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Abstract—Multiple-input multiple-output (MIMO) array syn-
thetic aperture radar (SAR) can straightly obtain the 3-D imagery
of the illuminated scene with the single-pass flight. Generally, the
Rayleigh resolution of the elevation direction is unacceptable due to
the length limitation of linear array. The super-resolution imaging
algorithms within the compressive sensing (CS) framework have
been extensively studied because of the essential spatial sparsity in
the elevation direction. However, the super-resolution performance
of the existing sparse reconstruction algorithms will deteriorate
dramatically in the case of lower signal-to-noise ratio (SNR) level
or a few antenna elements. To overcome this problem, a new
super-resolution imaging structure based on CS and deep neural
network (DNN) for MIMO array SAR is proposed in this article.
In this new algorithm, the spatial filtering based on CS is first
proposed to reserve the signals only impinging from the prespec-
ified space subregions. Thereafter, a group of parallel end-to-end
DNN regression models are designed for mapping the potential
sparse recovery mathematical model and further locating the true
scatterers in the elevation direction. Finally, extensive simulations
and airborne MIMO array SAR experiments are investigated to
validate that the proposed method can realize the state-of-the-art
super-resolution imaging against other existing related methods.

Index Terms—Compressive sensing (CS), deep neural network
(DNN), multiple-input multiple-output (MIMO), super-resolution,
synthetic aperture radar (SAR), 3-D imaging.

I. INTRODUCTION

3-D synthetic aperture radar (3-D SAR) imaging has been
extensively studied in recent years because of its attractive
and distinct advantages in many application fields, e.g., 3-D
reconstruction and deformation monitoring of man-made struc-
tures [1], [2], forest biomass estimation [3], [4], and glacier
ablation analysis [5]. In practice, the representative SAR 3-D
imaging systems can be categorized into three types; that is, SAR
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tomography (TomoSAR) [6], [7], circular SAR (CSAR) [8]–
[11], and linear array SAR [12], [13]. Specifically, TomoSAR
synthesizes the aperture in the elevation direction through
repeat-pass baselines, and hence, it is applicable to resolve
the stacked elevation scatterers corresponding to per azimuth-
range cell of the 2-D SAR imagery. Nonetheless, it takes a
long period to obtain the data of multiple baselines so that
it cannot meet the time-sensitive application. CSAR can the-
oretically obtain the 3-D SAR image of the observation re-
gion by single track, but its height resolution is relatively low.
Multiple flights of CSAR can improve the height resolution
while at the cost of a lot of time consumption. Multiple-input
multiple-output (MIMO) array SAR [14]–[16], as one of the
linear array SAR systems, can straightly realize the goal of
SAR 3-D imaging with single-pass flight by the use of mul-
tiple transmitters and receivers. Meanwhile, it can achieve the
high resolution in the elevation direction. Hence, it is already
playing an increasingly important role in the SAR 3-D imaging
scenario.

Typically, the high-resolution 2-D SAR image on the azimuth-
range plane can be achieved by introducing larger bandwidth
and synthetic aperture in the range and azimuth directions,
respectively. Whereas, for the elevation direction of MIMO
array SAR, the Rayleigh resolution, restricted by the length
limitation of antenna array, is relatively low. For this reason,
the super-resolution algorithm for the elevation direction is
desired. In practice, only a few (typically one to three) effec-
tive scatterers exist in the elevation direction related to per
azimuth-range resolution cell for the 3-D imaging of urban
buildings [17]. Therefore, it satisfies the sparse requirements of
the compressive sensing (CS) theory regarding the strong spatial
sparsity [18]–[21]. Based on this fact, different kinds of sparse
reconstruction algorithms, such as discrete grids based �q-norm
(0 < q ≤ 1) minimization methods [17], [22], maximum a pos-
teriori based Bayesian CS [23], and continuous domain based
atomic norm minimization approach [24], have been extensively
studied for the elevation super-resolution imaging. These al-
gorithms have shown the superior performance involving the
super-resolution capability and robustness against the noise in-
terference. Nonetheless, the performance of the abovementioned
algorithms regarding the super-resolution ability will deteriorate
dramatically in the case of lower signal-to-noise ratio (SNR)
or few antenna elements [24], [25]. To solve this problem, the
moderate super-resolution imaging algorithm is expected.
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In recent years, deep learning has been extensively studied
in the fields of image processing [26]–[28], speech recogni-
tion [29], natural language processing [30], direction-of-arrival
estimation [31], [32], etc. The deep neural network (DNN), as
one of the most popular neural network models in the deep learn-
ing field, has attracted the interest of many researchers due to
its outstanding learning and expression ability. It is well-known
that DNN with at least one hidden layer can approximate any
continuous function on a closed and bounded subset of Rn de-
pending on the universal approximation theorem [33], [34]. That
is, the DNN is capable of learning and representing many convex
or nonconvex and nonlinear mathematical models including
the CS problems. Motivated by this fact, deep learning-based
signal recovery methods have been extensively studied in recent
years. In 2015, the stacked denoising autoencoder, which is
similar to multilayer perceptron with multiple fully connected
layers, is first proposed to recover structured signals from their
corresponding undersampled measurements [35]. Then, with the
development of deep learning, some improved deep learning
networks are introduced to learn the inverse transformation in
order to replace the conventional convex or greedy recovery
algorithms. The representative methods include ReconNet [36],
DeepInverse [37], deep residual reconstruction network [38],
generative models based compressed sensing [39], etc. The
abovementioned networks are all data-driven deep learning
methods. Recently, in order to improve the interpretability of
deep learning networks, the neural networks, which are only
designed to replace some specific resulting procedures of the
CS recovery algorithms, have been investigated by the re-
searchers [40]–[42]. For example, Chang et al. [41] proposed
a general framework that learns a proximal operator using the
DNN to solve linear inverse problems. In this article, considering
that the sparse recovery in the elevation direction of the MIMO
array SAR system is usually solved within the framework of CS,
it can be regarded as the convex and nonlinear issue when using
the common �1-norm minimization in practical applications.
This implies that the DNN is applicable to the super-resolution
imaging scenario of the elevation direction depending on the uni-
versal approximation theorem. More recently, in 2019, Budillon
et al. [43] first attempted to utilize the deep learning method to
improve the performance of TomoSAR imaging. Specifically,
it aims to use a pretrained TomoSAR neural network, which
consists of multiple connected layers, to detect a single scatter
in each azimuth-range resolution cell and predict its elevation.
What the authors do not discuss is that it cannot be adapted to the
more general and complicated cases, such as multiple scatterers
and outliers discrimination. Therefore, the more advanced DNN
framework is desired.

In this article, a new super-resolution imaging framework
based on CS and DNN for MIMO array SAR is proposed. This
approach mainly consists of the following three parts; that is,
preliminary recovery with CS, spatial filtering, and a group of
parallel DNN regression models that achieve the goal of super-
resolution reconstruction. To be specific, first, provided that the
scatterers are distributed over a series of uniform but rough grid
points in the elevation direction, the scattering intensity can
be preliminarily estimated through the �1-norm minimization

algorithm. Second, the potential scope of the elevation direction
is decomposed into P spatial subregions. In general, for the
elevation reconstruction of urban buildings, there mainly exist
three kinds of layover areas; that is, the ground, the facade,
and the roof. Hence, the parameter P is set to be 3 in this
article. Moreover, for each spatial subregion, the spatial filtering
is conducted to guarantee that only the signal impinging from
this subregion is reserved based on the previous CS recovery
results. Finally, a group of parallel end-to-end DNN regression
models are designed for the super-resolution reconstruction of
scatterers under each spatial subregion. The main contributions
of this article are summarized as follows.

1) The CS-based spatial filtering method is first proposed
in this article. Compared with the conventional matrix
spatial filtering method, besides the outputs can reserve
the element-space data property, the advantage of the
proposed method is that the phase information of the
steering vectors related to the positions of scatterers is
well retained even in the case of few antenna elements. In
addition, this procedure can help to reduce the distribution
divergences of scatterers in the elevation direction, which
is beneficial to the DNN model with less training dataset
and neurons.

2) The end-to-end DNN regression model is first introduced
for the super-resolution imaging in the elevation direction
of the MIMO array SAR system. The theoretical analysis
indicates the fact that the super-resolution performance of
the DNN regression model is better than other conven-
tional sparse recovery methods. Also, the experimental
results demonstrate that the proposed method can realize
the state-of-the-art super-resolution imaging against other
existing related methods even in the case of lower SNR
level or few antenna elements.

3) The new imaging signal model is established in this arti-
cle by eliminating the variable interference of the range
factor R0 in the conventional imaging signal model. The
advantage is that the generated training dataset based on
the new echo signal model is adapted to the elevation
reconstruction of the entire azimuth-range plane.

The remainder of this article is organized as follows. The geo-
metrical and signal models of the MIMO array SAR system are
introduced in Section II. Section III presents a new framework
involving CS-based spatial filtering and DNN-driven super-
resolution reconstruction for MIMO array SAR 3-D imaging.
In Section IV, extensive simulations and airborne MIMO array
SAR real experimental results are investigated to demonstrate
the predominance of the proposed method. Finally, this article
concludes with a brief summary in Section V.

II. MIMO ARRAY SAR SYSTEM

In this section, we will briefly review the geometrical and
signal models of the MIMO array SAR system.

A. Geometrical Model

The imaging geometrical model of MIMO array SAR is de-
picted in Fig. 1, where thex-, y-, and z-axis stand for the azimuth
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Fig. 1. MIMO array SAR imaging geometrical model.

direction, the ground range direction, and the height direction,
respectively. The plane flies along the azimuth direction with a
velocity v at the height H . The array antenna composed of Nt

transmitters and Nr receivers is mounted under the belly of the
plane as shown in Fig. 1. According to the principle of equivalent
phase center [44], [45], the MIMO array antenna can be equiv-
alent to a uniformly distributed virtual linear array composed
of N = Nt ×Nr virtual elements with the constant interval.
In practical applications, the phase compensation caused by
the prior far-field hypothesis and the time division working
mode should be implemented in advance before the imaging
process [23], [46]. As a result, besides the number of real antenna
elements can be reduced significantly, the echoes of the MIMO
array are rearranged and equivalent to the uniformly distributed
linear array with the self-transmitting and receiving working
model.

B. Signal Model

In general, the linear frequency modulation signal emitted by
the nth (n = 0, 1, . . . , N − 1) virtual antenna is given by

s(t) = rect

(
t

Tp

)
exp

(
j2πfct+ jπkrt

2

)
(1)

where t, Tp, fc, and kr denote the fast time, the pulse width,
the carrier frequency, and the chirp rate, respectively. Based on
the point scattering model, the corresponding echo signal after
removing the carrier frequency can be explicitly written as

ŝ(xm, t, yn) =

Q∑
q=1

γqrect

(
t− 2Rq/c

Tp

)

· exp
[
jπkr

(
t− 2Rq

c

)2

− j
4π

λ
Rq

]
(2)

where γq , λ, and Rq stand for the scattering intensity of the
point scatterer q (q = 1, 2, . . . , Q), the wavelength, and the
instantaneous range between the nth antenna with position
(xm, yn, H) and the point scattterer q, respectively. Generally,
with the preprocessing operations of the range compression and
the azimuth compression, the high-resolution 2-D SAR imagery
can be obtained. Furthermore, with the preliminary deramping
process in the elevation direction, the echo signal model in (2)

can be simplified and rewritten more compactly as [22]

ŝ(yn) =

Q∑
q=1

γq exp

(
j
4π

λR0
ynyq

)
(3)

where R0 and yq represent the projection of the range on the
zero-Doppler plane and the position of the point scatterer q
along the elevation direction, respectively. Now, suppose that
the potential scatterers along the elevation direction are as-
sumed to lie on a set of discrete grid points with the location
yk (k = 1, 2, . . . ,K). Then, in the presence of noise, the signal
model in (3) can be rewritten in a matrix form of

s = Aγ + n (4)

where s ∈ CN×1 denotes the received echo signal vector along
the elevation direction corresponding to the same azimuth-range
resolution cell, γ ∈ CK×1 stands for the potential scattering
information vector to be recovered, and A ∈ CN×K is the
measurement matrix with the entry ank = exp(j4πynyk/λR0).
In practice, for per fixed azimuth-range resolution cell, there
only exist a few point-like scatterers along the elevation di-
rection. That is, the vector γ presents strong spatial sparsity
in which it satisfies the requirement of the CS theory very
well [18]–[21]. Hence, the signal model in (4) can be solved
within the framework of CS and the sparse signal vector γ
can be recovered with high probability. Typically, according to
the �1-norm minimization principle, the resulting mathematical
model can be formulated as

γ̂ = argmin
γ

{
1

2

∥∥s−Aγ
∥∥2
2
+ λ

∥∥γ∥∥
1

}
(5)

where λ is the regularization parameter that controls the balance
between the model error and the signal sparsity. Subsequently,
some postprocessing operations, e.g., model selection [25] and
the iterative reweighted technique [47], are implemented to
suppress the undesired outliers due to the noise interference
and locate the true scatterers. Until now, the complete sparse
signal recovery flow for the elevation direction based on the CS
framework has been presented.

Generally speaking, compared with the conventional spec-
tral estimation strategies including adaptive beamforming (BF)
(CAPON) [48] and multiple signal classification [49], the sparse
recovery algorithms within the framework of CS can break
through the limitation of Rayleigh resolution and have pre-
sented the prominent advantage regarding the super-resolution
capability. Nonetheless, the sparse recovery performance of the
CS algorithms is affected by the restricted isometry property
(RIP) of the measurement matrix. The mutual coherence of
the measurement matrix as an alternative of the RIP is usually
investigated in practical applications. Considering the MIMO
array SAR system, the measurement matrix is predetermined
by the given antenna positions and the grid points of scatterers
in the elevation direction. Based on this fact, when the distance
between the two adjacent scatterers is much smaller than the
Rayleigh resolution, the mutual coherence of the corresponding
two steering vectors of the measurement matrix will be greatly
improved. That is, the sparse recovery performance cannot be
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Fig. 2. Proposed a complete super-resolution imaging structure for the MIMO array SAR system.

guaranteed any more. Hence, it is expected that the recovery
performance can get rid of the influence of the measurement
matrix. In addition, the super-resolution performance of the
abovementioned algorithms will also deteriorate dramatically
in the case of lower SNR or a few antenna elements. For this
reason, the following section is devoted to presenting a robust
and advanced super-resolution imaging algorithm for the MIMO
array SAR system.

III. DNN-DRIVEN SUPER-RESOLUTION IMAGING ALGORITHM

FOR MIMO ARRAY SAR

In this section, an advanced super-resolution imaging frame-
work based on CS and DNN for MIMO array SAR is proposed.
The main idea is that the pretrained DNN model is capable
of distinguishing two scatterers with smaller space than the
Rayleigh resolution. To specify this, first, the �1-norm mini-
mization method is utilized to retrieve the scattering informa-
tion of scatterers distributed over a series of prespecified grid
points. Second, the recovery range of the elevation direction
is decomposed into three subregions and the spatial filtering is
implemented in order to retain the signals only from the specific
subspace. Finally, a group of parallel pretrained DNN regression
models are utilized to realize the goal of robust super-resolution
imaging in the elevation direction.

A. Super-Resolution Imaging Framework for MIMO
Array SAR

The super-resolution imaging structure for the MIMO array
SAR system in the elevation direction mainly consists of three
parts; that is, preliminary recovery with CS, spatial filtering,
and a group of parallel DNN regression models for the super-
resolution recovery. A sketch of the complete super-resolution
imaging structure is shown in Fig. 2.

For the TomoSAR imaging within the framework of deep
learning, Budillon et al. have proposed a multilayer classifier to
detect the scatterers in the elevation direction [43]. The authors
have demonstrated that the proposed method is effective if there
is only one scatterer in the elevation direction corresponding to
each azimuth-range resolution cell. However, the proposed DNN
classifier model cannot be adapted to the more complicated cases
such as multiple scatterers. The reason is that the number of
neurons of the DNN classifier will increase dramatically. To be
specific, considering the case of a single scatterer and the number
of discretized grid points in the elevation direction is set to beK,
the number of neurons in the output layer of the DNN classifier
is also K. However, if there are at most three scatterers along
the elevation direction distributed in the ground, the facade, and
the roof, respectively, the number of neurons in the output layer
will be up to C1

K + C2
K + C3

K . Thus, the network structure of
the DNN classifier model will become very large and need to be
improved. To overcome this problem, in this article, the DNN
regression model is introduced to locate the point-like strong
scatterers in the elevation direction. The advantage is that the
number of neurons in the output layer is always equal to K
regardless of the number of scatterers. And, there can be multiple
effective output neurons depending on the number of potential
scatterers in each azimuth-range unit. Despite this, when the
SNR level is fixed, the number of types of training data is still
equal to C1

K + C2
K + C3

K in the case of at most three scatterers,
which will bring large memory consumption and data storage
involving the training dataset generation. Motivated by this, the
feasible reconstruction range of the elevation direction is first
decomposed into three subregions in this article as depicted
in Fig. 2. The subregion s1 mainly contains scattering points
from the ground. In addition, it may also have a few scatterers
corresponding to the facade of the building. In subregion s2,
there are scatterers mainly coming from the facade. Considering
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the subregion s3, besides the scatterers coming from the roof, the
scattering points belonging to the facade may also exist. That is,
the imaging geometrical model guarantees that there are at most
two scatterers in per subregion along the elevation direction for
each azimuth-range resolution cell. Then, the spatial filtering is
conducted to reserve the signals only impinging from the specific
subspace.

For the filtered signal ŝi (i = 1, 2, 3), a group of parallel DNN
regression models are utilized to detect the potential scatterers
in each subregion and predict their positions. Importantly, it can
be noted that the number of neurons in the output layer for each
DNN regression model can be reduced to K/3. This implies
that the number of neurons of the DNN model can be greatly
reduced. In addition, the number of types of the training dataset
at the same SNR level will decrease to C1

K/3 + C2
K/3 with at

most two scatterers per space subregion. It means that the dataset
storage and memory consumption for training the DNN model
will be improved significantly. The following of this section
is devoted to describing the processing steps of the proposed
super-resolution imaging structure in detail.

B. Preliminary Recovery With �1-Norm Minimization

For each azimuth-range resolution cell, the potential scatterers
along the elevation direction are assumed to be distributed over
a series of prespecified grid points. Importantly, it should be
noted that the discrete grid here is relatively rough. Then, based
on the established measurement matrix A, the sparse signal
vector γ̂ can be obtained by solving the aforementioned �1-norm
minimization model in (5). In this article, an off-the-shelf solver
involving the CVX tool package is utilized to get the solution
of the model [50]. As a result, the scattering complex value
corresponding to each discrete grid is uniquely determined. That
is, the preliminary recovery result along the elevation direction
is identified.

C. CS-Based Spatial Filtering

It is well-known that the purpose of spatial filtering is to
retain some signals only impinging from the specific subregion
while other signals corresponding to the remaining subspaces are
absent. In general, the spatial filter processor mainly consists of
two types; that is, BF [51] and the matrix spatial filter [52], [53].
In practical applications, the matrix spatial filter is often used
as the prefiltering processor. The reason is that the matrix
spatial filter can ensure the outputs reserve the element-space
data property, which is significant in some scenarios that need
the element-space data as the input including the SAR 3-D
imaging within the CS framework. This is a unique advantage
not available in the BF method. For the imaging signal model in
(4), the output of matrix spatial filter can be formulated as

y = GHs = GHAγ +GHn

= Cγ + nc (6)

where G ∈ CN×N , C ∈ CN×K , and nc ∈ CN×1 stand for the
matrix filter, the filtered measurement matrix, and the filtered
noise term, respectively. Generally, the matrix filter G should

satisfy the following constraint given by:

GHA(yk) =

{
A(yk), yk ∈ Yp

0, yk ∈ Ys

(7)

whereYp denotes the subspace of interest containing the desired
signals, which can be passed by the matrix filter G without
distortion. In contrast, for other signals located in other sectors
Ys, they will no longer exist in the filtered signal y. Many
different kinds of algorithms have been developed to design the
optimal matrix filter including the rank-deficient least-squares
method and the second-order cone programming (SOCP) based
matrix spatial filter design [54], [55]. Generally, the performance
of the aforementioned spatial matrix filter design methods is
reliable in the case of sufficient sampling with a large value of
N . In practice, considering the payload of the plane and the
cost of hardware equipment, the number of antenna elements is
relatively small. Therefore, the performance of the conventional
spatial matrix filter design methods cannot be guaranteed any
more.

In this article, the CS-based spatial filtering method is first
proposed. The output of the proposed algorithm is still the
element-space data for the purpose of postprocessing. To be spe-
cific, the preliminary recovery result γ̂ is first decomposed into
three parts; that is, γ̂ = [γ̂T

s1
, γ̂T

s2
, γ̂T

s3
]T . In addition, the mea-

surement matrix A is also partitioned as A = [As1 ,As2 ,As3 ],
where Asp (p = 1, 2, 3) denotes the measurement submatrix
composed of steering vectors corresponding to the discrete grid
points distributed in the subregion sp. According to the theory of
CS, the desired signal can be reconstructed with high probability
if it is sparse in a priori known basis [19]. Hence, it can be
believed that the initial recovery signal γ̂ is reliable to some
extent. Based on this fact, for the pth (p = 1, 2, 3) subregion,
the output of spatial filter can be expressed as

sp = s−Asγ̂s (8)

where sp, As, and γ̂s denote the filtered observation vector in
which it mainly contains the signal of interest arriving from
the passband sector, the measurement matrix of the stopband
sector, and the preliminarily recovered signal of the stopband
sector based on the �1-norm minimization, respectively. As
mentioned above, the passband sector also consists of three types
corresponding to the three subregions of the elevation direction.
When the passband sector is determined, the remaining sub-
spaces are regarded as the stopband sector. For example, if the
subregion s2 is regarded as the passband sector, the remaining
subregions s1 and s3 will be seen as a whole designated as
the stopband sector. Furthermore, the parameters As and γ̂s

can be obtained by As = [As1 ,As3 ] and γ̂s = [γ̂T
s1
, γ̂T

s3
]T ,

respectively. Finally, the filtered echo signal vector sp only
containing the scatterers of the subregion s2 can be determined
by conducting the established model in (8). In summary, based
on the preliminary recovery result of the �1-norm minimization,
the echo signal of scatterers located in the passband sector
can be accurately determined by subtracting the echo signal
corresponding to the stopband sector from the original obser-
vation signal. Compared with the spatial matrix filter method,
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Fig. 3. Spatial filtering based sparse recovery results of the proposed method
compared with other related methods.

the disadvantage of the former is that the phase information of
the steering vectors belonging to the passband sector can be
changed when the dimension of the matrix filter G is small
depending on the constraint in (7). It is known that the phase
information of the steering vectors is related to the positions
of scatterers distributed in the elevation direction. That is, the
performance of location accuracy of the conventional spatial
matrix filter method will degrade drastically in the case of
few antenna elements. As for the proposed CS-based spatial
filtering method, the phase information related to the positions
of scatterers is well retained by avoiding the direct manipulation
of the steering vectors. Thus, it can be believed that the location
accuracy performance of our method is better than the spatial
matrix filter approach when the number of antenna elements is
small.

In order to validate the performance of spatial filtering of the
proposed method compared with the spatial matrix filter method,
the numerical simulation is conducted in this section and the
experimental results are depicted in Fig. 3. The array antenna
comprises 8 antenna elements and the SNR is set to be 10 dB.
For the prefiltering processing, the SOCP-based peak stopband
constrained least-squares passband criterion is introduced to
implement the matrix spatial filtering [56]. In addition, the
�1-norm minimization is utilized to complete the subsequent
sparse recovery of the passband sector using a solver such as
the CVX package. The passband range is specified by the cyan
dotted line and the other regions are the spatial sector not of
interest. One can observe from this figure that there is a large
deviation between the predicted locations of the matrix spatial
filter based recovered signal and the true locations. That is, the
performance of location accuracy will degrade to some extent
compared with the straightforward sparse signal reconstruction
by the �1-norm minimization without spatial prefiltering. The
main reason is that the dimension of the matrix filter G is
small such that the constraint property in (7) can no longer be
strictly maintained. As we can see, the reconstruction result of
the proposed method is approximately in agreement with the true
value in the passband sector. Also, for the stopband sector, there
is no any interference signal. This implies that the CS-based
spatial prefiltering method is reliable even in the case of few
antenna elements. Moreover, the output with the element-space

data property is also convenient for the following process, which
is presented in the following section.

D. DNN-Driven Super-Resolution Imaging

DNN, as one of the representative neural network models,
has been extensively explored in many practical scenarios. In
accordance with the universal approximation theorem [33], it is
well-acknowledged that DNN is able to deal with the convex
or nonconvex and nonlinear mathematical models. Addition-
ally, the sparse signal recovery for each subregion can also
be solved within the framework of sparse reconstruction such
as the �1-norm minimization model in (5), which is a convex
and nonlinear issue. That is, the resulting mathematical model
involving the signal reconstruction of each subregion can be
regarded as a black box and, hence, an end-to-end learning with
DNN can be utilized to achieve the purpose of signal recovery.
Specifically, the end-to-end fully connected DNN regression
model is introduced in this article mainly due to three reasons.
First, considering the received signalS ∈ CN×1, every element,
which is corresponding to the signal received by a certain an-
tenna, in the vectorS is different and valuable. That is, the signal
S does not have local correlation. Thus, the input vectorS is fully
connected with the hidden layers in the DNN model. Second,
the imaging in the elevation direction is an underdetermined
problem, which aims to use few measurements S ∈ CN×1 to
recover signal γ ∈ CK×1 (N � K). Generally, the dimension-
ality increase of signal recovery can only be accomplished by
the fully connected hidden layers. Third, the interpretability of
the end-to-end DNN regression model can be well investigated
by analyzing the relationship between the �1-norm minimization
and the proposed DNN structure, which will be presented later
in this section.

Generally speaking, for the generation of training dataset,
different number of scatterers distributed at different locations
along the elevation direction is mainly considered. In addition,
for the given MIMO array SAR system, the number of antenna
elements is fixed. Thus, considering the echo signal model in (3),
the echo signals can be massively simulated with different levels
of SNR and random amplitude values of the scatterers. However,
it should be noted that the echo signal model in (3) is applicable
to the reconstruction of the scatterers corresponding to the
resolution cell with the same range R0. That is, the generated
training dataset is only adapted to the elevation reconstruction
of scatterers with the same slant range R0. It is unacceptable
that the training dataset is generated repeatedly with the change
of the slant range R0 corresponding to different pixels along the
range direction. In other words, the variable interference of the
slant range factorR0 in (3) must be eliminated. Motivated by this
fact, the new echo signal model and training dataset generation
policy are proposed in this article. To specify this, the discrete
grid space along the elevation direction is set as

ρd = αρe = α
λR0

2 A
, 0 < α < 1 (9)

where ρe = λR0/2 A denotes the Rayleigh resolution in the
elevation direction and α represents the discrete factor that
controls the discrete degree of the grid. Now, for thekth scatterer,
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its position can be given by

yk = mρd, m = 0, 1, . . . ,M − 1 (10)

where M denotes the total number of grid points that is deter-
mined by

M =
ρeuna

ρd
=

λR0/2ΔA

ρd
=

A

αΔA
(11)

where ρeuna = λR0/2ΔA stands for the unambiguous range of
the elevation direction and ΔA is the space of two adjacent
antenna elements. By substituting (10) into (3), the new echo
signal model can be rewritten as

ŝ(yn) =

M∑
m=1

γm exp

(
2πα

A
ynm

)
+ ε. (12)

It can be seen that the reconstructed echo signal model in-
volves the variables including the amplitude γm, the additive
noise ε, and the relative position m. That is, the generated train-
ing dataset of the new echo signal model applies to the overall
elevation reconstruction of the scatterers with different slant
range. Until now, the training dataset generation policy based
on the reconstructed echo signal model has been established.

In recent years, with the development of neural network, there
exist two kinds of neural network models; that is, real-valued
DNN and complex-valued DNN [57]. For the sake of simplicity,
the real-valued DNN structure is introduced in this article.
Generally, for the spatial filtering vector sp of the pth subregion,
the complex value of each entry is decomposed into the real and
imaginary parts given by

Sp = [Re(sp)
T , Im(sp)

T ]T (13)

where Re(·) and Im(·) represent the real and imaginary parts of
a complex vector separately. Thereafter, the normalized vector
is designed as the input of the DNN

Ŝp =
Sp

‖Sp‖ . (14)

For the DNN structure of signal recovery, there are three
parallel fully connected neural network models designed for
mapping and expressing the essential mathematical model. Con-
sidering the DNN model of the pth subregion, there are totally
three hidden layers designed for controlling the tradeoff between
the expressive capability and the overfitting risk of the whole
network. To be specific, the computation and update of the
feed-forward neural network is given by

hp
l = fa(W

p
l,l−1h

p
l−1 + bp

l ), l = 1, 2, 3 (15)

wherehp
l denotes the output of the lth hidden layer andhp

0 = Ŝp;
Wl,l−1 is the weight matrix between the (l − 1)th layer and the
lth layer; bp

l is the bias vector of the lth layer; and fa stands for
the rectified linear unit (ReLU) activation function given by [58]

fa(x) = ReLU(x) = max(0, x) =

{
x, for x ≥ 0

0, otherwise.
(16)

The adoption of the ReLU nonlinear activation function can
speed up the training process and enhance expressivity of the

DNN model for mapping the potential nonlinear mathematical
model. Then, in view of the output layer, the associated truth
value is set as

dpk =

{
1, when the scatterer exists in the position yk

0, otherwise
(17)

where 1 and 0 denote the probability that a scatterer exists in the
corresponding discrete grid point yk. In addition, the identity
function is introduced as the activation function for the output
layer. So far, the DNN structure has been completely established.

Relationship to the �1-norm minimization: In this article, we
attempt to analyze the relationship between the proposed DNN
structure and the �1-norm minimization for the purpose of the
interpretability of the DNN model. Generally, the resulting �1-
norm minimization model in (5) can be solved by the iterative
soft thresholding (IST) algorithm in which it is composed of the
following procedures:

γ̂l+ = γ̂l−1 −AH(Aγ̂l−1 − s) (18)

γ̂l = softλ(γ̂l+) = sign(γ̂l+)max(|γ̂l+| − λ, 0) (19)

where γ̂l denotes the recovery result of the lth iteration and
softλ(·) denotes the soft thresholding operation. Furthermore,
let Ul = I−AHA and bl = AHs, the iterative resulting ex-
pressions in (18) and (19) can be simplified as

γ̂l = softλ(Ulγ̂l−1 + bl). (20)

Apparently, the simplified resulting model is very similar to
the output computation of the lth layer of the DNN model given
in (15). The difference is that the ReLU activation function is
introduced for the DNN model and the soft thresholding function
is adopted in the IST algorithm. The same thing is that both
functions are nonlinear functions. Thus, it can be considered
that the lth layer update of the DNN model is similar to the lth
iteration of the IST algorithm to some extent. Furthermore, the
multiple iterations of the IST algorithm are replaced by the mul-
tiple connected layers of the DNN model. Importantly, it should
be noted that the number of neurons in each hidden layer of the
DNN model is usually large. In other words, the dimension of the
weight matrixWl,l−1 of the DNN model is much bigger than the
dimension of the weight matrix Ul of the IST algorithm, which
can enhance the expressive capability of the neural network.
Additionally, for the IST algorithm, the weight matrix Ul and
the bias vector bl are fixed and unchanged during each iteration.
In contrast, the weight matrix Wl,l−1 and the bias vector bl are
different in each hidden layer of the DNN model. Also, they can
be better optimized depending on the training data and further
get the best value. Hence, it can be believed that the recovery
performance of the DNN model is better than other CS-based
methods including the super-resolution ability, which will be
demonstrated in the following experimental analysis section.

In the training stage, in order to evaluate the performance
of the DNN regression model, the mean square error (MSE)
criterion is introduced as the loss function to judge the position
prediction accuracy

l =
1

K
‖dp − d̂p‖22 (21)
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where d̂p represents the output vector in the output layer of the
DNN regression model. It is conducive to the training of the
DNN model. The reason is that the gradient of the MSE-based
loss function can automatically change with different prediction
errors, which is a unique advantage not available for the mean
absolute error based loss function. Then, the back-propagation
strategy is utilized to optimize the representations of the DNN
structure. Specifically, the weight matrices and bias vectors are
updated and optimized based on the gradients of the loss function
with respect to these parameters as follows:

ξnew = ξold − η
∂l

∂ξ
(22)

where ξ denotes one of the parameters in the DNN structure;
η is the learning rate automatically determined by the adaptive
moment estimation (Adam) method [59]. Thus, the DNN re-
gression models can be optimized successfully and are capable
of dealing with the signal recovery problem of each subregion.

Finally, after obtaining all the prediction values in the output
layers of the three parallel DNN regression models with the
input vector Ŝp, the output of the whole DNN structure can be
determined by concatenating the output of each subregion in
order, that is

d̂ = [(d̂1)T , (d̂2)T , (d̂3)T ]T . (23)

Furthermore, the relative positions of the potential scatterers
can be identified corresponding to the grid nodes with positive
values approximately equating to 1 in d̂. Once the relative
position m is determined, the absolute position of the scatterer
is given by

yq = ρdmq, q = 1, 2, . . . , Q. (24)

Based on this fact, a much slimmer measurement matrix Â ∈
CN×Q is reconstructed and the final complex-valued reflectivity
vector γ̂ can be determined as follows:

γ̂ = (ÂHÂ)−1ÂHs. (25)

As a consequence, the accurate positions and complex-valued
scattering information of all the point-like strong scatterers are
determined based on the proposed advanced imaging method
with the DNN structure.

The abovementioned recapitulation illuminates the fact that
by decomposing the reconstruction range of the elevation direc-
tion into three subregions and exploiting the spatial prefiltering
based on the CS preliminarily recovered results, a group of
parallel and feasible DNN regression models are established for
the purpose of the sparse signal reconstruction. For the super-
resolution performance and computational complexity analysis
of the proposed method compared with other related methods,
it will be detailedly illustrated in the following section.

IV. EXPERIMENT AND RESULT ANALYSIS

In this section, extensive simulations for the MIMO array
SAR 3-D imaging are first presented to evaluate the performance
of the proposed method. Then, the airborne MIMO array SAR

TABLE I
PREDICTION ACCURACY FOR DIFFERENT DNN STRUCTURES

experiment is also conducted to demonstrate the advantages of
our approach.

A. Experiment Setup

According to the reconstructed echo signal model in (12),
the observed signal is related to three parameters; that is, the
scattering information γ, the additive noise ε, and the relative
position m. Thus, for the DNN-driven sparse reconstruction, the
training dataset can be obtained with the change of these three
parameters. First, for each subregion in the elevation direction,
different number of scatterers distributed in different discrete
grid points are considered. The space of the discrete grid points
is set to be 0.1ρe (ρe denotes the Rayleigh resolution in the
elevation direction). Then, once the locations of scatterers are
determined, the echo signals can be massively simulated with
randomly generated amplitude values between [−1, 1] with
250 samples and different levels of SNR uniformly distributed
between [0 dB, 20 dB] with 21 samples. In this article, a total
of 5 922 000 echo signal vectors are obtained to generate
the training dataset for each subregion, which is divided into
two parts with 80% for training and 20% for validation. In
the training phase, we have gradually increased the number
of layers of the DNN model and the corresponding prediction
accuracy on testing dataset is presented in Table I. As we can
see, with the increase of the number of layers from three to five,
the position prediction accuracy can be significantly improved.
Then, when the number of network layers continues to increase,
the prediction accuracy is slightly improved, which is negligi-
ble to some extent. Simultaneously, more layers of the DNN
structure will usually bring more time consumption for training
the DNN model. Thus, the DNN structure composed of five
layers is designed in this article, which is enough to guarantee
that the positions of scatterers in the elevation direction can be
accurately predicted in practical applications. Specifically, since
the number of antenna elements is 8 and the received signal is
decomposed into real and imaginary parts with normalization
for input, the dimensionality of the input layer is 16. There are a
total of three hidden layers, and the hidden nodes are 256, 512,
and 256, respectively. The number of neurons in the output layer
depends on the number of discrete grid points. In this article, for
the performance verification on real data, the elevation range is
uniformly decomposed into three subregions and the number of
neurons in the output layer for each DNN regression model is 47.
In addition, the Adam optimizer is used and the training process
is based on Keras [60]. Finally, we can obtain the pretrained
DNN model.

B. Performance Analysis of the Resolving Ability

Generally speaking, the high-resolution 2-D SAR image on
the azimuth-range plane can be satisfied by introducing larger
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TABLE II
MIMO ARRAY SAR 3-D IMAGING SYSTEM PARAMETERS

Fig. 4. 3-D distributed scene.

signal bandwidth and synthetic aperture. However, the resolving
ability in the elevation direction is usually unacceptable due
to the essential length limitation of linear array. Thus, the
performance analysis of the super-resolution capability with
different methods along the elevation direction is mainly con-
sidered here. Specifically, it is based on the BF method, the
�1-norm minimization method, and the proposed DNN-driven
imaging algorithm, respectively. The airborne MIMO array SAR
system parameters are listed in Table II. It is composed of
two transmitting antenna elements and eight receiving antenna
elements, which is equivalent to a fully distributed uniform linear
array with the number of 16 antenna elements working in the
self-transmitter and receiver model. In addition, the baseline
length is 1.4 m. The 3-D distributed scene of point scatterers is
shown in Fig. 4. In order to focus on the resolving ability in the
elevation direction, ten pairs of scatterers with different elevation
space changing from 0.2ρe to 2ρe are mainly investigated here.
The detailed coordinates of these scatterers are listed in Table III.
White Gaussian noise is added to the SAR 3-D imaging scene
and the SNR is set to be 10 dB.

Depending on the common BF method, the MIMO array
SAR 3-D imaging results are shown in Fig. 5. As can be
seen, the two scatterers with the elevation space smaller than
the Rayleigh resolution cannot be distinguished successfully.
It means that the BF method has no super-resolution ability.
Also, it always suffers from the high sidelobe interference as
illustrated in the corresponding azimuth-elevation and range-
elevation projection planes of Fig. 5. The SAR 3-D imaging
results based on the �1-norm minimization approach are also
shown in Fig. 5. One can observe from this figure that the

TABLE III
LOCATIONS OF ALL SCATTERERS

�1-norm minimization method can separate the two scatterers
with the interval slightly smaller than the Rayleigh resolution.
When the elevation space of q3 and q4 closes to 0.4ρe, there is
only one false scatterer existing in the reconstruction result. This
implies that the super-resolution performance of the �1-norm
minimization cannot be guaranteed any more in the case of the
distribution space of scatterers far smaller than the Rayleigh
resolution. Finally, the 3-D SAR imagery based on the proposed
DNN-driven super-resolution imaging algorithm is depicted in
the bottom of Fig. 5. The reconstruction result is in agreement
with the original 3-D distributed scene of scatterers. It can be
seen that the proposed algorithm is capable of distinguishing two
scatterers and locating their positions successfully even when the
interval is equivalent to one-fifth of the Rayleigh resolution. That
is, it presents the state-of-the-art super-resolution performance
compared with other related methods.

Additionally, for a more explicit demonstration of the resolv-
ing ability regarding the aforementioned reconstruction algo-
rithms, the azimuth-elevation plane 2-D imaging results and
the 1-D slices in the elevation direction corresponding to the
specific four scatterers q1, q2, q5, and q6 are shown in Fig. 6. It
can be seen that the paired scatterers are superimposed as a false
scatterer for the BF reconstruction. Considering the �1-norm
minimization algorithm, it can separate the two scatterers q5
and q6 with 0.6ρe interval. However, for the reconstruction of
q1 and q2 with 0.2ρe space, there is only one scatterer existing
in the recovered result. The main reason is that the interval of
two scatterers is too small such that the mutual coherence of
the corresponding steering vectors for the measurement matrix
is greatly increased. This implies that the sparse recovery result
is no longer reliable according to the CS theory. In contrast,
a quick sanity shows that the proposed approach can separate
the paired scatterers successfully and predict their locations
accurately. As a consequence, it can be preliminarily concluded
that the super-resolution ability of the proposed approach can
be improved significantly. This is attributed to the powerful
learning and mapping ability of the end-to-end DNN regression
model.
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Fig. 5. 3-D imaging results by the BF, the �1-norm minimization, and the proposed DNN-driven imaging algorithm from top to bottom, respectively. (a) 3-D
imaging view. (b) Range-height plane. (c) Azimuth-height plane. (d) Range-azimuth plane.

In order to further verify the super-resolution performance
of the proposed DNN-driven imaging algorithm, the separation
success rates of the specific scatterers with changing elevation
space versus different levels of SNR and sampling rate are
observed here. In this article, two scatterers with the same range
and azimuth positions distributed along the elevation direction
are mainly considered. Specifically, the elevation location of
the first one is fixed, and the second one is distributed from
0.1ρe to 2ρe referred to the first scatterer. The reconstruction
is considered successful if the location error is less than the
threshold, which is set to be 0.1ρe. Fig. 7 presents the separation
success rate of the related methods with different number of
antenna elements as a function of the normalized distance. And,
the SNR level is set to be 10 dB and the number of Monte
Carlo trials is 1000. An examination of this figure shows that the
reconstruction probability of the �1-norm minimization degrades
dramatically when the corresponding interval of two scatterers
is less than half of the Rayleigh resolution. In contrast, the
separation success rate of the proposed method is improved
significantly and slightly affected by the normalized distance.
It can be seen that the recovery probability can even reach 98%
with the specific 0.1ρe distance of two scatterers. Additionally,

the impact of different number of antenna elements on the sep-
aration success rate regarding the proposed method is relatively
slight. This is attributed to the adequate training dataset and
the powerful pretrained DNN regression model. The separation
success rate under different levels of SNR is depicted in Fig. 8. In
this circumstance, eight antenna elements are introduced with
1000 Monte Carlo trials. As we can see, the super-resolution
performance of the �1-norm minimization method cannot be
guaranteed any more especially in the case of lower SNR. For
the proposed DNN-driven imaging algorithm, it can be noted that
the separation success rate can slightly affected by different SNR
levels. Moreover, the recovery probability can also exceed 98%
even when the interval of two scatterers is equivalent to 0.1ρe
in the case of SNR = 3 dB and 8 antenna elements. Finally,
considering other deep learning-based sparse signal recovery
methods, as a representative, the modified deep convolutional
network (DCN) model designated as DeepInverse [37], which
first utilizes a fully connected layer to boost the dimensionality
of the input from RN to RK followed by convolutional lay-
ers without pooling, is also introduced here to investigate the
super-resolution performance. In the training stage, we gradually
increase the number of hidden layers and found that the best
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Fig. 6. Imaging results by the BF, the �1-norm minimization, and the proposed DNN-driven imaging algorithm from top to bottom, respectively. (a) 2-D imaging
results of q5 and q6. (b) 1-D slices of q5 and q6. (c) 2-D imaging results of q1 and q2. (d) 1-D slices of q1 and q2.

Fig. 7. Separation success rate as a function of normalized distance at
SNR = 10 dB under 1000 Monte Carlo trials.

performance can be achieved with the following specifications.
The input layer is fully connected with the first hidden layer to
boost the dimensionality from R16 to R47, which is equivalent
to the dimension of the recovered signal γ ∈ CK×1 (K = 47).
For the following convolutional layers without pooling, there are
4 layers in total and the number of filters is 256, 512, 256, and
64, respectively. The sizes of these filters are 47× 1. The output

Fig. 8. Separation success rate as a function of normalized distance at N = 8
under 1000 Monte Carlo trials.

layer has 1 filter with the size of 47× 1. Also, we found that
the super-resolution performance will degrade if the size of the
filter is reduced. The reason is that the input signal does not have
local correlation, and hence, the conventional local connections
and shared weights in the convolutional layers will weaken
the expressive power of the neural network to some extent.
Therefore, it is necessary to design the filter with a complete
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Fig. 9. RMSE of different algorithms with different SNR levels and antenna
elements.

receptive field for the input signal. Finally, the super-resolution
performance of the DeepInverse method versus different antenna
elements and SNR levels is also presented in Figs. 7 and 8,
respectively. As we can see, both of the proposed method and
DeepInverse approach can improve the super-resolution per-
formance significantly compared with the conventional sparse
reconstruction algorithms. In addition, it can be observed from
this figure that the super-resolution performance of the proposed
method is better than the DeepInverse approach when the spac-
ing of two scatterers is less than 0.8ρe, and the performance gap
reaches the maximum in the case of the specific 0.1ρe distance
between two scatterers. As mentioned above, the reason is that
the local connections and shared weights in the convolutional
layers weaken the expressive capability of the neural network
to a certain extent when compared with the dense layers. Thus,
in extreme cases, for example, the interval of two scatterers is
0.1ρe, the super-resolution performance of the proposed method
is better than that of the modified DCN model including Deep-
Inverse. In summary, it can be concluded that the proposed
DNN-driven imaging algorithm in the elevation direction can
reach the-state-of-art super-resolution performance than other
existing sparse recovery methods within the CS framework even
in the case of lower sampling rate and SNR levels.

C. Performance Analysis of the Location Accuracy

Considering the performance of location accuracy, the root
mean square error (RMSE) of the scatterers’ positions is in-
vestigated in Fig. 9. It is based on the proposed method and
the �1-norm minimization with different number of antenna
elements and different levels of SNR. For the �1-norm mini-
mization, the location estimation performance can be improved
significantly with higher SNR level and more antenna elements.
However, in the case of lower SNR level and few antenna
elements, the performance of location accuracy will degrade
drastically. In contrast, one can observe from this figure that
the location accuracy performance of the proposed DNN-driven
imaging method is much better than that of the �1-norm mini-
mization. The accurate location estimation performance can still
be well maintained with 8 antenna elements at SNR = 0 dB. In

Fig. 10. Optical image of the test site.

Fig. 11. 2-D SAR image.

brief, the location accuracy performance of the proposed method
can be improved significantly compared with the conventional
sparse recovery algorithms especially in the case of lower SNR
level or few antenna elements.

D. Performance Verification on MIMO Array SAR Real Data

In order to better verify the performance of the proposed
DNN-driven imaging algorithm, the MIMO array SAR sys-
tem, developed by the Institute of Electronics of the Chinese
Academy of Sciences, is utilized to collect the raw data of
the illuminated scene to validate our method. Meanwhile, as
a representative, the �1-norm minimization approach within the
framework of CS is also introduced for the latter performance
comparison. The optical image of the test site is shown in Fig. 10.
Correspondingly, Fig. 11 presents the 2-D SAR image of the
specific manmade structure as depicted by the red rectangle
in Fig. 10. In real scenario, some preliminary processing, e.g.,
multiple SAR images registration and phase calibration, are first
conducted on the 2-D SAR dataset. Additionally, the pixels of
the 2-D SAR image with stronger scattering amplitude, which
can well reflect the building structure, are assumed to be the
3-D reconstruction candidates. For the 3-D imaging results,
there are always some outliers existing in the elevation direction
due to the noise interference. Typically, the iterative reweighted
technique and model selection method can have the capability to
suppress the undesired outliers and locate the true scatterers. In
this article, unless otherwise stated, the model selection method
based on the Bayesian information criterion is considered the
default choice [61].
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Fig. 12. (a) and (b) Profiles of slice AA’ by �1 and the proposed method,
respectively. (c) and (d) Profiles of slice BB’ by �1 and the proposed method,
respectively. (e) and (f) profiles of slice CC’ by �1 and the proposed method,
respectively.

First, for the purpose of validating the performance of the
proposed method, the slices AA’, BB’, and CC’ (see Fig. 11) are
preliminarily reconstructed and depicted in Fig. 12, respectively.
It can be seen that the color of the scatterers is divided into
three types; that is, blue, cyan, and red. Specifically, single
scatterer located in the azimuth-range resolution cell belongs
to the blue point. In regard to the overlaid double scatterers,
they are represented by the paired cyan and red points. For
the retrieved profile of slice AA’, one can observe from the
figure that the reconstructed scatterers are well gathered at a
specific height, which denotes one floor of the building. In view
of slice BB’, besides the single scatterers distributed in a floor
of the building, an examination of this figure shows that there
are also paired double scatterers existed in the reconstruction
result. The reason is that the two scatterers located in the same
range cell are distributed in the facade and roof of the building
separately. With respect to the profile of slice CC’, a quick
sanity shows that the scatterers belonging to different floors
of the building are accurately identified. In addition, it can be
noted that some paired double scatterers with much smaller
interval marked by the red ellipse [see Fig. 12(d) and (f)] can
be successfully separated by the proposed DNN-driven imaging
method. In contrast, these paired scatterers cannot be detected
by the �1-norm minimization method [see Fig. 12(c) and (e)].

Thus, it can be concluded that the super-resolution performance
of the proposed method is better than other sparse reconstruction
algorithms.

The complete 3-D imaging results of the test site by the
proposed approach and the �1-norm minimization are shown in
Fig. 13, respectively. One can observe from this figure that the
potential scatterers distributed in different floors of the building
are clearly identified and well gathered at a certain height.
A quick sanity shows that most detected scatterers are single
scatterers, which mainly come from the facade of the building
and can well represent the outline and details of the structure.
In regard to the overlaid double scatterers, they are mainly
distributed in the top and bottom of the building, respectively.
The reason is that the echoes mainly come from the roof and
facade of the building for the higher parts. In view of the lower
parts, the paired scatterers are generated due to the staircase and
entrance existing in the front of the building. To be specific, for
the �1-norm minimization method, 9616 single scatterers and
1405 double scatterers are detected as depicted in the first row
of Fig. 13. In contrast, with respect to the proposed DNN-driven
imaging algorithm, 9635 single scatterers and 1536 double
scatterers are identified. It can be seen that the number of double
scatterers detected by the proposed method is bigger than that
of the conventional CS algorithm. This is mainly due to the
super-resolution capability of the proposed DNN-driven imag-
ing algorithm, which can separate two adjacent scatterers suc-
cessfully with space more smaller than the Rayleigh resolution.
In addition, some specific double scatterers marked by the red
ellipse in Fig. 13 are investigated to validate the super-resolution
performance. After quantitative analysis, it can be found that
the spacing of these paired scatterers is exactly equivalent to the
discrete grid spacing. Considering that the grid discrete factor α
is 0.1, this implies that the interval of the overlaid scatterers is
equal to one tenth of the Rayleigh resolution. This fact leads to
the super-resolution advantage of the proposed method. Thus,
it can be concluded that the super-resolution performance of
the proposed DNN-driven imaging algorithm can be improved
significantly.

As for the computational complexity, the computational time
of the proposed method against the �1-norm minimization
approach is mainly considered here. Considering the imag-
ing processing steps of �1-norm minimization, the compu-
tational consumption mainly focuses on the sparse recovery
and model selection. In regard to the proposed DNN-driven
imaging algorithm, the processing time is mainly spent on
preliminary sparse recovery with �1-norm minimization, DNN
training and prediction. Thus, the �1-norm minimization based
SAR 3-D imaging takes about 6 h. In contrast, the proposed
DNN-driven imaging algorithm only costs about 2.7 h. The
improvement mainly comes from two aspects. One reason is
that the preliminary recovery with the discrete factor α = 0.5
by the �1-norm minimization can save a lot of computational
time in comparison with the straightforward sparse recovery
by �1 with fine discrete grid points (α = 0.1). The other rea-
son is that the proposed parallel DNN regression models with
less training dataset and neurons in the multiple connected
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Fig. 13. 3-D imaging results by the �1-norm minimization and the proposed DNN-driven imaging algorithm from top to bottom, respectively. (a) Number of
scatterers in each pixel. Blue for single scatterers and red for double scatterers. (b) Heights for single scatterers. (c) Heights for lower paired scatterers. (d) Heights
for higher paired scatterers.

layers can greatly reduce the computational consumption. In
summary, the performance of our proposed algorithm regarding
the super-resolution capability and computational complexity
can be improved significantly compared with other existing
related methods.

V. CONCLUSION

In this article, an advanced super-resolution imaging frame-
work based on CS and DNN for MIMO array SAR is proposed.
First, in accordance with the preliminary recovery results by the
�1-norm minimization method, the spatial filtering is introduced
to retain scattering signals only impinging from the prespecified
spatial subregions. Based on this fact, a group of parallel end-
to-end fully connected DNN regression models are designed
for mapping the potential sparse recovery mathematical model
and further locating the true scatterers in the elevation direction.
Finally, numerical simulations and airborne MIMO array SAR
experiments are shown to demonstrate the state-of-the-art super-
resolution performance against other existing related methods.
As a comparison, the proposed algorithm is capable of separating
two scatterers with an interval of one-tenth of the Rayleigh
resolution. In addition, the performance of the proposed method
regarding the location accuracy and computational efficiency is
also better than other sparse recovery methods within the CS
framework.
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