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Abstract—The availability of high-resolution satellite imagery
has enabled several new applications such as identification of brick
kilns for the elimination of modern-day slavery. This requires
automated analysis of approximately 1 551 997 km2 area within
the “Brick-Kiln-Belt” of South Asia. Although modern machine
learning techniques have achieved high accuracy for a wide vari-
ety of applications, problems involving large-scale analysis using
high-resolution satellite imagery requires both accuracy as well
as computational efficiency. We propose a coarse-to-fine strategy
consisting of an inexpensive classifier and a detector, which work
in tandem to achieve high accuracy at low computational cost.
More specifically, we propose a two-stage gated neural network
architecture called Kiln-Net. At the first stage, imagery is classified
using the ResNet-152 model which filters out over 99% of irrelevant
data. At the second stage, a YOLOv3-based object detector is ap-
plied to find the precise location of each brick kiln in the candidate
regions. The dataset, named Asia14, consisting of 14 000 Digital
Globe RGB images and 14 categories is also developed to train the
proposed kiln-net architecture. Our proposed network architecture
is evaluated on approximately 3,300 km2 region (337 723 image
patches) from 14 different cities in five different countries of South
Asia. It outperforms state-of-the-art methods employed for the
recognition of brick kilns and achieved an accuracy of 99.96% and
average F1 score of 0.91. To the best of our knowledge, it is also
20 x faster than existing methods.

Index Terms—Brick Kiln, ResNet-152, sustainable development
goals, you only look once (YOLO).

I. INTRODUCTION

ACCORDING to the global slavery index of 2019, 40.3
million people across the globe are trapped in forced

labor [1]. An estimated 24.3 million of these are within the
so-called “Brick-Kiln-Belt” of South Asia comprising an area
of approximately 1 551 997 km2 between Afghanistan, Pakistan,
India, Bangladesh, and Nepal (see Figs. 1 and 2). Keeping in
view the UN’s sustainable development goal (SDG) 8.7, which
specifically aims to address forced labor, mapping brick kilns in
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South Asia is an essential first step toward eliminating modern-
day slavery in the region. However, the progress toward this
goal is hampered by persistent lack of data. Whatever little data
are available it is not only spatially sparse, but also infrequently
collected primarily due to the high cost associated with manual
surveys.

As a means to map brick kilns in a region of interest (ROI),
a promising alternate to manual surveys is automated detec-
tion using satellite imagery. This has become possible due to
recent advancements in machine learning, particularly deep
convolutional neural networks [2], as well as public availabil-
ity of high-resolution satellite imagery. These advancements
have paved the way for automated analysis in a large number
of applications such as object detection [3], classification [4],
and image segmentation [5]). These techniques, in turn, have
enabled large-scale automated spatial surveys for a wide variety
of problems including, but not limited to, poverty estimation [6],
crop yield estimation [7], and damage assessment due to natural
and man-made disasters [8].

The problem of mapping brick kilns in limited regions of the
“Brick-Kiln-Belt” of South Asia has been addressed in the past,
albeit to a limited extent, using both low-resolution [10] and
high-resolution satellite imagery [13]. Some of these solutions
are based on manual surveys [13] in which a crowd-sourced
methodology is utilized for manually annotating brick kilns
in remote satellite imagery. On the other hand, while deep
convolutional neural networks (CNN) have enormous potential
for detection of objects in satellite imagery, their use requires a
significant amount of training data, which is nonexistent for most
of the cities in the ROI. The existing solutions for automatically
detecting brick kilns (such as those based on faster R-CNN [9]
or normalized difference vegetation index (NDVI) [10]) are
limited in their spatial coverage (see Table I) due to lack of
annotated data. In addition, these methods lack scalability which
is essential for the large-scale problem at hand.

To develop an efficient and a scalable solution for automated
surveying of brick kilns, we propose Kiln-Net: a gated neural
network-based strategy that can efficiently detect and map brick
kilns in a given ROI using satellite imagery. Most existing object
detection techniques [3], [4], [20] perform simultaneous classi-
fication and localization and are thus computationally infeasible
for application to high-resolution satellite imagery. It is to avoid
this that Kiln-Net relies on a gated structure which decouples
classification and localization. This results in a coarse-to-fine
search in which fine-grained localization via object detection is
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Fig. 1. Geographical distribution of brick kilns in “Brick-Kiln-Belt” of South
Asia [14]–[19].

Fig. 2. Total production of bricks (in billions) in South Asia. (Base map
courtesy ArcGIS).

performed as a second stage only on less than 10% of the total
region. This results in a 3.8× improvement in speed in addition
to improvement in accuracy. We tested our algorithms on all five
countries within the region of 1 551 997 km2 without retraining
and showed that it is scalable as well as generalizable to varying
structural, environmental, weather, and terrain conditions. The
issue of scarcity of data is addressed by building a novel satellite
image dataset that comprises images from the South Asian
region for 14 different categories including 14 000 annotations
for brick kilns. Consequently, with the help of Kiln-Net, we were
able to generate an annotated dataset identifying and mapping
brick kilns across a large swathe of the South Asian Brick-Kiln-
Belt—a dataset that we believe will be extremely beneficial for
future researchers. This dataset is available via.1

The remainder of this article is organized as follows. In
Section II, we provide a survey of related work while Sec-
tion III provides an overview of the challenges associated with

1Online. [Available]: https://cvlab.lums.edu.pk/kiln-net/.

automated detection of brick kilns using satellite imagery. This is
followed by Section IV, which describes the proposed method
based on neural networks, whereas results and evaluation are
provided in Section V. Section VI conclude the article and also
provides potential avenues for future research.

II. RELATED WORK

Due to recent advancements and availability of computational
power, recent years have seen an ever-increasing utilization
of deep neural network architectures [21], which surpass the
performance of shallow architectures [22]. Deep neural net-
works learn manifold stages of representation and abstractions
of high-dimensional data enabling one to train machine learning
models without using hand-crafted features and with minimal
preprocessing. In addition, the use of convolutional layers in
these architectures, especially for image data, has given rise to
what are called CNNs [23]. CNNs help in reducing the compu-
tational complexity as well as enabling the network to take into
account the spatial context of imaging data. The great potential
of artificial intelligence and remote sensing toward social science
research and development purposes has been noted by many [2],
[13], [24], [25]. Indeed, neural network-based machine learning
algorithms mimicking brain-like behavior are among the most
successful in solving such problems [2].

One area that has taken advantage of the power of such neural
network-based machine learning methods is poverty studies. For
instance, machine learning has been used to identify poverty
stricken populations and their geographic location through the
analysis of high-resolution satellite images [26]. The work is
based on the premise that night-time luminosity is strongly cor-
related with economic activity and development. Using satellite
images, such efforts compare daytime and night-time images of
a specified location (e.g., a country or a continent) to identify
which factors are associated with greater night lighting e.g.,
paved road networks. Classification of proposals for predicting
socio-economic indicators along with their methods are summa-
rized in Table I.

Landuse classification of satellite imagery into known classes
such as road, houses, vegetation, etc. particularly using high-
resolution imagery is another area that has greatly benefited
from the power of CNNs [27]–[32] and residual neural networks
(RNNs) [33]. Among these architectures, RNNs [34] based ap-
proach [33] have been shown to produce favorable results for the
problem of landuse classification. Similarly, Mask-R-CNN [4]
is another such algorithm that is used to classify each pixel of
satellite imagery into known classes thus obtaining an exact
boundary of the object of interest in the given satellite image.
Likewise, 3-D residual network [35] has been proposed for
spatio-temporal analysis of remote sensing data. On the other
hand, discriminative CNNs (D-CNNs) [36] have been devel-
oped to boost the performance of scene classification in remote
sensing images by using different loss functions. It allows to
map same-scene images closer to each other and different-scene
images further apart.

The state-of-the-art object detection networks have been
playing an important role in the field of remote sensing for

https://cvlab.lums.edu.pk/kiln-net/
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TABLE I
CLASSIFICATIONS OF PROPOSALS FOR PREDICTING SOCIO-ECONOMIC INDICATORS

quite a while and can ensure state security, construction, port
management, cargo transportation, maritime rescue, and ship
detection [37]–[41]. Similarly, [36] has proposed cloud detection
from optical satellite imagery.

Recently, remote sensing images have also been used to
analyze the extent of modern slavery [9], [10], [13], [42]. The
“Slavery from Space” project [13] proposed a crowd-sourced
procedure to manually detect brick kilns from satellite imagery.
They randomly sampled the potential kiln areas into 320 cells
of 100 km2 each. However, they were only able to manu-
ally annotate 30 geographic cells (i.e., only 2% of the entire
Brick-Kiln-Belt). As a result, the manual crowd-sourced method
lacks scalability as is evident from the resulting annotated maps
that are extremely sparse. On the other hand, low-resolution
multispectral satellite data have also been used to classify brick
kilns in the region surrounding the Delhi state in India [10]. The
analysis in this work was based on low NDVI, which unfortu-
nately is prone to generate a large number of false detections.
In contrast, high-resolution satellite imagery has also been used
to detect brick kilns to the east of Jaipur, which is the capital
city of India’s, Rajasthan state [9]. This work used faster R-
CNNs to automate the process of brick kiln identification in the
given tile of images. However, owing to the large computational
complexity, this approach is difficult to apply at a large scale.
Moreover, it yields a very high false-positive rate for which
they proposed to train a two-staged R-CNN classifier to achieve
acceptable performance which further increased the processing
time.

In this article, we propose a novel gated neural network-based
method (Kiln-Net) that is composed of a classifier followed by
an object detector. The first stage corresponds to an inexpensive
classifier that attempts to identify brick kilns albeit with a high
false positive rate. This is followed by an object detector that
operate only on the images positively identified by the classifier.
From among this subset, the object detector localizes detected
brick kilns resulting in a coarse-to-fine strategy. It is due to this
that our approach, in contrast to existing works, is scalable while
at the same time effectively identifying brick kilns in the South
Asia region with an accuracy of 99.96% and average F1 score
of 0.91.

III. CHALLENGES AND SOLUTIONS

Brick Kilns are typically identifiable through a visual in-
spection of satellite imagery. However, while considering a
large geographic area, several inherent complexities in satellite
imagery make automated detection of brick kilns a challenging
task. This include, but are not limited to, first, variations in
imaging sensors, second, differences in kilns’ structure across

Fig. 3. Example satellite imagery from the same spatial location at different
times showing (Row 1) sensor variations, (Row 2) sensor and environmental
variations and dynamic surroundings. (Satellite images courtesy Google Earth).

the countries, third, dynamic kilns’ surroundings, and finally,
variations in luminosity, seasonal changes, and pollution levels,
etc. We discuss these challenges in detail in the following
sections.

A. Sensor Variations

Satellite imagery is obtained through various active or pas-
sive remote sensors2 installed on satellites. Well-known satel-
lites include GeoEye’s GeoEye-1, DigitalGlobe’s WorldView-
2, WorldView-3, QuickBird, Pleiades, RapidEye, and EROS.
Sensor variations across the imaging devices on these satellites
result in the same locations being captured differently over
time as shown in Fig. 3. When spatial analysis is spread across
multiple countries, these sensor variations manifest themselves
as huge differences in the quality, resolution, and color profile
of the imagery. To handle this challenge, we tried to incorporate
the sensor variations by diversifying the training data across
spatial locations. For the most part, our training data comprises
annotated images from the Indo–Pak region. For example, the
top image shown in Fig. 4(a) is from Punjab, Pakistan while the
bottom two belong to New Delhi, India.

B. Structural Variations

Commonly used kilns in South Asia are continuous kilns
(sometimes called tunnel kilns). Such kilns include the tradi-
tional fixed chimney Bull’s trench kiln, Hoffmann kiln, and
natural draught zig-zag kiln [43]. These kilns may significantly

2Online. [Available]: https://earthdata.nasa.gov/learn/remote-sensors

https://earthdata.nasa.gov/learn/remote-sensors
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Fig. 4. Example satellite imagery of brick kilns from different spatial locations
showing variation in quality, structure and color profile. (a) Sensor variations,
(b) Structural variations. (c) Environmental variations. (d) Dynamic surround-
ings. (Satellite images courtesy Google Earth).

vary in structure and shape and are found to be of oval, circu-
lar, and rectangular shapes, respectively. These variations are
illustrated in Fig. 4(b) in which the top image is of a traditional
fixed chimney Bull’s trench kiln from Pakistan. On the other
hand, the middle image in Fig. 4(b) (row 2) is from Indian
regions; it is circular in shape and is mostly likely a Hoffmann
kiln. Finally, the bottom image of Fig. 4(b) shows a natural
draught zig-zag kiln from India. These variations are usually
enforced by geographical locations, environmental conditions,
manufacturing technologies, building material, and local build-
ing regulatory authorities. These variations impose an obvious
challenge for any machine learning approach which must learn
a generic set of visual features for each type of kilns. Although,
we used all shapes of kilns in our training dataset, our training
set is dominated by oval-shaped kilns as they are the most
commonly used. This may result in an unavoidable intraclass
data imbalance.

C. Environmental Variations

Satellite images are prone to atmospheric variations including
but not limited to cloud cover, pollution, variation in luminosity,
and seasonal changes in the environment for which the imagery
has been acquired. These variations contribute to confusion in
the classifier. An obvious effect of these changes is illustrated
in Fig. 4(c). More specifically, the three images in the figure
correspond to different luminosity levels, most likely indicating
different times of the day when the images were captured. Given
that the object detector, we utilize in Kiln-Net you only look once
(YOLOv3 [3]) is known to be robust to changes in luminosity
and other parameters, we expect our method to perform well
even in the face of these variations.

D. Dynamic Surroundings

Brick kiln sites can have different features in their imme-
diate surroundings. Examples include fields, barren lands, and

houses. These variations are illustrated in Fig. 4(d), which show
images from Pakistan (top), Bangladesh (middle), and Nepal
(bottom). One can observe these are surrounded by barren
land, houses, and orchards, respectively. Previous literature [9],
[10] attempted to solve the kiln/non-kiln problem as a binary
classification. However, these variations in kilns’ surrounding
pose a significant challenge for binary classifiers resulting in
deteriorated performance. To deal with these issues, we used
a 14-class classification strategy so that nonkiln classes can
be filtered out more effectively. We derive the list of these 14
classes from a manual observation in the Indo–Pak region. For
the given images in this area, we note that the brick kiln sites are
surrounded by one of these 14 classes: brick kilns, houses, roads,
tennis courts, farms, grass, sparse forest, dense forest, parking
lots, parks, ponds, tanks, mosques, and barren lands. Based
on our experimental results, we were able to verify that this
multiclass classification is better able to cater to the challenge
of dynamic surroundings as compared to binary classification,
thus justifying the choice of the former over the latter.

IV. PROPOSED METHOD

Existing pixel classification in low-resolution satellite im-
agery is based on spectral or texture properties. Spectral proper-
ties like NDVI, normalized difference built-up index, normalized
difference moisture index, enhanced vegetation index, and burn
area index have been extensively used in a wide variety of re-
mote sensing problems [10], [44]–[46]. Although classification
using these properties is usually computationally efficient, it is
highly inaccurate due to inherent uncertainty of low-resolution
remote sensing data [47]. On the other hand, while more precise
measurements can be obtained from high-resolution satellite
imagery, classification using these is significantly challenging
due to the high memory footprint and processing requirement.

The high processing requirements can be mitigated by design-
ing a coarse-to-fine search strategy whereby a significant portion
of the data can be first filtered out using computationally efficient
techniques, which may very well result in overestimation [48].
The resulting overestimated data can subsequently be further
filtered using a more accurate and fine-grained localization
strategy. For example, deep learning-based classification [49]
on high-resolution satellite imagery is found to be 4x faster
than object detection [20], [50], [51]. It is to be noted that a
classifier, in contrast to object detection, will not provide precise
localization information such as a bounding box. However, it can
be used to quickly eliminate portions of data that is highly likely
not to contain a brick kiln. For these reasons, we propose a two-
stagegated neural network named as Kiln-Net (see Figs. 5 and
6) which performs classification followed by object detection to
achieve the coarse-to-fine search of kilns. Using our proposed
two-stage method, we first perform 14 class classification and
generate potential candidates for brick kilns. Object detector
is then used only on these filtered regions to generate precise
bounding boxes around each kiln. This coarse-to-fine search
strategy thus not only addresses the overestimation problem,
but also results in lower computational overhead as compared
to single-stage object detection methods.
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Fig. 5. Illustrative example of working of the proposed Kiln-Net architecture. (Input base map courtesy ArcGIS and satellite images courtesy Google Earth).

Fig. 6. Proposed gated neural network. (Input base map courtesy ArcGIS).

In the following sections, we first discuss the semi-automatic
strategy adopted for annotating imagery for the 14 classes de-
scribed earlier. This is followed by a discussion on patch-based
classification and detection. Then, we discuss the criteria for
selecting the combination of appropriate classifier and detector.

A. Dataset Generation

Unlike existing methods [10], [13] that analyze only one
specific region, our goal in this work is to identify brick kilns
across the entire South Asia. This requires a training dataset
that contains samples under varying conditions as discussed
in Section III. Furthermore, unlike street imagery, landuse is
subject to significant variations in satellite imagery. To cater
for this, we develop a 14-class dataset named Asia14 using a
two-stage data generation strategy. We first employed existing
sources such as OpenStreetMap3 and obtained a small dataset
consisting of Digital Globe RGB band images from 2016 and
2017 of resolution 256 × 256 at zoom level 20 (corresponding to
0.149 pixel per meter on the equator). We collected 300 images
for each of the 14 classes including brick kilns, houses, roads,
tennis courts, farms, grass, sparse forest, dense forest, parking
lots, parks, ponds, tanks, mosques, and barren lands. The issue
of sensor variations is handled by diversifying the training data
across several spatial locations within the Indo–Pak region of

3Online. [Available]: https://www.openstreetmap.org/

South Asia. In the second stage, we adopted a semi-automatic
strategy for the generation of additional annotated data. We
trained a ResNet-152 [34], which is a CNN-based multiclass
classifier. Using this land use model, we automatically classified
satellite imagery from 2017 of Punjab, Pakistan region of South
Asia. An additional 700 annotations per class is then generated
by selecting highly probable locations for each class. The result-
ing data of 14 000 annotated samples is then manually verified
for any misclassifications. In addition, in order to generate
training data for our object detector, we also manually annotated
bounding boxes for each one of the 1300 brick kiln images in
the dataset.

B. Kiln-Net: Gated Neural Network

Kiln-Net is a two-stage gated neural network. In the first stage,
it filters the bulk of the data using an inexpensive classifier while
the detector is only applied on small amounts of positive detec-
tions to generate localization information while filtering false
positives. For the overarching goal of identifying and mapping
brick kilns in South Asia, we utilized high-resolution satellite
imagery patches from Google Earth. We first fed each patch of
256× 256 pixels from the selected region to the classifier stage
to get a corresponding binary decision for kiln detection. If kiln
classification probability of patch is greater than a threshold
value, we pass this patch to the detector using a gate as shown in
Fig. 6. In order to make sure that the proposed classifier does not
miss detecting a kiln with very high probability, we set a very
small threshold value (0.1 in our experiments). While this do
yield a very high false-positive rate in the first stage, the second
object detector stage effectively filters out these falsely identified
patches. An example illustration of this is shown in Fig. 5 for
an image patch from New Delhi, India. The positively labeled
outputs of the classifier could either be a true positive (TP)
or false positive (FP), whereas the rest of the 13-class outputs
are considered as nonkiln or true negative (TN). A heatmap is

https://www.openstreetmap.org/
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Fig. 7. Fβ Measure for state-of-the-art classifiers and detectors. (a) Afghanistan. (b) Pakistan. (c) India.

shown to depict the probability of presence of kiln at specific
geographical points. Areas of higher intensity (red) are kilns or
(TP/FP) while the areas of lower intensity (green) belong to the
nonkiln class TN. To verify the results of the classifier on TP
and to improve the results on FP, the filtered patches (red spots
on the heatmap) are input to the object detector, which predicts
bounding boxes around what it thinks are brick kilns. The bound-
ing box prediction has five components: (bx, by, bw, bh, P ). The
(bx, by) coordinates represent the center of the box, relative to
the grid cell location, and (bw, bh) coordinates represent the
width and height of the box, respectively. On the other hand,
the variable P represents the confidence score which is defined
as the intersection over union (IOU) between the predicted box
and the ground truth [3]. The detector removes the FP and
predicts the bounding boxes for each kiln candidate as shown in
Fig. 5.

C. Selection of Classifier and Detector

We employed a systematic approach based on Fβ measure to
select the most appropriate classifier and detector combination.
The Fβ score is the weighted harmonic mean of precision and
recall, reaching its optimal value at 1 and its worst value at 0.
The nonnegative parameter β determines the weight of recall
in the combined score: β < 1 lends more weight to precision,
whereas β > 1 favors recall (β → 0 considers only precision,
β → ∞ only recall). The score is defined as

Fβ = (1 + β2)× Precision × Recall
β2 × Precision + Recall

(1)

In our analysis, we used 0 ≤ β ≤ 3 thus favouring recall. This
helps in addressing class imbalance as we have a smaller number
of Kiln samples in our dataset and recall is the measurement of
coverage of the minority class [52].

We trained several classifiers and detectors on the proposed
Asia14 dataset. More specifically, we trained some of the
state-of-the-art classifiers including ResNet-152 [34], Inception-
ResNet-v2 [53], and Inception-v3 [54]. Similarly, among detec-
tors we trained YOLO[51], single shot detector (SSD [20]), and

Fig. 8. Residual connection used in all variants as short skip connection.

faster R-CNN [50] and selected the best classifier and detector
using the Fβ score. This aspect is further elaborated in the
following.

ResNet versus inception-based classifier: Residual [34] and
inception [53] blocks are two popular improvements that were
proposed to improve the performance of CNNs. Residual con-
nections were introduced to address the issue of vanishing
gradients in deeper networks. ResNet block [34], [53], [54] is a
direct connection of a layer with a layer deeper in the network,
skipping one or more layers (see Fig. 8) and can be defined as

r(x) = F (x) + x (2)

where x is input to the residual connection, F (x) is residual
mapping to be learned. Inception block [53] consists of con-
volutions of different sizes that allow the network to process
features at different spatial scales, which are lumped and fed to
the next layer for further processing.

It can be seen in Fig. 7 that the models based on inception
block—Inception-ResNet-v2 and Inception-v3—have a lower
Fβ score as compared to ResNet-152 in almost all major regions
(Pakistan, India, and Afghanistan). This indicates that the incep-
tion block does not help us in learning to see beyond domains
and regions due to sensor and environmental effects on satellite
imagery. Employing residual connections, as those employed
in ResNet, assists us in reducing these effects. It is because of
this that we choose ResNEt-152 as the classification stage in
Kiln-Net.

YOLO versus faster R-CNN versus SSD: Following the clas-
sification stage is that of the detector. The detector YOLO [51]
is capable of performing both classification as well as regression
of bounding boxes. It takes an input image and learns the
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TABLE II
TABLE SHOWING DETAILS OF THE EVALUATION DATASET

class possibilities with bounding box coordinates using IOU,
nonmax suppression and anchor boxes. On the other hand, faster
R-CNN [50] uses region proposal and performs regression of
bounding boxes on each ROI. In contrast to faster R-CNN
and YOLO, SSD [20] runs a CNN on input image only once
and computes a feature map. Then, it runs a small 3× 3 sized
convolutional kernel on this feature map to predict the bound-
ing boxes and distribution probability. As shown in Fig. 7,
YOLOv3 [3] performs better than the faster R-CNN and SSD
across all regions of South Asia. In Afghanistan, YOLOv3 shows
an average Fβ score of 0.6 for β > 1 and helps us in detecting
kiln from bleak and barren lands. Consequently, the detector of
our choice is YOLOv3.

V. RESULTS AND EVALUATION

In this section, we present the results of detailed experimen-
tation of the proposed Kiln-Net architecture. While existing
approaches are limited in spatial coverage (see Table I), the
generalization of the proposed approach is demonstrated by
performing analysis on 14 different cities from five different
countries of South Asia. These include the cities of Deh Sabz
and Surkh Rod from Afghanistan; Kasur, Multan, Faisalabad,
and Mirpurkhas from Pakistan; Perumbedu, New Delhi, Uttar
Pradesh, and Tamil Nadu from India; Barisal, Sylhet, and Dhaka
from Bangladesh; and Kathmandu from Nepal. The details of
the images used from each of these regions are shown in Table II.
Satellite imagery is downloaded for year 2019 (Pakistan and In-
dia) and 2020 (Afghanistan, Nepal, and Bangladesh). The high-
resolution satellite imagery (zoom level 20) from these locations
is first divided into nonoverlapping patches of size 256× 256,
each one of which is then passed through various neural net-
work architectures. The scalability, efficiency, and quality of
the proposed method is measured by providing performance
comparisons with respect to six different state-of-the-art classi-
fiers and detectors namely ResNet-152 [34], Inception-ResNet-
v2 [53], Inception-v3 [54], faster R-CNN [50], SSD [20], and
YOLOv3 [3].

A. Experimental Setup

We used the Asia14 dataset for training of classifiers and
1300 brick kiln images with bounding box annotations for the
training of object detectors (see Section IV-A). We divided the
training data into 70% training, 20% validation, and 10% testing.
The trainings were performed using the same hyperparameter
values in all our classification experiments. All the networks

were optimized using stochastic gradient descent with an initial
learning rate of 0.01 and a rate decay of 10−6. Instead of using
fixed number of epochs, we used early stopping criteria which
terminates the training process in case there is no improvement
for 10 consecutive epochs. All the experiments were conducted
on a system with an Intel Core i7− 7500U CPU 2.70× 2 GHz
processor, 8 GBs of RAM, and a NVIDIA GeForce GTX 950MX
GPU.

B. Performance Metrics

The performance metrics used for performance comparisons
are the usual accuracy, precision, recall and F1 scores. For the
sake of completeness, these are defined below.

1) Accuracy is a metric that quantifies the percentage of
correctly classified instances. It is defined as

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

2) Precision is a metric that quantifies the fraction of correct
positive predictions made. It is given as

P =
TP

TP + FP
. (4)

3) Recall is a metric that quantifies the number of correct
positive predictions made out of all positive predictions
that could have been made. It is defined as

R =
TP

TP + FN
. (5)

4) F1 score provides a way to combine both precision and
recall into a single measure that captures both properties.
It is given as

F1 =
2

P−1 +R−1
(6)

where TP, TN, FP, and FN are true positives, true negatives, false
positives, and false negatives, respectively.

C. Quantitative Evaluation

We evaluated our proposed Kiln-Net on unseen dataset con-
sisting of almost 3 37 933 zoom-20 images from different South
Asian regions (see Table II) that are shown in Tables III, IV,
and V.

Quantitative evaluation of ResNet-152 classifier in Kiln-Net:
The performance evaluation of the first stage of Kiln-Net, i.e.,
ResNet-152 classifier is shown in Table III. In order to ensure
that our classifier does not miss any kiln, we utilize a very
low threshold of probability (beyond which a kiln is declared).
However, this results in several misclassifications in the form
of FPs (which is subsequently corrected by the detector stage).
The classifier’s lowest accuracy of 94.70 is obtained for Deh
Sabz, Afghanistan whereas its accuracy reached approximately
100% for Faisalabad, Pakistan. The relatively low accuracy for
Afghanistan is perhaps due to the fact that the region mostly
corresponds to barren land which is under represented in the
training data. On the other hand, the Faisalabad region is mostly
fertile with much of the training data also corresponding to simi-
lar surroundings. The overall accuracy for each region remained
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TABLE III
TABLE SHOWING QUANTITATIVE EVALUATION OF THE RESNET-152 CLASSIFIER IN PROPOSED KILN-NET ARCHITECTURE

TABLE IV
TABLE SHOWING QUANTITATIVE EVALUATION OF THE YOLOV3 DETECTOR (IN

PROPOSED KILN-NET ARCHITECTURE) ON POTENTIAL KILN LOCATIONS (TP +
FPS) GIVEN BY CLASSIFIER TO DECREASE FP RATE

above 96.38%, whereas the ResNet-152 classifier achieved an
overall accuracy of 99.85% for the entire region. This high
accuracy is due to the high TN rate which indicates that 14-class
classification helped in putting nonkiln categories into their
respective bins. Thus, despite the extremely relaxed threshold,
the classification stage resulted in correctly filtering 99.68% of
the data (3 36 665 samples), and only 0.32% of the patches (TP
and FP) (1 058 samples) were passed to the next stage.

Quantitative evaluation of YOLOv3 detector in Kiln-Net:
Analyzing the numbers presented in Table III, one finds that
of the samples that reach the detector stage of Kiln-Net,
approximately 47% are FPs. The YOLOv3 reduced the FP rate
to only 7.64%, of which 68% are from the Afghanistan region.
This can be explained by the fact that Afghanistan typically
unfolds as a bleak and barren land in most satellite images
(see Fig. 9). It is difficult to classify brick kiln from bleak land
because the kilns and the surrounding land itself have similar
texture properties. An additional reason is that samples from
Afghanistan were also missing in the training set. However,
our selected detector YOLOv3 performs better than all other
state-of-the-art classifiers and detectors in Afghanistan. This
can also be seen from the Fβ measurement (see Fig. 7). The best
performance of overall YOLOv3 achieved an overall accuracy
of 85.92% (see Table IV). The proposed two-stage Kiln-Net
when tested on approximately 3 300 km2 region (3 37 933
image patches) from 14 different cities resulted in 83 FP and
66 FN, whereas it was able to correctly identify 655 TP (see

Table IV) and 3 37 129 TN (3 37 933− 655− 83− 66). Thus,
the proposed Kiln-Net obtained an overall accuracy of 99.96%
and average F1 score of 0.91.

D. Performance Comparison With State-of-the-Art

We compared our proposed two stage methods with three
other classifiers namely ResNet-152 [34], Inception-ResNet-
v2 [53] and Inception-v3 [54]. Similarly, we also compared
our methods with three other detectors namely YOLOv3 [51],
SSD[20], and faster R-CNN [50]. These comparisons are shown
in Table V for three cities namely Kasur (Pakistan), New Delhi
(India) and Deh Sabz (Afghanistan). This table also shows the
number of identified duplicate detection which are introduced
when a particular kiln is partially visible in more than one image
patch. Among classifiers ResNet-152 obtained best performance
both in-terms of precision, recall and F1 score whereas YOLOv3
proved to be a best performing object detector. It can also be seen
that the proposed method outperformed all the other methods on
all three cities in terms of precision, recall as well as F1 score.
The proposed Kiln-Net obtained 100% score on Kasur and New
Delhi, however its precision, recall and F1 score dropped to 0.75,
0.70, and 0.72, respectively for Deh Sabz (Afghanistan). This is
due to low contrast between kiln and surrounding barren land.

E. Compute Cost Comparison With State-of-the-Art

Our selected classifier: ResNet-152 takes around 50 ms per
image and it is four times faster than Inception-ResNet-v2 and
68 times faster than Inception-v3 as shown in Table V. Table V
also shows that faster R-CNN takes approximately 1 s per image
as compared to only 50 ms taken by ResNet-152, and since due
to our two-stage strategy, YOLOv3 only gets 0.32% of the data
thus it can be concluded that the proposed architecture is almost
20x faster than existing literature [9].

1) Compute Cost Comparison of Different Detectors: Our
detailed experimentation and evaluation intimate that directly
using an object detector on a large dataset is computationally
prohibitive. In our experiments, we noted that the average com-
pute time per image of resolution 256× 256 for faster R-CNN,
SSD, YoloV3 is 1, 0.6 and 0.2 s, respectively. This indicates
that the overall compute cost of these detectors over the entire
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TABLE V
TABLE SHOWING QUANTITATIVE EVALUATION OF THE PROPOSED TWO STAGE NETWORKS WITH STATE-OF-THE-ART ARCHITECTURES

Fig. 9. Illustrative examples of our proposed Kiln-Net on South Asian countries. (Satellite images courtesy Google Earth).

Brick-Kiln-Belt of South Asia will be 1840, 1104, and 368 days,
respectively as shown in Fig. 10. In other words, if we follow
the SSD based approach it will take 1104 days as compared to
only 95 days using the proposed two-stage strategy. Although
any combination of detector and classifier can be used in the
proposed two-stage strategy, we performed a systematic study on
tradeoff between computational cost and accuracy as elaborated
in Figs. 10 and 11.

F. Qualitative Evaluation

Fig. 9 shows the qualitative evaluation of our proposed
Kiln-Net architecture. It can be seen that despite sensor, struc-
tural, dynamic surroundings, and environmental variations, the

proposed architecture has successfully identified all three types
of kilns. Detection of traditional fixed chimney Bull’s trench
kiln is shown in Fig. 9 (column 1 and 3) for the Pakistan
and Afghanistan regions. Afghanistan region exhibits extremely
low contrast between kiln and nonkiln regions; however, the
proposed Kiln-Net was able to correctly detect multiple kilns
in each image. Similarly, Hoffmann Kiln and natural draught
zig-zag kiln are detected for India, Bangladesh, and Nepal
regions [Fig. 9 (column 2, 4 and 5)] along with a few Bull’s
trench kilns.

The FNs or missed kilns are shown in columns 6 and 7 of
Fig. 9. The FN in column 6 is due to either partial occlusion
or abrupt sensor variation between neighboring pixels. Some
of the FNs shown in the last column of Fig. 9 are due to low
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Fig. 10. Estimated compute cost of state-of-the-art detectors and our proposed
two stage strategy on Brick-Kiln-Belt of South Asia. (Two-stage means ResNet-
152 classifier followed by detector).

Fig. 11. Average F1 score of state-of-the-art detectors and our proposed two
stage strategy on testing regions of South Asia. (Two-stage means ResNet-152
classifier followed by detector).

contrast between terrain and kiln pixels and one of the kilns is an
abandoned kiln hence its appearance has significantly changed
over time. The low-contrast images are from the Afghanistan
region which is not represented in the training set.

VI. CONCLUSION AND FUTURE WORK

We proposed a gated neural network composed of ResNet-
152 and YOLOv3 for identification and detection of brick
kilns in South Asia. We tested our algorithm on a 3300 km2

region (3 37 933 image patches) from five countries includ-
ing India, Pakistan, Afghanistan, Nepal, and Bangladesh. As
compared to object detection-based strategy, our two-stage
gated neural network is not only 20x faster, it also achieved
99.96% accuracy and average F1 score of 0.91 making it
feasible for large-scale analysis. We also proposed a semi-
automated method for dataset generation from satellite im-
ages and prepared a novel 14-class dataset consisting of
1000 images per class. Furthermore, the testing followed by
semi-automated verification also contributed annotations for
3 37 933 locations. Our proposed solution would not only en-
able regional monitoring and evaluation mechanisms for the
SDGs, it can also be extended for other applications. Exact
numbering of brick kilns and their locations is needed in order

to understand the brick sector’s pollution and climate impacts
and address black carbon and other short-lived climate pollutant
emissions. We also aim to further reduce the computational
cost by developing a hybrid solution using both low-resolution
multispectral imagery and high-resolution satellite imagery.
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