US(VS)T
3)

X7 ~UT (V)T
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where X¢ € R'7"”” and X7 € R’.*? are input source and tar-
get data, respectively. Superscriptions S and 7 are used to
distinguish source and target scenes, and each column of X$
or X7 is the spectral vector of a pixel. m and n are feature
dimensions of input data in source and target scenes, while p and
q are number of training samples of source and target scenes,
respectively. US € R and U7 € R} are two dictionaries
for source and target scenes, respectively, which need to be
learned from X and X7. r is the dictionary size, which is
meanwhile the dimension of output subspace. VS € RY*" and
V7 € RY" are the feature representations of X¥ and X7 in the
output subspace. Though (3) maps different feature dimensions
to a unified one, it does not convey any connection between
source and target scenes. In other words, two NMF tasks are
separated, and we cannot guarantee that US and U7 will help
to map X and X7 into a unified subspace. Therefore, rela-
tionships between samples need to be established to bridge two
scenes. Existing research works have shown that the class labels
of samples can help to build a discriminative manifold, and
discriminative information can be preserved by imposing the
discriminative manifold (graph) regularization on NMF [23].
The idea is straightforward: two samples within the same class
should be close with each other in the output subspace, while
samples belonging to different classes should be far away in
the output subspace. With a similar idea, cooccurrence of land
cover classes was utilized in our previous work [15] to mine the
latent connections between samples. Two samples belonging
to the same land cover class are expected to be similar in the
unified output space, no matter they are from the same scene
or not. Though the work [15] is only for homogeneous transfer
learning, the definition of the data manifolds can still be adopted
for heterogeneous transfer learning. Three graphs are defined to
model the data manifold for DDNMF.
1) Source-source graph: source-source graph G is a graph
describing the data manifold within source scene. Its ad-
jacent matrix WS € RP*P is defined as

(x5 x5)

wfj _ ] LR class(xfsi) = class(xfg-) @
0, class(xS) # class(xf";-)

where xS and xf§ are the 7th and jth samples of source
scene, respectively, and Z¢ = i w‘fj is the normal-
ization factor within source scene. This graph implies
samples that belong to the same class, and are similar in
original feature space (have similar spectrums), should be
similar in the output subspace.

2) Target-target graph: the target-target graph G7 is defined
in the same way with source—source graph, whose adjacent
matrix W7 € R9%9 can be defined as

1 kD)
T = ¢ Z7 =Ll

w;; .
0, class(x’) # class(x?)

T

class(x)) = class(xg)

(&)

3) Source-target graph: the source-target graph GS7 is the
most essential graph, which establishes the connection
between source and target scenes. The role of source-target
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Source-source graph

Source scene —— Target-target graph

vy
Shared feature
subspace

Target scene Target feature

space ]

Fig. 1. DDNMEF model.

graph is to align two data manifolds from source and
target scenes. Due to the different dimensions of those
two scenes, distance cannot be directly calculated between
two samples. What we only have are the class labels of
samples. Therefore, normalized 0-1 weights are adopted
in adjacent matrix W57 ¢ RP¥4:

ST — 0 257
1] O,

class(xS) = clasS(XD (6)
class(xS) # class(x?)'

w

This adjacent matrix W7 suggests that samples within
the same class should be similar in the output subspace,
despite that they are from different input feature spaces.
With the aforementioned three graphs, the DDNMF model
can be completely built, which is illustrated in Fig. 1. The cost
function can defined as

cus,vs u’ v
= | XS —US (V)T (source error)
+a X7 - UT (V)%

A p P

SilvS _ oS
T3 Zzwzjnvi. -vil3

i=1 j=1

2z q q
+5 2 2 whlvl =]l
i=1j=1

(target error)

(source-source graph)
(target-target graph)

P
+7M z; z:l w;%—THVf - VZ||§ (source-target graph)
i=1j=

(N

where vf and Vf are the ith and jth rows of V¥, respectively,
and similar are v/ and v!. a = [|X5|%, /|| X7 (|3 is the weight
for balancing source error and target error. It is worth noting that
« plays an important role in heterogeneous transfer learning,
since elements in X° and X7 may differ in magnitude, and o
makes the reconstruction errors of two scenes contribute equally
to the whole cost function. 1 is the balancing parameter between
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within-scene (source-source and target-target) graphs and cross-
scene (source-target) graph, which is set to 1« = 2 in this article.
By minimizing the cost function (7), we can achieve the source
and target dictionaries US and U7 . The detailed optimization
algorithm will be derived in the following Section II-C.

Once source and target dictionaries have been trained, feature
extraction can be done by nonnegative least squares (NNLS). In
source scene, we solve the following minimization problem:

S
Vi

~ U (v

= argmin ||x{
vS

st. v8>0 (8)

where x§ € R ! is the spectral vector of the ith pixel in source
scene and v§ € R1*" is its low-dimensional feature. Similarly,
the feature v/ € R1*" of target scene sample x] € R1*" can
be

v/ = argmin [x] — U7 (v7)"|3
T

st. vl >0. 9

K2
v

Through the dual-dictionary learning, source and target samples
are projected to a shared subspace with feature dimension 7.

C. Optimization for DDNMF

Since the cost function of DDNMF in (7) looks complex,
we first convert it into a simpler form. In order to achieve the
simplified version of (7), we have the following matrices defined:

[ XS 0mxq

X = onxp \/axT‘| (10)
_ Us

U= 11
\/aUT] (11)
_\/8

V= VT] (12)
_1m><p omxq

2=, 1nxq] (13)

S 14 ST
w=| W aWT (14)
%(WST)T WT

With these matrices defined, (7) can be equivalently rewritten
as

p+q p+q

ZZwmnw

2171

=26 X-UVH|E+ —v;ili3

15)
where © is the elementwise multiplication between two matrices
and v;. and v;. are the ith and jth rows of V. Then, the
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regularization term can be further simplified [16]:

p+qp+q
2
ZZwUHw viill3
i=1 j=1
p+q p+q p+q
=h | L= ) D wigvev
i=1j=1 (16)

= (Tr(VIDV) — Tr(VITWV))

= ATr(VI(D - W)V)
= ATr(VILV)

where D is a diagonal matrix whose entries are row sums of W,
ie., dj = Zj wij, and L =D — W is the graph Laplacian.
Finally, (7) is simplified as

C=[20X-UVYH|% +1Tx(VILV).  (17)

Equation (17) is essentially a combination of Weighted NMF
(WNMF) [25] and GNMF [16]. Hence, multiplicative update
rules can be obtained by combining those from WNMF [25]
and GNMF [16]. Consider the Karush—Kuhn—Tucker (KKT)
conditions of (17), i.e.,

U>0 (18)
V>0 (19)
£L>0 (20)
£ >0 (21)
Uog=0 (22
Vofe=0 (23
where
ocC T
50 = " AROX)V42AQe (UVH)V 24
oc T T T T
Sv = " AQTeXNHU+2AQT e (VU)U
+ ALV + ALYV
= —2(Q" o XT)U +2(0" o (VUT))U
+ 2ALV. (25)

It should be noted that W is a symmetric matrix, so L is also a
symmetric matrix, thus ALV 4+ ALTV = 2ALV.
Substituting (24) into (22), we have

—2U 06 (RoX)V)+2U6 (2o (UVH))V)=0 (26)

which is equivalent to

Uo((Qo(UVH)V)=Uo (QoX)V) (27)
thus the multiplicative update rule of U can be achieved
QoX
U=U0 RoX)V (28)

Qo (Uuvh))v
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In a similar way, we can derive the multiplicative update rule of

V by substituting (25) into (23)
—2voe ((QTexTu)

® (VUh))U)

A/_\

(
+2V o (2
+2V ® (ALV)
= —2Vo ((QTeoXTu) (29)
(@' e (vuh))u)
(

V) -2V o (AWV)

+2V O
+2V o (AD
=0,
which is equivalent to
o (Yo (VUY)U +ADV)
=Vo(QreoXhU+AWV) (30)
hence the multiplicative update rule of V can be achieved
QYo XU + AWV

V=Vo
QT e (VUT))U + ADV

€29

By randomly initializing U and 'V with nonnegative values,
and applying (28) and (31) iteratively, we can get the optimal
solution. The convergence analysis can be found in [25] and [16].

D. Implementation Details

A NMF problem does not necessarily have a unique solution.
To avoid an arbitrary or trivial solution, some details are worth
noting for implementation.

1) Normalization in the algorithm: If no constraint is added
to U, the value of cost function (17) can be simply reduced
by reducing the magnitude of the elements in V and
correspondingly increasing the magnitude of the elements
in U. To get rid of a trivial solution, a normalization is
needed on each column on U: u,; < u;/|u |2, at the
end of each iteration. Meanwhile, the normalization factor
is multiplied to the jth row of V.

2) The setting of regularization parameter A: A acts as the
tradeoff factor between reconstruction error and manifold
(graph) regularization. Through a number of experiments,
we find it very difficult to set a perfect value for A: if A
is set with a smaller value, the manifold regularization
takes little effect, while if A is set with a larger value,
WGNMF quickly converges to an undesirable local mini-
mum, leading to a poor feature extraction. Hence, we have
developed an adaptive method for setting the value of A,
where A changes along with iterations. At the end of each
iteration, A is adaptively updated.

a) For the first several iterations (ten iterations in this
work), we set A = 0 for avoiding bad local minima.

b) For later iterations, a flexible value is adopted. We
define

S 26 (X -UVH|%
A = min <0.5 T(VILV)

. 5) (32)
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SLIC segmentation Getting

u Class 1
. ‘k‘beled mxels ‘ m
Counting
labeled pixels

Class 1 Class 2

Pscudo-

labeling

Aggressive mode (dangerous
and not suggested)

Safe mode (suggested
as default)

There is no

majority class Generated labels
(skipping pseudo-labeling)

Class 1 is the

Generated majority class

labels

Fig. 2. Pseudolabeling by superpixel segmentation.

then the regularization parameter can be set as

{x/o.05i, X < 0.05

. . . (33)
2, x> 0.05

The rationality of adaptive setting on A will be verified by
experiments in Section I'V.

III. SEMISUPERVISED LEARNING VIA SUPERPIXEL
SEGMENTATION

Though the aforementioned DDNMF can transfer knowledge
from source scene to target scene, the improvement on clas-
sification accuracy cannot be ensured. It is worth noting that
negative transfer may happen, especially when very few samples
are labeled in the target scene. In these cases, there are only
very few edges in source-target graph, hence it becomes difficult
to build strong connections between source and target scenes.
To solve this problem, semisupervised learning is adopted in
the target domain via superpixel segmentation. The concept of
superpixel can be traced back to [26]. A superpixel is a group of
spatially connected pixels with similar colors, which is achieved
by an oversegmentation process on an image. In other words,
superpixel segmentation is to divide an image into a lot of
nonoverlapping superpixels. The process of superpixel segmen-
tation indicates that the pixels in the same superpixel should be
similar, which provide a chance to do the pseudolabeling for
the unlabeled pixels. The idea of pseudolabeling is illustrated in
Fig. 2. In general, it is straightforward: if the majority of labeled
pixels within a superpixel belong to a specific land cover class,
then the remaining unlabeled pixels potentially belong to the
same class. With this idea, two algorithm steps are included: 1)
segmentation and 2) pseudolabeling.

A. Spectral-Spatial Joint Superpixel Segmentation by Simple
Linear Iterative Clustering (SLIC)

Superpixel segmentation has been a hot research topic in
recent years, and various algorithms have been proposed to solve
this problem. Among them, an algorithm named SLIC [27] has
been widely applied. SLIC is an extension of the traditional
k-means clustering algorithm. Compared with the original k-
means, characters of SLIC include the following.
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1) Cluster centers are initialized with regular grid.

2) The distance measurement combines the spatial distance

and the CIELAB color distance.

3) Nearest neighbor searching is conducted in a limited spa-

tial region rather than the whole image.

4) A postprocessing step is performed to handle the “or-

phaned” pixels.

All these characters ensure the spatial connectivity of
the segmentation output, which is beneficial to our spatial-
neighborhood-based semisupervised learning. Hence, we adopt
SLIC for superpixel segmentation.

Despite the advantages of SLIC, we do not have CIELAB
color space for HSIs, hence the original distance measurement
proposed for SLIC [27] is no longer appropriate for HSIs. Thus,
a spectral-spatial joint distance measurement is proposed in this
article for HSIs. Assume that we have two pixels a and b with
spatial axes (@, a,) and (b, b, ), and their spectral vectors are
denoted as a and b, respectively, then spectral distance can be
defined as

dspectral = ||a - bH2 (34)
while the spatial distance can be defined as
dupain = /(@ = b2)? + (0 — by)?. (35)

Finally, in a similar way with [27], the spectral-spatial joint
d— d2 dsparial

distance can be achieved as
2
+ | ] B (36)
spectral ( \V Npixel/Ncluster>

where Ny is the total number of pixels in the HSI, Nejyger 18
the number of expected clusters, and 5 is a balancing parameter
between spectral distance and spatial distance. In this article, we
set Nejuster = \V Npixel and 6 = 50.

It is worth noting that the final number of segmentations
(superpixels) may be larger than the expected N jyger, since the
postprocessing step of the SLIC algorithm will separate spatially
disjoint segments from the same cluster.

B. Strategy for Pseudolabeling

As shown in Fig. 2, once the segmentation is completed, pseu-
dolabeling is done in each segment. A histogram is generated by
counting labeled pixels in the segment. If the majority of labeled
pixels in a segment belong to the same class (e.g., class C;), then
C; is defined as the majority class, and all the unlabeled samples
in this segment are assumed to belong to class C;. Making it more
clear, we have the following definition.

Definition 1: Class C; is a majority class of a segment if

Vi # i, #(Ci) > #(C5) 37
and

#(C) <
—_— > (38)
SN HC) T
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where #(C}) is the number of samples belonging to class C;
within the segment, N¢ is the number of classes, and 0 < 7 <
1 is a threshold for determining the majority class, which is
typically set to a value close to 1.

It is worth noting that a segment does not necessarily have a
majority class. For example, assume we have in total ten labeled
pixels in a segment, five of which belong to class 1, while the
remaining five labeled pixels belong to class 2. In this case,
majority class does not exist, referring to (37) and (38).

With the aforementioned definition, strategy for pseudolabel-
ing can be carried out:

1) If a segment has a majority class C}, then all the unlabeled
pixels are assigned the pseudolabel C;, while the pixels
having true labels (i.e., already labeled pixels) keep their
true labels.

2) Ifasegment does nothave a majority class, pseudolabeling
is skipped on this segment.

Depending on the setting of 7, there can be two modes of

pseudolabeling:

1) Aggressive mode: when we set 7 < 1, the pseudolabeling
falls into aggressive mode. In aggressive mode, pseudola-
beling is allowed in a segment with mixed land cover
classes. It should be noted that aggressive mode is very
dangerous, since the class labeling in a segment with
mixed classes is quite sensitive. Incorrect pseudolabels
may contrarily reduce the classification accuracy. Hence,
aggressive mode is not recommended, except that all
segments contain mixed classes. Even in this case, 7 needs
to be set close enough to 1, e.g., 7 = 0.99.

2) Safe mode: pseudolabeling with 7 = 1 is called safe mode.
When 7 is set to 1, a segment has a majority class C;
only if all labeled pixels belong to the unique class C;. In
other words, pseudolabeling will be skipped in a segment
with mixed classes. This strategy makes pseudolabeling
much safer, and thus safe mode is set as the default mode
of pseudolabeling. In this article, we only adopt the safe
mode.

The difference between aggressive mode and safe mode can

be seen in Fig. 2, which illustrates a segment with mixed land
cover classes.

C. Procedures of SS-DDNMF

It should be emphasized that semisupervised learning is only
needed in target scene, and it is not performed in source scene,
since source scene have adequate labeled pixels. DDNMF with
semisupervised learning is named semisupervised DDNMF (SS-
DDNMF) in this article, whose procedures include the follow-
ing.

1) Performing superpixel segmentation by SLIC on target

scene.

2) Applying pseudolabeling to target scene based on the

segmentation map.

3) Building the graphs with land-cover class labels (including

pseudo labels in target scene).



CHEN et al.: SEMISUPERVISED DUAL-DICTIONARY LEARNING FOR HETEROGENEOUS TRANSFER LEARNING ON CROSS-SCENE HSI

Source scene Target scene

Insufficient
target training
samples

( Semisupervised I

Sufficient
target training
samples

leferem feature

Low- : ! Same feature L
dimensional dimension dimensional
source scene m target scene

features features

| Merge training samples ]

o ”“"’l“ﬁ
from two scenes

( Classification with SVM

Fig. 3. Pipeline of the proposed SS-DDNMF model.

4) Training source scene dictionary U® and target scene
dictionary U7 by performing the DDNMF [minimizing
(D]

5) Obtaining features of source and target scenes by NNLS

by (8) and (9), respectively.

Once these procedures are completed, two feature spaces
with different number of dimensions are aligned to the shared
subspace, and heterogeneous transfer learning is achieved. Then
source and target training samples can be merged to train a
better classifier for the target scene. The pipeline of the proposed
SS-DDNMF model is illustrated in Fig 3.

IV. EXPERIMENTS
A. Datasets and Experimental Settings

To verify the effectiveness of DDNMF, experiments are con-

ducted on two cross-scene HSI datasets.

1) RPaviaU-DPaviaC Dataset: RPaviaU-DPaviaC dataset
consists of ROSIS Pavia University (RPaviaU) scene and
DAIS Pavia Center (DPaviaC) scene.! The source scene
RPaviaU was captured by ROSIS HSI sensor over the
University of Pavia, Italy. The data cube size of RPaviaU
scene is 610 x 340 x 103, where first two dimensions
represent the spatial size, while the last dimension is the
number of bands. The target scene DPaviaC was captured

'We thank Prof. Gamba from the University of Pavia for providing the data.
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TABLE I
NUMBER OF LABELED SAMPLES IN EACH LAND COVER CLASS WITHIN
RPAVIAU-DPAVIAC DATASET

Class Number of labeled samples

# Name RPaviaU DPaviaC

1 Trees 3064 2424

2 Asphalt 6631 1704

3 Bitumen 1330 685

4 Shadow 947 241

5 Brick 3682 2237

6 Meadow 18649 1251

7 Soil 5029 1475

M Trees

M Asphalt
M Bitumen
B Shadow
‘| M Brick
B Meadow
Soil

Fig. 4.  Source and target scenes in RPaviaU-DPaviaC dataset. The upper one
is the source scene (RPaviaU), while the lower one is the target scene (DPaviaC).
(a) Data cubes. (b) Ground truth maps.

by DALIS sensor over the center of Pavia city, Italy. The data
size of DPaviaC is 400 x 400 x 72. There are seven land
cover classes shared between source and target scenes,
and the detailed land cover classes as well as number of
labeled samples are listed in Table I. The data cubes and
ground truth maps are illustrated in Fig. 4.

2) EHangzhou-RPaviaHR dataset. EHangzhou-RPaviaHR
dataset is composed of EO-1 Hangzhou (EHangzhou)
scene and ROSIS Pavia HR (RPaviaHR) scene. The
source scene EHangzhou was taken with EO-1 Hyper-
ion hyperspectral sensor over Hangzhou city, Zhejiang,
China [2]. The data size of EHangzhou is 590 x 230 x
198. EHangzhou has three land cover classes: 1) water,
2) ground/building, 3) plant. The target scene RPaviaHR
was acquired by ROSIS HSI sensor over Pavia city, Italy,
whose data size is 1400 x 512 x 102. RPaviaHR origi-
nally has five land cover classes: building, river, vegeta-
tion, road, and shadow [28]. For the purpose of knowledge
transfer, we have done some merging/mapping operations
on land cover classes: in EHangzhou, the mapping is
plant — vegetation; and in RPaviaHR, a merging is taken
as (building, road, shadow) — ground/building. After
merging/mapping operations, there are three common land
cover classes shared by source and target scenes, which
are listed in Table II. The data cubes and ground truth maps
are displayed in Fig. 5.
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TABLE II
NUMBER OF LABELED SAMPLES IN EACH LAND COVER CLASS WITHIN
EHANGZHOU-RPAVIAHR DATASET

Class Labeled samples
# Name EHangzhou  RPaviaHR
1 Water 18403 22525
2 Ground/Building 77450 145416
3 Vegetation 40207 22961
B Water

B Ground/Building
¥ Vegetation

Fig.5. Source and target scenes in EHangzhou-RPaviaHR dataset. The upper
one is the source scene (EHangzhou), while the lower one is the target scene
(RPaviaHR). (a) Data cubes. (b) Ground truth maps.

Typically in cross-scene classification cases, there are abun-
dant labeled training samples in the source scene, while only a
few labeled training samples are available in the target scene.
Hence, we randomly select 400 labeled training samples per
class from the source scene and 10 labeled training samples per
class from the target scene. All remaining labeled samples in the
target scene are regarded as test samples. It should be clarified
that in cross-scene classification problem, only the target scene
lacks labeled training samples, so the test of classification is
only conducted on the target scene. The source scene samples
are only used to enhance the classification performance of the
target scene.

Six different methods are taken into comparison, and classi-
fication accuracies on target scene are compared:

1) Spec: Classification on raw spectral feature of HSI. This
is the baseline which only adopts limited target-scene
training samples to train the classification model, without
semisupervised learning and transfer learning. It is ex-
pected that transfer learning methods will produce higher
accuracies than raw spectral feature, otherwise, negative
transfer occurs.
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2) SS-Spec: Classification on raw spectral feature with the
semisupervised learning algorithm. It will show the effec-
tiveness of the segmentation-based semisupervised learn-
ing algorithm proposed in Section III. Also, it provides
the reference accuracies for other semisupervised learning
based algorithms.

3) TCA: Transfer component analysis (TCA) is a hetero-
geneous transfer learning algorithm proposed by Pan
et al. [29]. The main idea of TCA is to learn the trans-
fer components across source and target domains in a
reproducing Kernel Hilbert Space using maximum mean
discrepancy. However, TCA requires that source and target
data have the same feature dimension. This condition is
not satisfied in our datasets. Thus, a dimensional reduction
preprocess is carried out based on principal components
analysis (PCA) to align the feature dimensions of source
and target data. In details, if we need r-dimensional output
features from TCA, following two steps are adopted: a)
reducing the feature dimensions of source and target data
to r using PCA by keeping first r principal components;
b) performing TCA on the source and target data with an
output dimension .

4) SS-TCA: Classification on TCA-based features with the
semisupervised learning proposed in Section III. The only
difference between TCA and SS-TCA is that SS-TCA uses
pseudolabeling to get more “labeled” samples in target
scene. More “labeled” samples may potentially benefit
building a better aligned subspace via TCA and improve
the classifier training at the same time. But it should be
emphasized that pseudolabeling does not guarantee the
correctness of the labeling procedure.

5) DDNMF: Dual-dictionary nonnegative matrix factoriza-
tion, which was initially proposed in our last work [30] and
is refined in this article. It has shown good performance
on feature alignment when sufficient labeled samples are
provided in both source and target scenes [30].

6) SS-DDNMF: Semisupervised DDNMEF, which is the core
contribution of this article. It is designed to handle the
cases where insufficient labeled samples are available in
the target scene. The details of SS-DDNMEF can be found
in Sections II and III.

The number of training samples and detailed parameter set-
tings are listed in Table III. Support vector machine (SVM)
with radial basis function (RBF) is adopted as the classifier for
aforementioned methods. For transfer learning methods, source
and target training samples are merged to form the training set of
SVM, since they have been transformed to the same subspace.
For the cases with semisupervised learning, training samples
with calculated pseudolabels are also included in the training
set. The parameters of SVM are set as: 1) penalty parameter
C €{1071,10%...,10*}, and 2) parameter for RBF kernel
v e {2715,2714 . 25}, Fivefold cross validation is adopted
to get optimal parameters of SVM. It should be noted that
training samples in the source scene are only used for transfer
learning, so Spec and SS-Spec do not use any training sample
in the source scene, since they do not include transfer learning
algorithm.
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TABLE III

COMPARED METHODS AND PARAMETER SETTINGS

Source training Target training
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Method Description Parameters
samples samples
Spec Raw spectral feature 0 10 per class None
SS-Spec Raw spec?r‘al featqre with 0 10 per class ~ * Parameters related to semisupervised learning: specified in Sec-
semisupervised learning tion III.
o Kernel function to map the source and target data: linear kernel.
TCA Transfer component analysis 400 per class 10 per class  * Tra@ejoﬁ parameter between the regularization and the distance on
empirical means: p = 10.
o Output dimension of the shared subspace: r € {5,6,...,25}.
o Parameters related to semisupervised learning: specified in Sec-
tion III.
SS-TCA TCA' with  semisupervised 400 per class 10 per class  ° Kernel function to map the source and target data: linear }(emel.
learning o Trade-off parameter between the regularization and the distance on
empirical means: g = 10.
o Output dimension of the shared subspace: r € {5,6,...,25}.
. . Output dimension of the shared subspace: r € {5,6,...,25}.
DDNMF d th e U ston pé = 1959, -5 20
DDNMF work proposed TS 460 per class 10 per class o Graph regularization parameter: adaptive setting on A according to
Egs. (32) and (33).
o Parameters related to semisupervised learning: specified in Sec-
. . . tion III.
DDNMF with S sed . . .
SS-DDNMF WIth semisupervise 400 per class 10 per class o Output dimension of the shared subspace: 7 € {5,6,...,25}.

learning proposed in this work

e Graph regularization parameter: adaptive setting on A\ according to
Eqgs. (32) and (33).

W \9\

° -
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Fig. 6.

b

©

Pseudolabeling in RPaviaU-DPaviaC dataset (for target scene only). (a) Segmentation map generated by SLIC. (b) True training label map of DPaviaC

(labeled pixels are marked with circles, please zoom in for details). (¢) Pseudotraining label map of DPaviaC achieved via pseudolabeling.

B. Experimental Results and Analyses

For RPaviaU-DPaviaC dataset, first we present the result
of pseudolabeling in Fig. 6. Fig. 6(a) shows the segmentation
map generated by SLIC. The segmentation algorithm is
performed on the whole data cube, utilizing spectral-spatial
joint distance. For visualization of segmentation results, the
contours of segments are marked on the pseudocolor RGB
image generated from DPaviaC data. Fig. 6(b) scatters true
labels of training samples in target scene (DPaviaC). Adopting
the pseudolabeling algorithm proposed in Section III-B, we
get the pseudolabels of many originally unlabeled pixels,
which are shown in Fig. 6(c). With pseudolabeling, the
number of labeled training samples in target scene has been
extended from 70 to 11 261. Increasing the number of labeled
training samples in target scene can significantly strengthen
the connections between source and target scenes, since there
will be more edges in source—target graph. We also perform
an evaluation on the pseudolabeling accuracy. Since the
accuracy must be calculated on pixels with true (ground-truth)
labels for reference, we calculate it on such a set of pixels
(namely evaluation set): P = {pixels having true labels} N

{pixels assigned with pseudo labels}. Then, the pseudo-
labeling accuracy can be expressed as
Xepyseudoxzy el X
ACCpseudolabeling = |{ | k ( ) = ( )}| (39)

P

where x is a pixel in the evaluation set, Ypseudo (X) is its pseu-
dolabel generated by our algorithm, y.(x) is its true label
extracted from ground truth map, and | - | is the cardinality of
a set, i.e., the number of pixels in the set. The Accpseudo-labeling
for RPaviaU-DPaviaC dataset is 0.9830, which implies that our
pseudolabeling algorithm is reliable.

As for classification-based performance evaluation, three ac-
curacy criteria: overall accuracy (OA), average accuracy (AA),
and kappa coefficient (x) are adopted to measure the perfor-
mance of transfer learning. As the performance of each transfer
learning algorithm varies with the output dimension r, we plot
accuracies with respect to different r values for each algorithm
in Fig. 7. The best OA, AA, and x of each method are listed
in Table I'V. It needs to be explained that for a specific method,
best OA, AA, and « are not necessarily achieved with the same
7 value.
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Fig. 7. Accuracies with respect to different » values in RPaviaU-DPaviaC dataset. (a) OA. (b) AA. (¢) k.

TABLE IV
BEST OA, AA, AND k OF EACH METHOD ON RPAVIAU-DPAVIAC DATASET

Method OA AA K

Spec 0.8810 0.8958  0.8564
SS-Spec 0.8925 0.8957  0.8696
TCA 0.5425 0.5804 0.4541
SS-TCA 0.8976  0.8922  0.8756
DDNMF 0.8142 0.8123 0.7724
SS-DDNMF  0.9339  0.9330 0.9196

The experimental results on RPaviaU-DPaviaC dataset reveal
following facts.

1) Seen from Fig. 7 and Table IV, the features produced by
TCA fail to correctly classify the pixels in target scene,
producing very poor accuracies, which are much lower
than that achieved by the baseline Spec. In other words,
TCA brings negative transfer when target scene lacks
enough training samples. However, after more “labeled”
samples are added by semisupervised learning, SS-TCA
produces better results. SS-TCA achieves much higher
accuracies than Spec. However, the improvements brought
by SS-TCA are not significant when compared with SS-
Spec.

Seen from Fig. 7, the accuracies of DDNMF do not change
smoothly along with the increasing of 7. This is mainly
caused by the lack of labeled training samples in target
scene. The connections between source and target scenes,
which are represented by the source—target graph, are too
weak for the knowledge transfer. However, after applying
semisupervised learning, the accuracies of SS-DDNMF
keep stable when the value of r changes, implying that
combining semisupervised learning with DDNMF makes
the model robust and insensitive to the parameter r.

Shown by Fig. 7 and Table IV, SS-DDNMF produces
much higher accuracies than DDNMF, which really per-
forms positive transfer to the target scene. It is worth not-
ing that SS-DDNMF is a combination of semisupervised
learning and DDNMEF. Nevertheless, each separated single
algorithm does not contribute much. On the one hand, by
comparing the results of Spec and SS-Spec in Table IV,
it can be recognized that semisupervised learning can

2)

3)

indeed improve the classification performance. In details,
the OA and x of SS-Spec are higher than that of Spec,
and the AAs of Spec and SS-Spec are similar. Even so,
the improvement brought by semisupervised learning is
not so significant when using raw spectral feature. On the
other hand, DDNMF itself is not capable of cross-scene
knowledge transfer in the case of limited target scene
training samples. Comparing the results of DDNMF and
Spec in Table IV, we can find that DDNMF actually
delivers negative transfer, i.e., the accuracies of DDNMF
are even lower than that of Spec. Hence, what really helps
is the combination. With the combination, SS-DDNMEF is
able to build strong connections between source and target
scenes through a lot of edges in source—target graph, and
thus achieves best accuracies which are far beyond those
obtained from the remaining methods.

After analyzing the results from RPaviaU-DPaviaC dataset,
we turn to the experiments on the second dataset EHangzhou-
RPaviaHR. For EHangzhou-RPaviaHR dataset, the pseudola-
beling result is illustrated in Fig. 8. Segmentation map of SLIC
is shown Fig. 8(a), and true training labels of target scene
(RPaviaHR) are scattered in Fig. 8(b). Combining Fig. 8(a) and
(b), pseudolabels are generated by the proposed pseudolabeling
scheme in Section III-B. The map of pseudolabels is shown
in Fig. 8(c). With pseudolabeling, we extended the number of
labeled training samples in target scene from 30 to 17083. Cal-
culated with (39), AcCpseudo-labeling for EHangzhou-RPaviaHR
datasetis 0.9985, which is higher than that achieved in RPaviaU-
DPaviaC dataset.

The accuracies of compared transfer learning algorithms vary-
ing with r values are plotted in Fig. 9, and the best OA, AA, and
k are recorded in Table V. The comparisons on EHangzhou-
RPaviaHR dataset produce similar, but slightly different results
with RPaviaU-DPaviaC:

1) Listed in Table V, TCA still performs poorly with insuffi-
cient target scene training simples, which is similar to the
case in RPaviaU-DPaviaC dataset. With more “labeled”
target scene simples obtained by semisupervised learning,
SS-TCA really leads to increased accuracies when com-
pared with Spec and SS-Spec. However, the improvements
are too small to be satisfying.
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(®) ©

Fig. 8. Pseudolabeling in EHangzhou-RPaviaHR dataset (for target scene only). (a) Segmentation map generated by SLIC. (b) True training label map of
RPaviaHR (labeled pixels are marked with circles, please zoom in for details). (c) Pseudotraining label map of RPaviaHR achieved via pseudolabeling.
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Fig. 9.  Accuracies with respect to different r values in EHangzhou-RPaviaHR dataset. (a) OA. (b) AA. (¢) k.
TABLE V 3) It can be found in Fig. 9 that accuracies of DDNMF are

BEST OA, AA, AND x OF EACH METHOD ON

EHANGZHOU-RPAVIAHR DATASET still unstable with the change of r. Also seen from Table V,

DDNMF gets lower accuracies than Spec, indicating that

Method OA AA K DDNMF brings negative transfer when only insufficient
ggeg 83222 83‘6‘;_6/ g;g;g labeled samples are provided.
TC_ApeC 05808 07304 02832 4) SS-DDNMF. wins the compar.isc.m by higher ac.:curacic.as
SS-TCA 0.9472 09755  0.8756 than that achieved by any remaining method, which again
DDNMF 0.8583  0.9268  0.7026 proves the effectiveness of combining semisupervised
SS-DDNMF  0.9841  0.9927  0.9604 .

learning and DDNMF.

2) In EHangzhou-RPaviaHR dataset, semisupervised learn-
ing delivers more improvements to the model training on
raw spectral feature, i.e., it can be seen from Table V,
SS-Spec achieves significantly higher accuracies than that This section includes further discussions on the proposed
of Spec. DDNMF and SS-DDNME.

V. DISCUSSIONS
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A. Getting Optimal Parameter of DDNMF

DDNMF and SS-DDNMF have an important parameter: the
rank of the factorization r. It is the dimension of the output
feature space. When r is too large, DDNMF and SS-DDNMF
potentially converge to very bad local minima, leading to neg-
ative knowledge transfer results. Contrarily, if 7 is too small,
information loss during the DDNMF and SS-DDNMF may
also reduce the classification accuracy. The optimal r value
may be related to various factors, including the dimension of
input feature (i.e., the number of bands in HSIs), the number
of land cover classes, the distribution of samples in the input
high-dimensional feature space, the number of input samples,
etc. We can hardly get an explicit relationship between these
factors and the optimal r value. However, we fortunately find
that the proposed SS-DDNMF model is robust to the setting
of . In both datasets, setting r € [5, 25] makes acceptable and
stable accuracies. Hence, this range is suggested for the proposed
DDNMF and SS-DDNMF.

Nevertheless, we provide an option to adopt K-fold cross-
validation if an accurate optimal r value is really desired in some
cases. Since the cross-scene classification problem is a bit differ-
ent from the one on single dataset, some details of K -fold cross
validation in cross-scene case are given here. In cross-scene clas-
sification, K -fold dataset splitting is only performed on target
scene, since the goal of transfer learning is mainly to promote
the classification performance on target scene. Suppose we have
DDNMF (or SS-DDNMF) parameter  and SVM parameters C'
and ~y, we use the triplet (r, C, ) to represent the parameters.
Then, the accuracy corresponding to (r, C,~) can be achieved
by Algorithm 1. With an exhaustive grid search method, the
optimal parameter can be obtained. However, it should be noted
that although K-fold cross validation provides a valid way to
find the optimal r value, it is extremely time-consuming. So
cross validation is still not recommended unless necessary.

B. Coping With Inconsistent Land Cover Classes

In the previous sections, we assume that source and target
scenes share the same set of land cover classes. This assumption
is too strong to meet in real-world applications. In real datasets,
target scene may contain missing classes and new classes when
compared with source scene. Actually, our assumption can be
relaxed to that source and target scenes share several land cover
classes. Nevertheless, we hope that most classes are shared
between source and target scenes, and this will contribute to
good transfer learning performance of SS-DDNMF.

The following simple example shows how to deal with miss-
ing classes and new classes in target scene. Assume that source
scene contains four land cover classes {A, B, C, D} and target
scene contains four land cover classes {B,C, D, E'}. Three
common classes { B, C, D} are shared by two scenes. In target
scene, A is a missing class and F is a new class. Here, we list
the extra new notations that will be used:

1) X$...: full training set of source scene;

2) Xgam’ (B,C.D} training subset belonging to classes

{B,C, D} in source scene.
3) X[ : full training set of target scene;

train*

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Algorithm 1: Cross-validation for DDNMF or SS-DDNMFE.
Input:
Training samples within source and target scenes X and
X7,
Parameter triplet (r, C, ),
Number of folds K.
Output:
Accuracy AcCeross-validation produced with parameters
(r,C,7).
Randomly shuffle the samples in target data X7 .
Split the target data X7 into K folds:
X7, X7,...,XT.
fork=1,2,..., K do
Take the kth fold X7 as validation set, while the
remaining K — 1 folds are taken as target training
set:

N =

s

X7 = [{X] }jznl-
5. Perform DDNMF on X and X7 with parameter 7,
ob;aining the source and target dictionaries U® and
6: ICjalc.:ulatf:d features of X, Xg and XZ using
Egs. (8) and (9), producing VS, Vg and VkT,
respectively.

7: Train SVM with parameters (C, ) using
(V)T (VI)T]T as training set.

(40)

8: Perform prediction on the validation set VkT and get
an accuracy Accy.
9: end for

. _ 1 K
10:  return Acceross-validation = K Zk:l Accy.

4) X7 full test set of target scene;

test*
5) Vgain, (B,C.D} the low-dimensional feature matrix of

Xiuin. (3.0, ) generated via DDNMF.

6) V. :the low-dimensional feature matrix of X/ . gener-
ated via DDNMEFE.

7) VI: the low-dimensional feature matrix of X[, gener-
ated via DDNMF.

With above notations defined, the detailed procedures to

handle inconsistent land cover classes are listed below:

1) Perform pseudolabeling on target scene.

2) Perform DDNMF on X$ . and X/, with all training
samples (including samples with pseudolabels), obtaining
U® and U7 According to (6), in the source-target graph,
samples belonging to missing and new classes will not
be connected to any other sample through a graph edge.
However, this will not have any impact on DDNMF. The
connection between source and target scenes can still be
built by source—target graph depending on the samples
belonging to common classes shared by two scenes. Thus,
DDNMF can still accomplish feature alignment.

3) Obtain Vi, 1 o py from X7 s oy using (8). Ob-
tain V.. and V[ from X7 . and X[, respectively, by
using (9). Here, we drop the training samples belonging
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to class A in the source scene, since it is a missing class in
the target scene and will never be used in the classification
task of target scene.

4) Merge the training sets from two scenes as

S T T S

[(Viain(B,0,0y) " (VI.)"]T and feed it into the SVM
for classifier training. Here, Vgain’ (B,C,p} COVers classes
{B,C,D}, and V] . covers classes {B,C, D, E}. The

train
merged training set covers all classes in target scene,
including the new class F (covered by V7. ).
5) Perform prediction on V., using the trained SVM model.

To summarize, we give two rules on dealing with inconsistent

land cover classes:

1) For training the DDNMF model, full training sets from
both source and target scenes are used, covering all exist-
ing land cover classes in two scenes.

2) For training the classifier (e.g., SVM), the missing classes
in target scene are kicked from source training set, since

they are never used in target scene classification.

C. More Robust Semisupervised Learning

In Section III, we suggested to adopt the safe mode as the
default mode of pseudolabeling, since it can produce less in-
correct pseudolabels. Nevertheless, there still exist incorrectly
labeled pixels. In the experiments, the accuracies of pseudola-
beling are 0.9830 in RPaviaU-DPaviaC dataset and 0.9985 in
EHangzhou-RPaviaHR dataset, both of which fail to reach 1.
Pseudolabeling errors may occur in this situation: the SLIC
algorithm produces a segment containing different land cover
classes, i.e., this segment is actually a mixed segment. However,
this segment may only contain one labeled pixel due to the lack
of labeled pixels. In such a case, this segment is mistakenly
regarded as a pure segment without mixing classes (we call it
fake pure segment), resulting in pseudolabeling errors. How to
reduce the number of fake pure segments is an essential issue.

A very related research work namely forest oriented su-
per pixels (FOSP) was presented in [31]. In FOSP, a random
forest classifier is trained with the existing labeled samples,
and then super pixels are built depending on the forest based
code rather than the color intensity (RGB values) used in the
original SLIC. With the discriminant information embedded in
distance calculation, the segmentation in low confidence regions
is improved, resulting in less fake pure segments. This idea can
be introduced to improve SS-DDNMF. We believe that adding
the distance of forest based code to (36) will give rise to more
robust semisupervised learning results.

VI. CONCLUSION

In this article, we have developed a heterogeneous transfer
learning model for cross-scene HSI classification, which is
named semisupervised dual-dictionary nonnegative matrix fac-
torization (SS-DDNMF). It can handle the knowledge transfer
problem between two HSI scenes with different feature dimen-
sions. In DDNMEF, two different dictionaries are designed for
source and target scenes, respectively, aiming at projecting two
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different feature spaces into a shared subspace. Graph regu-
larizers are adopted to maintain within-scene and cross-source
relationships. Furthermore, to solve the problem of insufficient
labeled samples in target scene, a semisupervised learning algo-
rithm has been proposed via HSI segmentation, which results
in a better graph with more cross-scene edges. Experiments
on cross-scene datasets have proved the effectiveness of the
proposed SS-DDNMF model.
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