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A New Clustering-Based Framework to the Stem
Estimation and Growth Fitting of Street Trees
From Mobile Laser Scanning Data

Sheng Xu

Abstract—Estimating individual tree structures from 3-D space
may improve the biomass statistics of the urban forest and provide
tree-level information for ecological studies. The existing delin-
eation algorithms developed for 3-D point clouds have difficulty
in the tree mapping from nonvertical stems or overlapping crowns,
and may fail to detect incomplete or occluded branches. Besides,
those methods either focus on the individual tree segmentation or
crown delineation from the forest, which inadequately estimates
the growth fitting of urban street trees. The goal of this article is to
present a framework for estimating the growth fitting of street trees’
diameter at breast height and under branch height. Tree stems
are identified from the achieved street trees’ nonphotosynthetic
components, including main stems and branches, over different
urban trees from mobile laser scanning point clouds. To extract
nonphotosynthetic components, a clustering method is proposed to
group points from the same stem or branch. The proposed work
was validated in both wearable laser scanning data and vehicle
laser scanning data, and the experimental scenes contain a range
of roadside trees in different structures. In the identification of tree
stems, the achieved correctness and completeness are 94.5% and
92.5%, respectively. In the growth fitting, this article calculates
a Gaussian model, with the R-square up to 0.81, to describe the
growth fitting of Platanus acerifolia. Results show that the proposed
approach succeeds in offering applicability over varying street
tree types and the improvement for overlapping individual tree
information extraction.

Index Terms—Clustering, identification, measurement factor,
mobile laser scanning, tree structure.

I. INTRODUCTION

OR a variety of applications, from growth competition [1],
F to tree 3-D reconstruction and classification [2]-[4], to
biomass estimation [5], [6], and other urban ecological reasons,
it is necessary to develop an approach for estimating stem struc-
tures from 3-D space to quantify tree presence and distribution.
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The classical estimation of tree structure usually depends on
2-D imagery information [7], [8]. To quantify urban tree cover
at the street level, the relationship between neighboring images
along with street segments is modeled in urban environments,
and then, the amount of perceived tree cover is estimated. The
problem is that the tree stem and branch information are difficult
to collect. Nowadays, Light Detection And Ranging (LiDAR)
point clouds become mature in terms of the density, efficiency,
and cost-effectiveness of the data collection, which describes
3-D information of objects accurately and becomes popular in
organizing point clouds back into trees.

According to the scanner platforms, LiDAR technique can
be divided into terrestrial laser system (TLS), airborne laser
system (ALS), and mobile laser system (MLS) [9]. ALS is a
method based on LiDAR range measurements from an aircraft
and sensors to obtain the position of which is (x, y, z). The
ALS gives the georeferenced point cloud, from which it is
possible to calculate digital terrain models and digital surface
models corresponding to treetops for forest measurements. TLS
is based on LiDAR range measurements from a scanning system
mounted on a tripod, which is usually chosen for the individual
tree modeling [10]. MLS is relatively new, which is required
to be mounted on a piece of moving equipment, e.g., vehicles
(vehicle laser scanning, VLS) or simply human beings (wearable
laser scanning, WLS). Those LiDAR techniques have different
benefits and limitations in urban tree analysis. TLS collects
plentiful of the tree stem and branch information, but are highly
affected by understorey shrubs and the user has to set a plot for
street trees in every 8—10 m. ALS deals with a city-scale of the
point cloud collection efficiently, but has visibility problems in
the collection of tree stems caused by canopy closure. To balance
the collection efficiency and the tree side information adequacy,
this article chooses MLS for the data collection, including WLS
and VLS. WLS is flexible to obtain the region of interest (ROI)
points, e.g., the back of trees and tree base. VLS is feasible to
obtain most tree side information at a speed of 30 km/h.

The target of this article is to provide a new framework for
estimating the growth fitting of street trees. Contributions are in
threefold, which are as follows.

1) Estimating the growth fitting of street trees to provide an

example for validating the fitting of the tree structure.

2) Mapping the nonphotosynthetic components of street trees

from WLS and VLS data, and show the comparison of
mapping results between them.

For more information, see https://creativecommons.org/licenses/by/4.0/
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3) Developing a new clustering method for mobile laser
scanning data to group points from the same stem.

II. RELATED WORK

Currently, there have been a lot of schemes provided for the
analysis of tree structure and parameters from different forest
ecosystems. Several related studies on point cloud processing
for estimating tree structures are as follows.

Inthe segmentation of tree stems, the target is to achieve points
from the lowest point of an individual tree to its first branch.
Lehtomaki et al. [11] proposed a method based on the segmen-
tation and clustering of scanning lines to extract stems from VLS
data. Their detection accuracy depends on the prior knowledge
of stems, such as tree height, position, and number, which is
easily affected by the crown density. Arachchige [12] designed
a 3-D operator based on the direction and geometry information
of trunks to measure similarity of points. This method does not
need the prior knowledge of trees and can be applied to different
trunks. However, their region growing process of tree trunks
cannot be applied to incomplete stem points. Liang et al. [13]
proposed a stem extraction method based on a 3-D cylindrical
model. Their method is suitable for extracting vertically stand
trunks, which means tree stem points are most likely from a
vertical planar structure, and is easily affected by point cloud
density. Xia et al. [14] proposed an extraction method based on
multiscale geometric features from TLS data, which does not
need any model fitting process. Their stem points are identified
with a classification process based on geometric features, such
as shape and size. Zhong et al. [ 15] proposed a canopy segmenta-
tion method to split the overlapping regions of trees. Their stem
detection and the overlapping region segmentation is achieved
by a complex parameter setting process.

In the segmentation of individual trees, the target is to achieve
an independent trunk, branch, and crown for providing tree
attributes, such as position, number of trees, and tree height.
Pu et al. [16] present a knowledge-based feature recognition
method for structure recognition from point clouds. Based on a
series collection of characteristics of point cloud segments, such
as size, shape, orientation, and topological relationships, the
objects on the ground are assigned to more detailed classes, such
as traffic signs, trees, building walls, and barriers. Li et al. [17]
proposed a region growing method from top to bottom to extract
targets, which assigns neighborhood points near the top of the
tree to the selected tree vertices by setting thresholds. Since
nonstems have been removed by a coarse classification process,
two components of each individual tree, i.e., a trunk and a crown,
can be extracted by their method. However, for low-level points,
it is difficult to segment overlapping trees by setting a single
threshold. Vega et al. [18] proposed a segmentation method by
selecting the best neighborhood range at the tree vertex with
frequent human interaction. To improve the effectiveness of the
tree crown delineation, Hu e al. [19] developed a framework
to split tree crowns based on a canopy height model, including
the determination of dominant crown sizes, the generation of
initial tree segments, and the refinement of the nontree segments
by splitting and merging operations. Although their method
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obtains a large-scale tree crowns effectively, results from ALS
data contain little trunk information. Chen et al. [20] present
a feasible workflow for urban tree inventory from MLS data,
including the crown diameter, diameter at breast height (DBH),
and tree height. Their algorithm first extracts individual tree
clusters and then estimates geometric parameters for tree species
classification. The potential issue is that uneven point density in
the MLS data may result in problems for their segmentation
algorithm based on Euclidean distances between nearest points.

In the segmentation of nonphotosynthetic components of
trees, the target includes the main trunk and branches, which
is important to study the growth of urban forest. Raumonen
et al. [21] proposed a tree trunk and branch modeling method
from TLS based on the cylinder fitting. By building the cylin-
der model of trees, the branch structure of the whole tree is
approximately obtained from the model. Similarly, Hackenberg
et al. [22] proposed a method to extract cylindrical fitting points
from TLS data. Their model takes high scanning quality data
as input, describes the branch structure of the tree, and detects
branches with diameter less than 1 cm. The limitation lies in
the part with low density, where the cylinder fitting accuracy
will inevitably decrease. Since point clouds are unorganized, Wu
etal. [23] present a voxel-based neighborhood searching method
for identifying street trees. The disadvantage is that its voxel-
based segmentation method often divides the nonphotosynthetic
components of the same tree into several trees in a complex
mixed forest, i.e., oversegmentation. Tao et al. [24] adopted
a density-based spatial clustering of applications with noise
(DBSCAN) for trunk segmentation. Their nonphotosynthetic
components of trees are distributed point by point according
to the distance only. Fan et al. [25] present an automatic algo-
rithm to localize and extract urban trees from their formulated
supervoxels. Geometry information of the object are calculated
within the supervoxel, including pole features and trunk features.
Palm trees from MLS data are extracted effectively by setting
thresholds based on the shape and distance information. The
problem with Tao et al. [24] and Fan et al. [25] is that they need
to accurately locate the position of the trunk, which depends on
the density of the points and the shape of the trunk.

In the modeling of 3-D trees, the target is to build tree
stems and branches from 3-D space. Livny et al. [26] present
an approach that reconstructs skeletal structures of trees to
capture full geometry information. They develop a series of
global optimizations to fit skeletal structures for noisy point data.
Although their approach has the ability to reconstruct multiple
overlapping trees simultaneously, it fails to reconstruct skeletal
structures over large regions of missing data. Zhang et al. [27]
developed a data-driven technique to model trees from TLS data.
They propose a multilayer representation of the tree structure
and develop a cylinder algorithm to construct visible branches
point cloud data. The limitation is that it is difficult to deal with
distorted and wired branches by a single angle adjustment. In
order to address the modeling issue of incomplete TLS data,
Wang et al. [28] proposed a method based on a structure-aware
global optimization approach to obtain the approximate tree
skeleton. The key to their methods lies in the definition of a
distance minimum spanning tree and the stretching directions of
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Fig. 1. Flowchart of the proposed growth fitting approach.

the branches on the tree skeleton. Based on stretching directions,
they recover missing data from the incomplete point cloud. The
limitation is that users need to build a directed graph to deal
with the potential ring structure caused by the overlapping of
tree branches. Later, Wang et al. [29] used a local structure
and direction-aware approach to complete missing structures of
trees. They build a local tree structure to describe tree structures
and geometrical relationship among branches and use the in-
formation of dominant direction and point density to recover
the missing data. Although their method is less sensitive to
incomplete and noisy data, the performance of tree modeling on
large-scale scenes with equally high quality is difficult. Besides,
their accuracy also depends on the plant growth parameters and
those higher elevation branches are easy to be synthesized with
low quality when tree branch directions are various.

Currently, the existing algorithms had difficulty in the distin-
guishment of nonvertical tree stems and the split of overlapping
branches from point clouds. Limitations of the existing algo-
rithms lie in the following.

1) Algorithms have weak robustness, limited application sce-

narios, and cannot be applied in complex scenarios.

2) Algorithms cannot deal with the problem of data incom-
pleteness and occlusion.

3) Algorithms require the complex parameter adjustment
process, such as tree position, number, height, and crown
shape.

It is difficult to find optimal parameters, so results are prone
to appear undersegmentation or oversegmentation. This limits
the application of laser scanning data in urban forest resource
management, especially in the statistics of street trees.

Motivated by the fact that the point density and direction
between nonphotosynthetic components and tree leaves are quite
different, researchers have developed lots of region growing
methods to extract trunks. For example, Xu et al. [30] proposed
a hierarchical clustering method to extract nonphotosynthetic
components from urban scenes. To address potential issues in
the clustering [31], e.g., the slow convergence rate and easily
dropping in local minima, the combination of nonphotosyn-
thetic component points is globally optimized by a Hopfield
neural network at a high computation complexity. To reduce
the optimization complexity and address disadvantages in the
existing clustering methods, e.g., highly depends on the tuning of
parameters and the initialization of centers, this article presents
a new clustering method to group stem and branch points. After
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we obtain the nonphotosynthetic components of street trees, we
provide a scheme for the analysis of structural parameters of
roadside trees from urban environments, which is promising in
the urban forest management.

III. ESTIMATION OF THE GROWTH FITTING

This section aims to present an approach for estimating
the structure parameters of the urban forest and providing the
growth fitting of street trees’ nonphotosynthetic components.
The flowchart of this work is shown in Fig. 1. The input urban
street scene is collected by MLS containing buildings, urban
forests, roads, vehicles, etc. There are four main stages, namely
the point filtering, clustering, stem identification and refinement,
and growth fitting. Details of those stages will be discussed in
the following sections one by one.

A. Points Filtering Stage

This stage is the preprocessing step of the proposed frame-
work, which refines and prunes data to improve the accuracy
and efficiency. The first part is the data denoising to remove
outliers based on the statistical information of the point Eu-
clidean distance. A point is considered to be an outlier if the
average Euclidean distance (s to its k-nearest neighbors is above
a user-defined threshold. The setting of the threshold is based
on the standard deviation o of distance. In our work, points fall
out of &= o will be regarded as outliers. The second part is the
extraction of the ROIs to reduce the scale of input points. The
input scene is fixed as urban streets and the target lies in the
region of street trees. Therefore, we prefer to remove ground
points and building facades based on the plane fitting before the
extraction process. This is solved by the existing method [32],
which uses an agglomerative hierarchical clustering to group
nodes and fit planes.

In our test, the denoising step can remove 3%—5% points from
the input MLS point clouds, which depends on the scanner,
traffic condition, and types of street trees. Although there are
small planes in the preprocessed data, we can distinguish trees
from planes in the stem identification stage easily.

B. Clustering Stage

This section aims to provide a new clustering method to
address disadvantages in the existing point cloud clustering and
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region growing process. The key idea is to regard each point as
a cluster center at the beginning of the clustering stage, and then
update coordinates of cluster centers iteratively based on the
local density and direction of points. If two centers are spatially
close, these two centers will be merged. Finally the number and
coordinates of centers are converged and stable, which means
all centers of clusters are found. There is no need to input the
number of clusters and the challenge is to update the coordinate
of centers. Detail steps of the proposed clustering are shown as
follows.

1) Choose an unlabeled point at (z, y, z) from input data and
let the coordinate of the current center as L; = (z, vy, 2).

2) Calculate the sum of distances between neighbors p; and
the current center as V; = X H(p;, L;, h) - L;, where h
will indicate the region of neighbor points.

3) Update the coordinate as L; = L; + V; by moving the
current point along the vector V.

4) Tterate the aforementioned steps 1)-3), until the achieved
'V, is vanished, i.e., the number and coordinate of centers
are converged.

5) Assign points of input to the converged centers based on
Euclidean distance information.

In step 2), the function H (p;, L;, h) is to weigh the distance
of neighbors to the current center. In K-means approach, the
weight of each point to its center is the same. However, the
contribution of each point should take the density and plane
direction of neighbors into consideration. Besides, the kernel
function H (p;, L;, h) is required to be nonnegative, nonincreas-
ing, and piecewise continuous. Therefore, we formulate the
required function as the following Gaussian kernel:

cos<pi,Li>e,% 0
V2rh

where h is the user-defined bandwidth to set the region of
neighbors. A large h will set a wide range of neighbors but with
a small weight for neighbors. A small /& causes a narrow range
of neighbors, but with a large weight of points that are spatially
close to the center. cos < p;, L; > measures the difference of
the normal vector direction at the neighbor point p; and L;. The
normal vector at a point is approximated as the normal to the
surface estimated by its neighbors.

The proposed clustering is an iterative process. The first step
is to initialize each point as a center. Then, translate the current
center to a denser region. Start from the new center to continue

H(pia Li7 h) =

Iteration of the clustering approach. (a) Update of the center point. (b) Achieved three centers.

the iteration until centers are converged, as shown in Fig. 2(a). Fi-
nally, spatially close centers will be merged into one unit. Points
of the same center are grouped into the same cluster, as shown in
Fig. 2(b). Similar to the K -means approach, we are also required
to update center points. The difference lies in the fourfold.
1) The number of clusters is automatically decided in the
proposed clustering.
2) Our weight for the distance from neighbors to centers is
more suitable for point clouds.
3) The proposed clustering can deal with any shapes of
clusters, e.g., convex or nonconvex clusters.
4) Compared with DBSCAN method, there is only one con-
stant parameter A to be set in the algorithm, which makes
the setting of parameters easier.

C. Stem Identification and Refinement Stage

This stage aims to merge branch and stem points of the
nonphotosynthetic components from the same tree. The first
part is the branch growing. At the beginning of the growing
process, each center is regarded as one branch. Branches that
are spatially close and sharing the same direction are grouped
into one unit. For a center L1, the merging branch approach first
finds its neighbors, i.e., Ly, L3, ..., Lg. Then, the algorithm
calculates the Euclidean distance and elevation distance between
Ly and L, which is denoted by D(pi,p,) and E(p1,pn),
n=2,3,4,...,k, respectively. Then, the algorithm calculates
the value of % and find the max value at L ;. Merge points
that choose L; and L; as their centers into the same branch.
Repeat this step, until all centers are traveled.

The second part is the detection of main stems to find the
candidate roots of trees based on elevation filtering. If the lowest
point of abranch is less than 1 m, this branch will be regarded as a
candidate root. We assign the aforementioned grouped branches
to their spatially close roots.

The third part is to remove false trees based on the following
simple rules.

1) Tree Height: If the height of the extracted nonphotosyn-
thetic component is low, e.g., less than 2 m, this component
will be marked as false positive (FP). This rule is to remove
polelike objects with a low elevation, e.g., traffic signs or
statues.

2) Tree Points: If the number of points from the extracted
nonphotosynthetic component is small, e.g., less than 100
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Fig. 3. Calculation of DBH and UBH based on the extracted nonphotosyn-
thetic components.

points, this component will be marked as FP. This rule is
to remove tree ghosts result from registration error and
small shrubs.

3) Tree Distribution: The distinguish between trees and other
polelike objects is based on the points distribution in the
vertical direction. We calculate the vertical kurtosis [15]
for the mapped nonphotosynthetic components to remove
FP components. If the kurtosis of a nonphotosynthetic
component falls in pg — 1.5 and py + 1.50%, it will
be regarded as a valid component. p; and J; are the
mean and standard deviation of the kurtosis of all ex-
tracted nonphotosynthetic components. This rule is to
remove polelike objects at a high elevation, e.g., traffic
lamps.

D. Growth Fitting Stage

There are two key growing parameters of street trees, i.e., the
DBH and under branch height (UBH). The DBH is a standard
and the most common parameter of measuring tree dimensions
apart from tree height. It can be applied to monitor the growth
of trees and compare the dimensions of different trees. For-
mally, DBH refers to the diameter of a tree trunk measured
at breast level, which is a convenient way of measurement.
The UBH is used to measure the height to first branch. The
calculation of DBH and UBH observed in the study fields is
based on the cylinder fitting for each achieved individual tree
nonphotosynthetic component, as shown in Fig. 3. In point
cloud processing, one can solve the cylinder fitting based on
the random sample consensus (RANSAC) method [33] directly.
The RANSAC method extracts shapes by randomly drawing
minimal sets from the input data and constructing corresponding
shape primitives. The radius and height of the fitted cylinder is
regarded as DBH and UBH, respectively.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Scene and Dataset

This section shows the performances of the proposed method
on MLS point clouds, including WLS and VLS dataset. Ex-
periments are in twofold. The first is the results of the stem
identification from MLS data and the second is the validation
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and growth fitting of DBH and UBH. Before the evaluation, we
give a brief description of the input scenes and scanner.

The first dataset is collected by us using a WLS system. The
WLS device used to perform the study was the ZEB-REVO mo-
bile laser scanner commercialized by GeoSLAM.! The batteries
and the data storage and processing units are located in a small
backpack. The system acquires 3-D information of the input
urban scene effectively. The range of the scanner is from 0.6 to
30 m, the scanner weight is 850 g, the scanner point frequency is
43 000 points/s, the relative accuracy is 1-3 cm, and the raw data
file size is 100 MB/min. The experimental scene is located in
Huangpu Road, Nanjing, China, at the geolocation of (118.81E,
32.04 N), the length of the road is 643 m, and the collection date
in July 30, 2019. The WLS dataset contains 118 individual trees
and 151 430 412 points, as shown Fig. 4. Fig. 4(a) demonstrates
the top imagery view of the input scene. Fig. 4(b) demonstrates
the 3-D point clouds of the input scene. The red trajectory
shows how to walk around trees with the scanner to get enough
view and, hence, point clouds of sufficient point densities. The
registration of the collected WLS point clouds is achieved by the
algorithm integrated by GeoSLAM. In order to improve the reg-
istration accuracy, we conduct the data collection for every 150 m
along the road. Therefore, the input scene is present as four plots.
Fig. 4(c) shows the point cloud of an individual street tree from
this urban scene. The top one is the point collection of the tree
and the bottom is the manually segmented nonphotosynthetic
component.

The second dataset is chosen from an open benchmark located
in Paris collected by a vehicle laser scanning system in January
2013. The imagery and a point cloud of the test scene are shown
in Fig. 5(a) and (b), respectively. The red trace in Fig. 5(a) is the
simulated trajectory based on the density from VLS data. The
size of the test data is 173 m by 352 m containing 49 512 718
points and 187 individual trees. Detail description of the data
collection is shown in [34]. Fig. 5(c) shows the a point cloud of an
individual street tree (left-hand side) and its nonphotosynthetic
component (right-hand side).

B. Results of the Stem Identification

Our stem identification results of WLS are shown in Fig. 6.
Each stem is visualized by a unique color. We achieve 118/118
individual trees from input data. If 80% points of a stem is
identified, this stem is regarded as extract correctly. The stem
identification results from VLS data are shown in Fig. 7. Dif-
ferent from data collected by WLS, the density of points is less.
Besides, the distance between the sensor and trees are various
from 3-30 m. Fig. 7 is the results of all stems from the VLS data.
We succeed in achieving 154/182 individual trees stems input
data. As shown in Fig. 7, from the plot 1-6, we identify 19/21,
19/19, 12/12, 13/13, 10/15, and 10/12 stems. We distinguish
trees and polelike objects in plot 1, but miss the incomplete
stems. Plots 5 and 6 demonstrate a very complex scene contain-
ing different types and height of trees. The achieved stem is very
thin. Different types and height of trees are overlapped with each

1Online. [Available]: http://geoslam.com/hardware-products/zeb-revo/
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Fig. 4.

(©)

Description of the input scene collected by the wearable laser system. (a) Imagery of the test scene @Baidu 2020 map data. (b) Point cloud of the test

scene for the plots 1-4. The red line is the trajectory. (c) Illustration of an individual street tree (top) and its nonphotosynthetic component obtained by manual

(bottom) from WLS data.

Fig. 5.

Description of the input scene collected by the vehicle laser system. (a) Imagery of the test scene @Google 2020 map data (48°51°01.3”N, 2°19°57.9”E).

The red line is the manually generated vehicle trajectory based on the point density. (b) Point cloud of the test scene. (c) Illustration of an individual street tree
(left-hand side) and its nonphotosynthetic component obtained by manual (right-hand side) from VLS data.

Fig. 6.

other, which makes the stem identification extremely difficult.
In our results of VLS data, if street trees are close to the vehicle
LiDAR sensor (<10 m), trunks and branches of a tree will be
completely extracted. However, if trees are far from the sensor
(>30 m), extraction results may only contain the main stem and
branches of a tree due to the sparsity of tree points. WLS enables
users to flexible obtain the side information of a large-scale
trees efficiently; therefore, there is little data incompleteness and
occlusion in the stem identification from WLS data. However, as
shown in the region 5 of Fig. 7, the incomplete and occluded trees
appear in VLS data. In this case, if tree trunks contain dominant

Achieved stems under the branch. (a)—(d) Results of the plots 1-4 corresponding to Fig. 4.

direction information, the proposed clustering can track the main
trunk to group points together, as shown in the region 6 of Fig. 7.

C. Evaluation of Identification Results

In order to evaluate the extraction, the result of a point is
divided into true positive (TP), false negative (FN), and FP.
TP means that a stem point is extracted correctly from the
input scene. FN means that a stem point is wrongly detected
as the background point. FP means that a background point
is wrongly recognized as a stem point. The ground truth of
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Fig. 7.

nonphotosynthetic components for the reference is obtained
manually from the input scene. We segment the stem of each
individual tree attentively through the point cloud visualization
tool CloudCompare > manually. The following aims to compare
and discuss the performance of the stem identification and other
methods. For the evaluation, we calculate the correctness 7,
completeness p, and F-score f as

TP ™o 2 x TP
T = = = .
TP+’ T TP+ EN'Y ~ 2x TP+ FP 1 FN

The correctness measures the ratio of correctly detected stems
in results, and the completeness measures the percentage of cor-
rectly extracted stems in the reference. F'-score is the harmonic
mean of correctness and completeness.

In order to demonstrate the identification accuracy of the
proposed method, we show the comparison with the other re-
lated methods, including [11]-[17], [19], [20], [23]-[25], [28],
and [30]. Since the extraction of roadside trees from MLS adopts
the same methods used for extraction roadside light-poles or
polelike objects, especially for deciduous trees in winter, we
choose two more learning-based polelike object detection meth-
ods in the comparison, i.e., Guan ef al. [35] and Wu et al. [36].
Table I lists the description of datasets and test scenes in the
aforementioned segmentation methods. The scanner shows the
collection system. Density D is calculated by the number of
points per square meter close to road surface. The environment
shows the region of data collection, including the urban, residen-
tial, forest, etc. The ToO means the type of objects, including

©))

2QOnline. [Available]: http://www.danielgm.net/cc/

Achieved stems under the branch. (1)—(6) Close views of the region 1-6 corresponding to Fig. 5.

multiple street trees (MST), homogeneous street trees (HST),
multiple forest trees (MFT), homogeneous forest trees (HFT),
and polelike object (PO). The NoO means the number of objects.
The DoC means the date of collection. The Target means the
segmentation results. Some of methods are tested in different
plots as denoted by # 1, 2, 3..., as shown in Table I. Quantitative
results of the aforementioned methods are shown in Table II.
Our achieved average correctness, completeness, and F'-score
on two datasets are 94.5%, 92.5%, and 0.94, respectively.

In the comparison, although the accuracy of Arachchige [12],
Liet al. [17], Wu et al. [23], Tao et al. [24], and Fan et al. [25]
seem better than ours, the number and type of trees in their
experimental scene are less than ours, as shown in Figs. 6 and 7.
Compared with the polelike object extraction, the proposed
method is more accurate than Guan et al. [35]. Although our
accuracy is lower than Wu et al. [36], we do not need to build
training samples, i.e., 3303 samples in Wu et al. [36].

The aforementioned extraction was done on a Windows 10
Home 64-bit, Intel Core i17-4790 3.6-GHz processor with 16 GB
of RAM and computations were carried on MATLAB R2019b.
Be aware that it is difficult to run the aforementioned methods on
our dataset due to the fact that accuracy depends on the parameter
setting. We give the detail description of their experimental
scenes and provide the evaluation results for users to choose
methods based on their applications.

D. Evaluation of the Growth Fitting Results

The ground truth of stems’ DBH and UBH from WLS is
achieved by using a tape measure in the experimental plot. For
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TABLE I
DESCRIPTION OF DATASETS IN DIFFERENT METHODS

Methods Dataset Test Scene
Scanner D(points/m2)  Environment ToO NoO DoC Target
Lehtomaki et al. [11] MLS NULL suburan NULL 79 NULL trunk
[16] MLS #1 NULL urban MST 33 12/2018 stem & crown
Puetal. MLS#2 NULL urban MST 84 06/2009 stem & crown
L 123] MLS#1 212 residential HST 72 03/2012 stem & crown
Wuet ai. MLS#2 224 residential HST 68 12/2012 stem & crown
Hetti et al. [12] MLS NULL urban MST 42 NULL stem
Liang et al. [13] MLS NULL forest MFT 80 NULL stem
Xia et al. [14] TLS 1000 forest HFT 166 11/2013 stem
TLS#1 NULL garden MST 14 02,09/2014 stem & crown
Tao et al. [24] TLS#2 NULL forest HFT 51 12/2014 stem & crown
TLS#3 NULL forest HFT 49 01/2015 stem & crown
. (7] MLS#1 123 urban MST 66 NULL stem & crown
Lietal MLS#2 306 urban MST 29 NULL stem & crown
et al. [15] TLS 2821 university MST 157 01/2015 nonphotosynthetic
Zhong et at. MLS 222 urban MST 519 06/2011 nonphotosynthetic
Wu et al. [25] MLS NULL urban HST 311 NULL stem & crown
Xu et al.[30] MLS 700 urban MST 182 01/2013 nonphotosynthetic
Hu et al. [19] ALS NULL forest MFT NULL 08/2009 tree crown
Chen et al. [20] MLS >9000 urban MST 163 Various stem & crown
Wang et al. [28] TLS NULL urban MST 22 NULL stem & crown
Guan et al. [35] MLS NULL urban PO 888 NULL lightpole & traffic signpost
Wu et al. [36] MLS NULL urban PO NULL NULL lightpole
Proposed MLS#1 1000 urban HST 118 07/2019 stem
) MLS#2 700 urban MST 182 01/2013 stem
TABLE II

COMPARISON RESULTS OF THE AFOREMENTIONED METHODS

Evaluation Lehtomaki et al. [11] Puet al. [16] Wu et al. [23] Hettief al. [12] Lianger al. [13] Xiaet al. [14]
MLS MLS#1 MLS#2 Avg. MLS#1 MLS#2 Avg. MLS MLS TLS
(%) 86.5 84.6 85.7 85.2 100 100 100 97.5 / 93.0
p(%) 83.5 63.5 29.5 46.5 100 98.5 99.3 92.5 87.5 88.0
f 0.85 0.73 0.44 0.59 1.00 0.99 1.00 0.95 / 0.90
Evaluation Tao et al. [24] Liet al.[17] Zhong et al.[15]
TLS#1 TLS#2 TLS#3 Avg. MLS#1 MLS#2 Avg. TLS MLS Avg.
(%) 100 100 92.0 97.3 98.4 97.4 97.9 92.4 94.0 93.2
p(%) 100 100 100 100 98.2 96.8 97.5 95.4 93.7 94.6
f 1.00 1.00 0.96 0.99 0.98 0.97 0.98 0.94 0.94 0.94
Evaluation Wu et al. [25] Xuet al. [30] Huet al.[19] Guan [35] Wu et al.[36] Proposed
MLS MLS ALS MLS MLS MLS#1  MLS#2 Avg.
(%) 89.0 98.9 73.0 88.9 99.4 96.2 92.7 94.5
p(%) 86.2 94.0 88.0 88.9 97.9 94.6 90.4 92.5
f 0.88 0.96 0.80 0.89 0.98 0.95 0.92 0.94

each plot from 1 to 4, we measure the DBH and UBH of trees
randomly for several times and use the average DBH and UBH
as the ground truth for the fitting. In the analysis of the mapping
error, we choose the root-mean-squared error (RMSE) and the
coefficient of determination R-squares (0—1) as defined in (3)
and (4), respectively

. 1 n , 2
RMSE = \/n Zi:l (G — Gy)

> (G- G)
ZZL:I (Gi - é)
where G, is the estimated results, G; is the ground truth, and

G is the mean value of the ground truth. The fitting function
between DBH and UBH is a linear function as

3)

R—square =

“)

®)

The evaluation figure is shown in Fig. 8, including the fitting
function and residuals. In the evaluation of DBH, our RMSE is

f(x) =p1-2+pa.

9.46 cm and R-square is 0.58 (with 95% confidence bounds), the
achieved p; is 0.70 and p- is 18.13. In the evaluation of UBH, the
RMSE is 36.75 cm and R-square is 0.46 (with 95% confidence
bounds), the achieved p; is 0.64 and ps is 84.62.

As mentioned in Section III-D, the calculation of DBH and
UBH s based on the cylinder fitting. In our test, if the inlier points
in RANSAC are more than 60% of input nonphotosynthetic
components, we can achieve the DBH and UBH accurately. For
the DBH and UBH comparison, although our achieved R-square
might be lower than TLS-based method, for example, compared
with Wang et al. [28], the number of trees between ours and
Wang et al. [28] is 118 versus 22. In the method of Chen
et al. [20], their MLS-based method achieves the R-square of
0.60 on 183 trees, which is more accurate than ours in terms
of DBH calculation. However, consider the relative standard
deviation calculated by the ratio of RMSE and the average
DBH, our result is better than theirs, i.e., 0.11 versus 0.14. This
is because we balance the dominate direction information and
Euclidean distance in the clustering.
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The following is about the growth level validation. We test
three commonly growth models, including the exponential,
power, and polynomial model, when the degree of variable x
ranges from 1 to 3. In all cases, the R-square is less than 0.10,
which means the existing fitting model is not reliable for our
street trees, i.e., Platanus acerifolia in our experimental scene.
Then, we choose the Gaussian function defined as (6) to fit the
relationship between DBH and UBH. The fitting figure is shown
in Fig. 9(a). The degree is up to 3, the R-square is 0.408, and
RMSE is 36.98. Since the chosen degree is 3, we have to discuss
the adjusted R-squared, which is a modified version of R-squared
that has been adjusted for the number of predictors in the model.
It decreases when a predictor improves the model by less than
expected by chance. The adjusted R-square is 0.25, which shows
the fitting result seems to be promising but still low
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We infer that there are might be errors in data, e.g., sys-
tem error, random error, or gross error. Therefore, we remove
10% outliers from the Gaussian model and obtain the fitting
figure in Fig. 9(b). The achieved R-square is 0.51, adjusted
R-squareis 0.36, and RMSE is 37.34. If we remove 20% outliers,
the achieved R-square is 0.81, adjusted R-square is 0.74, and
RMSE is 19.50, as shown in Fig. 9(c). This can be regarded as
an effective growth fitting for trees. The obtained coefficients
with 95% confidence interval are a; = 107.5, by = —0.1734,
Cc1 — 0.3798, a9 = 305.7, b2 = —4.63, Cy = 5.71, az = 161.3,
b3 = 1.105, and ¢3 = 0.738.

Based on fitting results in Fig. 9(c), the R-square is high but
the fitting curve is not nondecreasing. This is a huge difference
between urban trees and forest trees. In forest trees, the height
of a tree with a large DBH is higher than a tree with a small
DBH. This means that it is difficult to calculate the Platanus
acerifolia growth model using methods for the forest trees. A
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large DBH may have a low UBH in street trees. This is because
Platanus acerifolia is pruned by human beings for the purpose
of improving the landscape. 80% of Platanus acerifolia with the
DBH and UBH of 60-80 cm and 200-300 cm, respectively, for
the purpose of a large view and collision-free. Besides, although
we know trees are transplanted to Huangpu road in 1929, some
of them may die from pests. Therefore, trees that are replanted
will turn to be “outliers” to our fitting model. Since street trees
are important to green cities, our results can provide a better
scheme for the city planning.

In the growth fitting evaluation from VLS, we cannot measure
the DBH and UBH by using a tape measure in the experimental
plot. The fitting demonstration figure is shown in Fig. 10. We do
not have the ground truth, therefore, we can only show the growth
fitting based on the estimated DBH and UBH. In the growth level
validation, we test the commonly used growth model, including
the exponential, power, or polynomial model, when the degree
of variable x grows from 1 to 3. In all cases, the R-square is less
than 0.2, which means we cannot obtain a valid growth fitting
based on the VLS data. This is because the completeness of
stems identification from VLS is highly depends on its density.
Besides, stems are easy to be occluded by other trees, which will
incur an incorrect UBH.

V. CONCLUSION

This study constitutes a practical application of street tree
growth fitting using mobile laser scanning data. The result
includes the identification of urban trees and the growth fitting
of stem structures, which shows that mobile LiDAR data can be
used to measure the DBH and the UBH of urban trees. The
average RMSE of the achieved DBH and UBH is 9.46 and
36.75 cm, respectively. The growth fitting based on the mapped
DBH and UBH is formulated by a Gaussian model effectively.
The average R-square and RMSE of the growth fitting are up
to 0.81 and 19.5 cm, respectively, which indicates that WLS
can be used to urban forest mapping and growth fitting in urban
environments.

Research shows the increment and growth trend estimation of
street trees is quite different from the forest, which can be built
by a linear or polynomial model effectively. This is because the

3249

street trees, such as Platanus acerifolia in our test, have been
pruned by the municipality. It could be expected that improving
MLS technologies, increasing density of laser scanning points
and data availability will result in improving the accuracy of ur-
ban forest growth estimation and biomass calculation. Besides,
urban forest management will increasingly rely on 3-D laser
scanning data; hence, further considerable research is required to
cluster and recognize tree points from 3-D point clouds. Ongoing
research is to validate the achieved growth model for street trees
in different years and locations. Future research is also necessary
to determine whether the experiment can be applied to other
street trees in nearby cities.
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