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Hyperspectral Image Classification Based on Domain
Adaptation Broad Learning

Haoyu Wang, Xuesong Wang , Member, IEEE, C. L. Philip Chen , Fellow, IEEE,
and Yuhu Cheng , Member, IEEE

Abstract—Hyperspectral images (HSI) are widely applied in
numerous fields for their rich spatial and spectral information.
However, in these applications, we always face the situation that
the available labeled samples are limited or absent. Therefore, we
propose an HSI classification method based on domain adaptation
broad learning (DABL). First, according to the importance of
the marginal and conditional distributions, the maximum mean
discrepancy is used in mapped features to adapt these distribu-
tions between source and target domains. Meanwhile the manifold
regularization is added to maintain the manifold structure of the
input HSI data. Second, to further reduce the distribution differ-
ence and maintain manifold structure, the domain adaptation and
manifold regularization are added to the output layer of DABL.
Finally, the output weights can be easily calculated by the ridge
regression theory. Experimental results on three real HSI datasets
demonstrate the effectiveness of our proposed DABL.

Index Terms—Broad learning, classification, domain adaptation,
hyperspectral image (HSI).

I. INTRODUCTION

HYPERSPECTRAL images (HSIs) contain rich spectral
features and spatial information about surface objects on

the earth [1], which is widely applied to the fields of environmen-
tal monitoring, crop monitoring, mineral exploration, etc. [2].
These successful applications often greatly rely on appropriate
data processing approaches, such as target detection, physical or
chemical parameter retrieval, and classification [3]. HSI classi-
fication is the common task for data processing. Many methods
have been proposed to improve the classification accuracy of HSI
[4]–[7], such as extreme learning machine [1], support vector
machine (SVM) [8], [9], and neural network [10]. These su-
pervised classification methods often require a large number of
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labeled samples to obtain the satisfactory classification accuracy
[11]. However, it is expensive and difficult to collect the labeled
data on HSIs [12]. To address this concern, some machine learn-
ing methods have been proposed. For example, active learning
is a technique to train a classifier with a small quantity of labeled
samples, enabling the classifier to actively select representative
unlabeled samples [13]. Semisupervised learning is an effective
approach to utilize a large amount of unlabeled data with some
labeled samples for image classification [14]. Different from
directly reducing labeling costs and extracting information from
unlabeled samples, domain adaptation is a particular form of
transfer learning [15], utilizing the samples from related domain
(source domain) to solve problems for another domain (target
domain) [16],[17]. When there are insufficient samples in the
target domain, the same or similar labeled samples from the
source domain can be used. For example, Long et al. [18] pro-
posed a joint distribution adaptation (JDA) that can jointly adapt
both the marginal and conditional distributions. Chen et al. [19]
proposed to reduce the domain distribution difference between
the source and target domains using extreme learning machine
framework, named domain space transfer ELM (DST-ELM).
Ganin and Lempitsky [20] proposed a domain-adversarial neural
network (DANN) to select transferable features from different
domains by introducing the adversarial mechanism into deep
transfer network.

The domain adaptation technique was successfully applied to
HSI classification. Sun et al. [21] proposed to simultaneously
minimize the maximum mean discrepancy (MMD) [22],[23]
and the structural risk item of SVMs. Xia et al. [24] divided the
feature space of the source and target domains into several dis-
joint feature subspaces, and then exploited transfer component
analysis (TCA) to obtain integrated features of each subspace.
In [25], Sun et al. designed the transfer sparse subspace analysis
to learn some sparse subspaces across domains, thus the features
from both domains in the subspaces were aligned. Li et al. [26]
proposed to learn the best projection matrices for heterogeneous
domains in a sparse subspace, and then utilized the canonical
correlation analysislike regularization to design an appropriate
classifier. In recent years, deep domain adaptation has been
successfully applied to HSI classification and acquired high
classification accuracy. Riz et al. [27] trained a classifier with
the domain invariant features acquired by stacked denoising
autoencoders. Zhou and Prasad [28] extracted the discriminative
features for two domains with deep convolutional recurrent neu-
ral networks, and then the features were aligned with each other
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layer-by-layer in the common subspaces. However, these deep
network-based domain adaptation algorithms generally require
complicated structure and a time-consuming training process
[29].

Recently, Chen and Liu [30] first proposed a novel broad
learning system (BLS) based on random vector functional-link
neural network (RVFLNN) consisting of merely three parts:
mapped feature (MF), enhancement node (EN), and output layer.
The BLS has the following advantages.

1) BLS has a simple structure with only three parts.
2) The network weights of BLS are calculated with the

ridge regression. Deep learning methods utilize gradi-
ent descending, which requires more times of iterations.
Therefore, the training speed of BLS is efficient.

3) The MF mapped to EN achieves broad expansion and
feature enhancement, which makes BLS has a strong
function approximation capability.

Feng and Chen [31] combined the Takagi–Sugeno fuzzy
system with BLS, which achieved a satisfactory accuracy in
classification. Jin et al. [32] merged the manifold learning into
BLS to classify images. For the past few years, BLS has also been
well applied to HSI. Kong et al. [33] merged the class-probability
structure into BLS to obtain a semisupervised learning version,
which achieves a high accuracy in HSI classification. Kong
et al. [34] fine-tuned the weights of MF and EN with the graph-
regularized sparse autoencoder, which maintained the manifold
structure of original data. However, both the aforementioned
two HSI classification methods cannot help to improve the HSI
classification accuracy by utilizing vast quantities of labeled
samples in related domains. Moreover, if the classifier trained
with labeled samples from source domain is used to classify the
samples from target domain directly, the classification accuracy
will be low due to the distribution difference between the source
and target domains. Therefore, we propose an HSI classification
method based on domain adaptation broad learning (DABL). In
summary, the main contributions of our work are as follows.

1) We propose a DABL method by introducing transfer learn-
ing technology to the traditional BLS and apply it to HSI
classification. The DABL can realize the unsupervised
classification of target domain HSI by only using the
labeled HSI data from the source domain.

2) The distribution difference between the source and target
domains is adapted with MMD based on a distribution
importance parameter, where the importance of marginal
and conditional distributions is evaluated according to the
A-distance (A-d) between two domains.

3) Not only in the MF layer, but also in the output layer
of DABL, both the MMD and manifold regularization
are utilized. Thus, the distribution difference between the
source and target domains can be further reduced and the
manifold structure of HSI data can be well maintained.

The rest of this article is organized as follows. In Section II, re-
lated work, including BLS and MMD, is briefly introduced. De-
tails of the proposed DABL for HSI classification are presented
in Section III. Experiments results are reported in Section IV,
followed by a conclusion in Section V.

II. RELATED WORK

A. Broad Learning System

The BLS is a new type of flat network, which is designed based
on the idea of RVFLNN [30]. The structure of the BLS is showed
in Fig. 1, which can be viewed as a three-layer feedforward
neural network. The workflow of BLS can be illustrated as
follows. First, the original inputsX are mapped to feature nodes
via random weights. Suppose there are m groups of feature
nodes, the ith group MF is [30]

Zi = φ (XW ei + βei) , i = 1, . . . ,m (1)

where W ei and βei are the connecting weight and bias from
input to MF, φ(.) is the activation functions of MF. Then, the
MF is randomly mapped to EN for broad expansion and the jth
group EN is [30]

Hj = σ
(
ZnW hj + βhj

)
, j = 1, . . . , e (2)

where W hj and βhj are connecting weight and bias from MF
to EN, σ(.) is the activation function. Finally, both MF and EN
are connected to the output layer, and the network output is [30]

O = [Z|H ]WO (3)

whereWO = [Z|H]+O. The objective function of BLS is [30]

min
WO

‖O − Y ‖22 + δ
∥
∥WO

∥
∥2
2

(4)

where Y is the label of input X and δ is the regularization
parameter.

B. Maximum Mean Discrepancy

MMD is an effective nonparametric distance metric [22].
In the field of domain adaptation, MMD is generally used to
reduce the distribution difference between domains and learn
the domain invariant features. Suppose there are two probability
distributions s and t , H is the high-dimensional reproducing
kernel Hilbert space, and ϑ(.) is a nonlinear mapping function
in H , then MMD is defined as

Df (s, t) = sup
‖ϑ‖H≤1

‖EXs∼s[ϑ(Xs)]− EX t∼t[ϑ(X t)]‖2H (5)

where EXs∼s[.] is the mathematical expectation about distribu-
tion s , H is a set of functions defined with ‖ϑ‖ ≤ 1 as the unit
sphere. If and only if s = t , we have Df (s, t) = 0. Given ob-
servationsDs = {Xs(i)}Mi=1 andDt = {X t(j)}Nj=1 drawn inde-
pendently and identically distributed from s and t, respectively,
the empirical estimate of MMD is

Df (Ds, Dt) =

∥
∥
∥
∥
∥
∥

1

M

M∑

i=1

ϑ
(
Xs(i)

)− 1

N

N∑

j=1

ϑ
(
Xt(j)

)
∥
∥
∥
∥
∥
∥

2

H

.

(6)

III. HSI CLASSIFICATION BASED ON DABL

The flowchart of the proposed DABL for HSI classification
is shown in Fig. 2, which mainly contains five steps, which are
as follows.
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Fig. 1. Structure of BLS.

Fig. 2. Flowchart of DABL for HSI classification.

1) The maximum noise fraction (MNF) is applied to the
original HSI to remove noise and reduce dimensionality.

2) The target domain pseudolabels are obtained according
to the auxiliary classifier trained on the source domain,
based on which the distribution importance parameter can

be calculated by using A-d to measure the importance of
the marginal and conditional distributions.

3) The marginal and conditional distribution adaptation
terms are, respectively, constructed by MMD based on
the distribution importance parameter, which are together
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with the manifold regularization term to constrain the
stacked autoencoder (SAE). Thus, the domain-invariant
features of the source and target HSIs, i.e., source MFs and
target MFs, can be extracted with the domain adaptation
manifold SAE (DAM-SAE).

4) The source and target MFs are mapped to ENs with
randomly generated weights for broad expansion. Further-
more, the features in MF and EN from the source and
target domains are connected and fed to the output layer
of DABL.

5) According to the objective function of DABL with distri-
bution adaptation and manifold regularization, the output
layer weights can be calculated with the ridge regression
theory.

A. MNF-Based HSI Dimensionality Reduction

Different bands of HSI are usually highly correlated, espe-
cially for adjacent bands, and there is noise in the original HSI
[35]. Therefore, MNF is applied to the original HSI to reduce the
dimensionality and eliminate noise [36]. MNF can find a linear
transformation matrix WM by maximizing the signal-to-noise
ratio of HSI. WM can be calculated by

argmax
WM

WT
MCV WM

WT
MCNWM

= argmax
WM

WT
MCSWM

WT
MCNWM

− 1. (7)

Assuming S = V +N , where S, V , and N are original
data, uncorrelated signal, and noise matrix, respectively, we
get cov(S) = CS = CV +CN , where CS , CV , and CN are
covariance matrix of S, V , and N . WM are eigenvectors from
F largest eigenvalues of C−1

N CS , and F denotes the number of
MNF principal components. The dimension reduced X as the
input of the model is obtained as

X = WT
MS. (8)

Note that CS is obtained by calculating the covariance of the
samples and CN can be obtained by the minimum/maximum
autocorrelation factors method.

B. Domain-Invariant Feature Learning Based on DAM-SAE

In the network of original BLS, Chen and Liu [30] map the
input data with the weights fine-tuned by SAE to MF. The
connection weights from MF to EN are randomly generated.
However, neither random generation nor SAE fine-tuned can
reduce the distribution difference between training and testing
samples. Many domain adaptation methods map the data of
source domain and target domain to a subspace, and then reduce
the distribution difference by minimizing the MMD of the source
and target domain features in the subspace [37]. Therefore, based
on SAE, we reduce the marginal and conditional distribution
divergences between two domains by adding domain adaptation
regularization terms.

Suppose there are MNF-based HSI samples X = {x1,x2,
. . . ,xns+nt} ∈ R(ns+nt)×d, where Xs = {x1,x2, . . . ,xns} ∈
Rns×d and X t = {x1,x2, . . . ,xnt} ∈ Rnt×d are the samples
from source and target domains, ns and nt are numbers of source
samples and target samples, d is the dimension of samples. X is

mapped to MF by dM groups of weights Ai, then we can obtain

Zi = XAi (9)

where Zi ∈ R(ns+nt)×GM
is the ith group MFs and GM repre-

sents the feature dimension of each group. Similar to SAE, the
optimization equation here is

argmin
Ai

‖XAi −Zi‖22 + λ‖Ai‖1 (10)

where λ denotes the regularization parameter. To reduce the
distribution difference between the source and target domains,
simultaneously, we adapt both marginal and conditional distri-
butions between MFs of the two domains

argmin
Ai

‖XAi −Zi‖22 + λ‖Ai‖1 + θ1Df (Ps, Pt)

+ θ2

C∑

c=1

Df (Qs, Qt) (11)

where θ1 and θ2 represent parameters of marginal and con-
ditional distribution regularization terms, respectively. c ∈
{1, 2, 3, . . . , C} is the class index, and C is the number
of classes. Df (Ps, Pt) is used to align the marginal prob-
ability distribution of the source and target domains, and∑C

c=1Df (Qs, Qt) is used to align the conditional probability
distribution.

When a large difference exists between datasets, the marginal
probability distribution adaptation becomes important [38]. In
contrast, when the datasets are similar, the conditional proba-
bility distribution adaptation becomes important [28], [38]. By
borrowing the idea of dynamic distribution alignment [39], we
exploit the distribution importance parameter μ to measure the
importance of two distributions, and the entire domain adapta-
tion regularization term can be expressed as

Df = (1− μ)Df (Ps, Pt) + μ
C∑

c=1

Df (Qs, Qt). (12)

μ→ 0means the distribution distance between the source and
target domains is large. At this time, the marginal distribution
adaptation becomes important. When μ→ 1 means the distri-
bution distance between the source and target domains is small.
It is important to align each class, so the conditional distribution
adaptation becomes important. A-d can be used to measure the
similarity between two distributions [40]. A linear classifier is
built to distinguish the loss between two data, and the A-d can
be represented as

dA (Ds, Dt) = 2 (1− 2ε(h)) (13)

where ε(h) is the loss of the classifier. For the marginal prob-
ability distribution difference, we directly use (13) to calculate
the A-d dM between Ds and Dt. For the conditional distribu-
tion difference, we use k-nearest neighbor (KNN) algorithm to
train an auxiliary classifier with source samples. After that, the
auxiliary classifier is used to obtain the pseudolabel on target
domain. Finally, the A-d dc for the cth class can be calculated
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as dc = dA(D
(c)
s , D

(c)
t ). Thus, μ can be obtained by

μ ≈ 1− dM

dM +
∑C

c=1 dc
. (14)

Equation (11) can be transformed as

argmin
Ai

‖XAi −Zi‖22 + λ‖Ai‖1

+ α

[

(1− μ)Df (Ps, Pt) + μ
C∑

c=1

Df (Qs, Qt)

]

(15)

where α is the domain adaptation parameter.
However, mapping the input data to the MF only through SAE

ignores the intrinsic structure of the input data, such as manifold
structure. Therefore, to maintain the same manifold structure of
MF as the input data, a manifold regularization term is added
during input mapping to the MF. According to the manifold
assumption [41], if two data points xi and xj are close to each
other in the original data distribution, the MFs zi and zj should
also be close to each other. A manifold regularization term is
added to (15), thus we have

argmin
Ai

‖XAi −Zi‖22 + λ‖Ai‖1

+ α

[

(1− μ)Df (Ps, Pt) + μ
C∑

c=1

Df (Qs, Qt)

]

+ β

ns+nt∑

i=1

ns+nt∑

j=1

aij ‖zi − zj‖22 (16)

where β is the manifold regularization parameter, and
aij= exp(−‖xi − xj‖2/2ψ2). The Lagrangian expression of
(16) is

argmin
Ai

‖XAi −Zi‖22 + λ‖Ai‖1 + αtr
(
AT

i X
TMXi

)

+ βtr
(
ZT

i LZi

)
(17)

where the domain adaptation regularization term of (16) can be
represented as

(1− μ)Df (Ps, Pt) + μ
C∑

c=1

Df (Qs, Qt)

= tr(AT
i X

TMXAi) (18)

where the marginal distribution Df (Ps, Pt) is

Df (Ps, Pt)

=

∥
∥
∥
∥
∥
∥
∥
∥
∥

1

ns
[1 1 · · · 1]1×ns

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xns

⎤

⎥
⎥
⎥
⎦

ns×1

A

− 1

nt
[1 1 · · · 1]1×nt

⎡

⎢
⎢
⎢
⎣

x1
x2
...
xns

⎤

⎥
⎥
⎥
⎦

nt×1

A

∥
∥
∥
∥
∥
∥
∥
∥
∥

2

= tr

(
1

n2s
1XsA (1XsA)T − 1

nsnt
1XsA (1X tA)T

− 1

nsnt
1X tA (1XsA)T +

1

n2t
1X tA (1X tA)T

)

= tr

(
1

n2s
1XsAATXT

s 1
T − 1

nsnt
1XsAATXT

t 1
T

− 1

nsnt
1X tAATXT

s 1
T +

1

n2t
1X tAATXT

s 1
T

)

= tr

[
AT

(
1

n2s
XT

s 1
T1Xs − 1

nsnt
XT

t 1
T1Xs

− 1

nsnt
XT

s 1
T1X t − 1

n2t
XT

t 1
T1X t

)
A

]

= tr

(

AT
[
XT

s XT
t

]
[

1
n2

s
1T1 − 1

nsnt
1T1

− 1
nsnt

1T1 1
n2

t
1T1

] [
Xs

X t

]
A

)

= tr
(
ATXTM0XA

)
(19)

where M0 is

(M0)ij =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

n2s
, xi,xj ∈ Ds

1

n2t
, xi,xj ∈ Dt

− 1

nsnt
, otherwise

.

Similar to the marginal distribution (19), the conditional dis-
tribution can be rewritten as

Df (Qs, Qt) =

C∑

c=1

∥
∥
∥E
[
f
(
z(c)
s

)]
− E

[
f
(
z
(c)
t

)]∥∥
∥
2

H

= tr
(
ATXTM1XA

)
(20)

where M1 =
∑C

c=1 M c, M c can be rewritten as

(M c)ij=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

(ns)
2
c

, xi,xj ∈ D
(c)
s

1

(nt)
2
c

, xi,xj ∈ D
(c)
t

−1

(ns)c(nt)c
,

⎧
⎨

⎩

xi ∈ D
(c)
s ,xj ∈ D

(c)
t

xi ∈ D
(c)
t ,xj ∈ D

(c)
s

0, otherwise

.

Let M = (1− μ)M0 + μ
∑C

c=1 M c, then we
have (1− μ)Df (Ps, Pt) + μ

∑C
c=1Df (Qs, Qt) =

tr(AT
i X

TMXAi) where (ns)c is the number of cth class
source domain samples, and (nt)c is the number of cth class
target domain samples. The manifold regularization term in
(16) is

ns+nt∑

i=1

ns+nt∑

j=1

aij ‖zi − zj‖22 = tr
(
ZT

i LZi

)
(21)
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where L is the Laplace matrix that can be obtained by construct-
ing a KNN graph. L = D −W , where D is a diagonal degree
matrix and Dii =

∑ns+nt

j=1 W ij . W is a similarity matrix.
Equation (21) can be solved by the alternating direction method
of multipliers (ADMM) [40]. One-norm is the nonconvex func-
tion and an auxiliary variable O is introduced here. Thus, (16)
can be written as

argmin
Ai

‖XAi −Zi‖22 + λ‖O‖1

+ αtr
(
AT

i X
TMXAi

)
+ βtr

(
ZT

i LZi

)

s.t. Ai −O = 0. (22)

The Lagrangian expression of (16) is

J = argmin
Ai

‖XAi −Zi‖22 + λ‖O‖1

+ αtr
(
AT

i X
TMXAi

)
+ βtr

(
ZT

i LZi

)

+ ρωT (Ai −O) +
ρ

2
‖Ai −O‖22 (23)

where ρ > 0 is a constant. In the light of ADMM, Ai, O, and
ω are updated alternatively, updating one variable at a time and
fixing the other two variables.

1) Ai can be obtained by solving the following formula:

A
(k+1)
i = argmin

Ai

J (Ai,O,ω) . (24)

By calculating the derivative of J with respect to Ai and
setting it to zero, we can obtain

A
(k+1)
i =

XTZi + ρ
(
O(k) − ω(k)

)

XTX + ρI +XT (αM + βL)X
. (25)

2) O can be updated by

O(k+1) = Sλ/ρ

(
A

(k+1)
i + ω(k)

)
(26)

where Sk(.) is the soft threshold operation, and Sk(.) can be
calculated by

Sk (g) =

⎧
⎪⎪⎨

⎪⎪⎩

g − k, g > k

0, |g| ≤ k

g + k, g < −k
(27)

where k is the artificially defined threshold, such as 10−3.
3) The update formula ω is

ω(k+1) = ω(k) +
(
A

(k+1)
i −O(k+1)

)
. (28)

The aforementioned three steps are performed alternately un-
til convergence or reaching the predefined number of iterations,
and then the required Ai can be obtained. Then, Zi can be
calculated by

Zi = XAi. (29)

Features in MF from source domain and target domain can be
represented as Zs

i = XsAi and Z t
i = X tAi. MFs are mapped

to EN with randomly generated EN weights WE to achieve
broad expansion by

H = σ
(
ZWE

)
(30)

where Z =[Z1,Z2, . . . ,ZdM ], σ(.) is tansig function here, and
H ∈ R(ns+nt)×dE

are features of EN. dE is the number of nodes
in EN.

Features in EN from source domain and target domain can be
represented by H s = σ(ZsW

E) and H t = σ(Z tW
E). Zs and

H s are features in MF and EN from source domain. Z t and H t

are features in MF and EN from target domain.

C. HSI Classification Based on DABL

To further reduce the distribution difference between source
and target domains, and to maintain the manifold structure of
HSI, domain adaptation and manifold regularization terms are
added into the objective function. The objective function of
DABL can be expressed as

argmin
W

‖[Zs|H s]W − Y s‖22 + δ ‖W ‖22

+ η

[

(1− μ)DME
f (Ps, Pt) + μ

C∑

c=1

DME
f (Qs, Qt)

]

+ γ

ns+nt∑

i=1

ns+nt∑

j=1

bij
∥
∥yi − yj

∥
∥2
2

(31)

where DME
f (Ps, Pt) denotes the marginal distribution differ-

ence between source and target domains in MF and EN,∑C
c=1D

ME
f (Qs, Qt) represents the conditional distribution

difference between the two domains in MF and EN, and∑ns+nt

i=1

∑ns+nt
j=1 bij‖yi − yj‖22 is the manifold regularization

term.
Let U s = [Zs|H s], U t = [Z t|H t], and U = [Z|H ], the La-

grangian expression of (31) is

R = argmin
W

‖U sW − Y s‖22 + δ ‖W ‖22

+ ηtr
(
W TUTMUW

)
+ γ

(
W TUTLUW

)
(32)

where η is the domain adaptation parameter, and δ and γ are the
regularization parameters.

Similar to the calculation of A, the output layer weight W
can be obtained by

W =
UT

s Y s

UT
s U s + δI + ηUTMU + γUTLU

. (33)

The output of DABL can be obtained as

Y = UW. (34)

Furthermore, the target domain classification result Y t can be
calculated as

Y t = U tW . (35)

The steps of HSI classification based on DABL are summa-
rized as follows.
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Fig. 3. Pseudocolor image of HSI dataset. (a) Botswana. (b) Indian Pines. (c) Pavia City.

Algorithm 1: DABL.
Inputs: MNF-based HSI representation X , labeled

samples of source domain Y s, domain adaptation
parameter α, manifold regularization parameter β,
domain adaptation parameter η, manifold regularization
parameter γ, feature dimensions of each group GM, and
number of nodes in MF per group dM, number of nodes
in EN dE.

Step 1. Calculate the distribution importance parameter μ
according to (14).

Step 2. Calculate the weights Ai according to (22).
Step 3. Calculate features in MF and EN from source and

target domains Zs, Z t, H s, H t according to (29) and
(30).

Step 4. Calculate the output-layer weights W according
to (33).

Step 5. Calculate the prediction labels Y t according to
(35).

Outputs: Prediction labels Y t.

IV. EXPERIMENTS

A. HSI Datasets

To verify the validity and superiority of the proposed DABL,
three real HSI datasets, including Botswana, Indian Pines, and
Pavia City, are selected in our experiments.

Botswana dataset was acquired by researchers using the
NASA EO-1 sensor over the Okavango Delta, Botswana. It
consists of 256× 1476 pixels and 145 bands, including nine
classes. The pseudocolor image of Botswana dataset is shown
in Fig. 3(a), which is divided into two disjoint parts for domain

TABLE I
NUMBER OF SAMPLES IN SOURCE AND TARGET DOMAINS SELECTED FROM

BOTSWANA DATASET

adaptation with a red line. The region above the red line is con-
sidered as the source domain, and the region below the red line
is considered as the target domain [41]. The selected two parts
have similar land covers. For classification tasks, we selected
six classes from both domains, i.e., F-grasses1, F-grasses2,
Riparian, I-interior, A-woodlands, and A-shrublands, which are
listed in Table I.

Indian Pines dataset was acquired by the ROSIS-03 sensor
over the Indian Pines test site in North-Western Indiana, which
consists of 145× 145 pixels and 224 bands. The pseudocolor
image is shown in Fig. 3(b), the region in the red rectangle is
regarded as the source domain, which contains the lines from
5 to 85 and columns from 10 to 40, and the others are treated
as the target domain [29]. Both parts contain nine classes, i.e.,
Corn-notill, Corn-mintill, Corn, Grass-pasture, Grass-trees, S-
notill, S-mintill, S-clean, and B-G-T-Driver, which are listed in
Table II.

The third dataset is Pavia City. It was obtained by researchers
using the ROSIS-03 sensor over Pavia, northern Italy. It consists
of 1096× 1096 pixels and 102 bands, including nine classes.
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TABLE II
NUMBER OF SAMPLES IN SOURCE AND TARGET DOMAINS SELECTED FROM

INDIAN PINES DATASET

TABLE III
NUMBER OF SAMPLES IN SOURCE AND TARGET DOMAINS SELECTED FROM

PAVIA CITY DATASET

Because part of the data was discarded, the real dataset consists
of 1096× 715 pixels and 102 bands. The pseudocolor image is
shown in Fig. 3(c). The area in red rectangle, which contains
the lines from 1 to 60 and columns from 1 to 225, is regarded
as the source domain. The region in the yellow rectangle, which
contains the lines from 380 to 1096 and columns from 620 to
715, is treated as the target domain [41]. Both regions contain
five classed, i.e., Water, Tree, Asphalt, Bitumen, and Meadows.
The details are given in Table III.

B. Parameter Settings

According to the description of DABL, the adjustable param-
eters include: domain adaptation parameters α and η, regular-
ization parameters β, δ, λ, and γ , feature dimensions of each
group GM, number of nodes in MF per group dM, number of
nodes in EN dE, nearest neighbor parameter ψ, and ADMM
parameters ρ and k. For single-domain classification problems,
the whole dataset is generally divided into three sets: training
set, testing set, and validation set. Based on the validation set, the
cross-validation is commonly used to perform hyperparameter
selection [42], [43]. But for the cross-domain classification
problems, the source and target domains follow different dis-
tributions. Long et al. [18] stated that it is impossible to tune
the optimal hyperparameters using cross-validation. Therefore,
according to Long et al. [18], we use the empirically searching
method to set the hyperparameters. The value ranges of the
aforementioned parameters areα,η,β ∈ {0.01, 0.1, 1, 10, 100},
GM ∈ {5, 40, 75, 110, 145}, dM ∈ {5, 15, 25, 35, 45}, dE ∈
{250, 500, 750, 1000, 1250}, ψ ∈ {1, 3, 5, 7, 9}, λ, ρ ∈ {0.001,
0.01, 0.1, 1, 10}, δ ∈ {2−40, 2−30, 2−20, 2−10, 1}, and k ∈
{10−4, 10−3, 10−2, 10−1, 1}. Given γ = 0.01, the relationships

between these parameters and the overall accuracy (OA) are
shown in Figs. 4–9. Following can be observed from Figs. 4– 9.

1) On the one hand, small GM and dM indicate that the
dimension of features in MF is low. The input HSI data
cannot be adequately represented. On the other hand, large
GM may lead to feature redundancy in MF. Similarly,
if dE is too small, broad expansion cannot be achieved
sufficiently, whereas large dE and dM may lead to feature
redundancy in EN. Therefore, for Bostwana dataset, we
set GM = 110 and dM = 35. For Indian Pines dataset,
we set GM= 20 and dM= 23. For Pavia dataset, we set
GM = 130 and dM= 10. For the three datasets above, the
number of EN layer nodes is set to be dE = 1000.

2) Larger α and η means that the domain adaptation part of
the DABL plays a more important role, which is suitable
to the case where the source and target domains are quite
different. Choosing a suitable manifold regularization pa-
rameter β and γ can sufficiently represent the complex
manifold structure of HSI data. Therefore, for Bostwana
dataset, we set α = η = 0.1 and β = 10. For Indian Pines
dataset, we set α = η = 0.1 and β = 10. For Pavia City
dataset, we set α = η = 0.1 and β = 100.

3) On the one hand, small ψ may lead to misclassification.
On the other hand, large ψ may increase the amount of
calculation. Therefore, we set ψ = 3. Large λ may lead to
overfitting. On the contrary, small λ may result in under
fitting. Therefore, we set λ = 1. In addition, according
to the parameter settings of BLS and ADMM in [30] and
[31], respectively, we set δ = 2−30 , ρ = 1, and k = 10−3.

C. Comparative Experiments

To demonstrate the classification performance of the proposed
DABL, the following nine methods are selected for comparison.

1) Traditional classification method: SVM [8].
2) Transfer learning methods: TCA [44], JDA [18], DST-

ELM [19], and manifold embedded distribution alignment
[39].

3) Deep domain adaptation method: DANN [20].
4) Broad learning methods: DABL without manifold regu-

larization and domain adaption, i.e., BLS [30] and DABL
without manifold regularization (DABL1), and DABL
with the following hyperparameters (DABL2): GM =
110, dM= 20, dE = 1000, α = η = 0.1, β= 100, ψ = 3,
λ = 1, δ = 2−30, ρ = 1, and k = 10−3.

All methods were implemented in MATLAB 2017a on an
Intel i5-6500 CPU with 8-GB memory. To ensure fair compar-
ison, inputs of each aforementioned method were preprocessed
with MNF and the optimal parameters of seven methods were
selected with cross-validation. Each experiment was repeated
ten times to get the average value to reduce the effects of random
factors. Five evaluating indexes are considered: the per-class
accuracy, the average accuracy (AA), the overall accuracy (OA),
the Kappa coefficient, and the consumed time. The reported
consumed time here means the training and testing time of
classifier. OA is defined by the ratio between the number of
correctly classified pixels to the total number of pixels in the
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Fig. 4. Variation of OA over parameters GM and dM on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.

Fig. 5. Variation of OA over parameters α and η on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.

Fig. 6. Variation of OA over parameters β and dE on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.

Fig. 7. Variation of OA over parameters λ and ψ on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.
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Fig. 8. Variation of OA over parameters δ and ρ on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.

Fig. 9. Variation of OA over parameter k on different HSI datasets. (a) Botswana. (b) Indian Pines. (c) Pavia City.

TABLE IV
COMPARISON OF CLASSIFICATION PERFORMANCE ON BOTSWANA

The bold entities represent the optimal values of indexes.

testing set. AA refers to the average of accuracies in all classes,
and Kappa coefficient is the percentage of agreement corrected
by the number of agreements that would be expected purely by
chance. The classification results on three HSI datasets are listed
in Tables IV–VI.

Following can be observed from Tables IV–VI.
1) Among the three HSI datasets, all ten methods have the

lowest OAs and Kappa coefficients on Indian Pines. This
is due to the high similarity between classes in the Indian
Pines dataset. For instance, the corn-notill, corn-mintill,
and corn belong to the same class in essence. Because of
the similar spectral features between classes, there is a
high degree of mixture in the feature space distribution.

2) Compared with TCA, JDA can obtain higher OAs and
Kappa coefficients. The reason is that JDA further adapts
the conditional distributions between two domains, which
can enhance the model ability of discriminating target
data.

3) SVM and BLS are both nontransfer learning methods.
Compared with SVM, BLS not only has higher OAs and
Kappa coefficients, but also consumes shorter time. There
are mainly three reasons. First, the SAE is used to extract
the features of original HSI, so that better feature repre-
sentation of original HSI can be obtained. Second, BLS
can map MF with random weights to achieve nonlinear
broad expansion and feature enhancement, so that the
overall BLS has a strong function approximation ability.
Finally, the weights of MF to EN in BLS are generated
randomly instead of a complicated training process, and
the output layer weight can be easily obtained with the
ridge regression theory. Therefore, BLS is efficient.

4) It can be seen from Table VI that DANN obtains the
highest AA of 94.54%. The reason for this phenomenon
is because DANN classifies the minority classes better,
whereas DABL is better in the majority classes tree
and meadows. However, DABL achieves higher OA and
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TABLE V
COMPARISON OF CLASSIFICATION PERFORMANCE ON INDIAN PINE

The bold entities represent the optimal values of indexes.

TABLE VI
COMPARISON OF CLASSIFICATION PERFORMANCE ON PAVIA CITY

The bold entities represent the optimal values of indexes.

Kappa coefficient than DANN. It is known that for class-
imbalance classification problems, AA does not reflect the
performance of classifier very well, whereas OA is more
objective. Therefore, in the field of HSI classification,
compared with the per-class accuracy and AA, OA and
Kappa coefficient are more important indexes [45]. In
addition, the consumed time of DANN is 5459.11 s, which
is almost 380 times of DABL. Therefore, we can conclude
that DABL outperforms DANN.

5) DANN achieves the second high OAs and Kappa coef-
ficients on Indian Pines and Pavia City datasets, but it
consumes the longest time among the ten methods, which
is not suitable for the situation requiring high real time. In
addition, DANN achieves a low accuracy on the Botswana
dataset, which is caused by insufficient training samples.

6) BLS has achieved high classification accuracy on the
Indian Pines and Pavia City datasets, even surpassing
some transfer learning methods. The reason is that the
nonlinear mapping from MF to EN in BLS achieves the
broad expansion of MF and enhances the generalization
ability of BLS.

7) Among the ten methods, DABL obtains the highest OAs
and Kappa coefficients on all three HSI datasets. The main
reasons are discussed as following. First, DABL makes
full use of the strong function approximation capability
of BLS to achieve more accurate mapping from feature
space to class space. Second, by adding manifold regular-
ization and domain adaptation terms to SAE, the features
learned in MF not only maintain the manifold structure but
also enhance the domain invariance. Finally, the domain

adaptation regularization term is also added into the output
layer of DABL to achieve the classifier adaptation. How-
ever, it should be noted that the classification performance
of DABL is sensitive to the setting of hyperparameters.

V. CONCLUSION

An HSI classification method, named DABL, is proposed
in this article. First, to reduce the distribution difference and
maintain manifold structure, the proposed DABL adapts both
distributions between source and target domains and adds the
manifold regularization term. Then, by mapping the MF to EN
with randomly generated weights, the features achieve broad
expansion. Furthermore, by combining the domain adaptation
and manifold regularization terms in the objective function, we
further reduce the distribution difference and maintain manifold
structure. Finally, the objective function can be easily obtained
with the ridge regression theory. Experimental results on three
real HSI datasets demonstrate the proposed DABL can obtain
higher classification accuracy than several methods.
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