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Evaluation of LJ1-01 Nighttime Light Imagery for
Estimating Monthly PM2.5 Concentration: A

Comparison With NPP-VIIRS Nighttime Light Data
Guo Zhang , Yingrui Shi , and Miaozhong Xu

Abstract—Air quality degradations caused by fine particulate
matter (PM2.5) can lead to various health problems, and accurate
PM2.5 data are critical for managing the environment and ensuring
public health. Radiation signals collected by nighttime light (NTL)
remote sensing satellites are influenced by PM2.5 concentrations,
and thus, incorporating NTL imagery in statistical models has
been widely used to predict PM2.5 concentrations. However, scarce
work has been carried out with new-generation NTL data from the
LJ1-01 satellite, which has a fine spatial resolution and wide mea-
surement range. In this study, we integrated satellite observation
data and meteorological data to construct five models based on
the geographically weighted regression to validate the feasibility
of LJ1-01/NPP-VIIRS in Moderate Resolution Imaging Spectro-
radiometer AOD-based PM2.5 prediction in the Beijing–Tianjin–
Hebei region. The models were validated by the cross-validation
method. The results showed that the addition of NTL information
could improve the performance of the PM2.5 prediction model.
The seasonal R2 with NTL in AOD-PM2.5 model have improved
by 5.07%, 4.50%, 2.95%, and 2.56% in model fitting and 1.20%,
1.75%, 2.20%, and 4.41% in cross-validation. Furthermore, the
LJ1-01 NTL data revealed additional details and improved the pre-
diction accuracy, compared with the NPP-VIIRS in AOD-PM2.5

model, the seasonal R2 with LJ1-01 in AOD-PM2.5 model increased
by 1.16%, 1.79%, 0.76%, and 1.15% in model fitting and 1.04%,
0.85%, 0.78%, 1.37% in cross-validation. Thus, our findings indi-
cate that LJ1-01 and NTL data have the potential for predicting
PM2.5 and that they could constitute a useful supplemental data
source for estimating ground-level PM2.5 distributions.

Index Terms—Geographically weighted regression (GWR)
model, LJ1-01, moderate resolution imaging spectroradiometer
(MODIS) aerosol optical depth (AOD), NPP-VIIRS, particulate
matter (PM2.5) concentration, satellite observation.

I. INTRODUCTION

IN RECENT decades, rapid economic development and in-
dustrial construction activities in China have caused severe

environmental pollution problems, particularly in relation to air
pollution [1]. Fine particulate matter (PM2.5) is now a major
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air pollutant in many regions. Numerous studies have shown
that the incidence of cardiovascular and respiratory diseases is
closely associated with the timing and intensity of exposures to
PM2.5 [2], [3]. Long-term exposures can accelerate declines in
lung function and increase mortality [4]–[6]. Therefore, accurate
assessments of air pollution levels and characterization of the
spatial and temporal changes in PM2.5 concentrations are impor-
tant for formulating effective pollution prevention and control
measures; these issues have received considerable attention from
current researchers in related fields [7].

Ground-based PM2.5 monitoring networks can provide ac-
curate and real information on PM2.5 concentrations and com-
ponents. However, such network sites are sparsely distributed,
mostly in urban areas, which means that the spatial coverage of
routine measurement data is limited, and observed data are only
available at certain times and specific sites [8], [9]. In contrast,
because of the large spatial coverage and reliability of repeated
measurements, satellite remote sensing provides a potentially
cost-effective method for assessing and predicting PM2.5 con-
centrations, which can help to supplement the sparse distribution
of the PM2.5 ground-monitoring stations [10], [11]. The most
popular satellite-derived product for estimating surface PM2.5

concentrations is aerosol optical depth (AOD). AOD is indicative
of the integrated light extinction of particles in the atmosphere
[12].

Many satellite sensors such as moderate resolution imaging
spectroradiometer (MODIS), multi-angle imaging spectrora-
diometer, and sea-viewing wide field-of-view sensor collect
aerosol scattering and absorption information in the atmosphere
[13], [14]. Among them, the potential of using MODIS-based
AOD to derive surface PM2.5 concentrations was demonstrated.
The latest MODIS AOD products, Collection 6, was constructed
from MODIS imagery via both the enhanced deep blue algorithm
and the dark target algorithm, which is adaptable for both dark
and bright surfaces. It has been validated by AOD observations
from Aerosol Robotic Network sites in China and the results
were satisfactory [10], [15], [16]. MODIS-retrieved data are
obtained from spectral observations of visible and near-infrared
wavelengths, and the corresponding AOD particle size range is
0.1–2 μm, which is very close to the PM2.5 particle size range;
thus, these data have provided an important theoretical basis for
exploring the relationship between satellite observed AOD and
PM2.5 [17].
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Different statistical models have been proposed to establish
quantitative relationships for AOD-PM2.5, e.g., linear mixed ef-
fects models [18], generalized linear regression [19], generalized
additive models [20], and geographically weighted regression
(GWR) models [10], geographically and temporarily weighted
regression model [17], and two-step models [21]. A GWR model
adopts a local regression model to embed the spatial position of
data into the regression parameters, and it uses the local weighted
least-square method to estimate the point-by-point parameters.
The nonstationarity of spatial relations can be directly detected
by the changes in the predicted values of parameters in each
spatial position. This estimation method is simple and easy
to operate. The obtained estimation parameters can be used
for statistical tests, with good applicability to a wide range of
applications. Jiang et al. [22] utilized a GWR model to integrate
meteorological and geographical factors to explain the genera-
tion and dilution of PM2.5 concentrations in the Yangtze River
Delta, and their research pointed out the significance of using
proper auxiliary variables in modeling the AOD–PM2.5 relation-
ships. Li et al. [23] used satellite-retrieved NDVI, AOD, and
the nighttime light (NTL) information for PM2.5 concentration
predictions in a GWR model in the Northeastern United States.
The results indicated that the combination of NTL imagery and
NDVI is promising for providing additional information for
PM2.5 monitoring and prediction. Ma et al. [24] developed a
national-scale GWR model to estimate PM2.5 concentrations in
China with fused satellite AOD as the primary predictor, mete-
orological, and land use information as the auxiliary variables.
The results confirmed that satellite-derived AOD in conjunction
with auxiliary information can be successfully applied to the
extension of the ground PM2.5 monitoring network in China,
and this greatly improved the model performance.

The NTL remote sensing satellites have the capability to
detect faint sources emitted on the Earth’s surface, this abil-
ity allows for the capturing nighttime signals of light on the
Earth’s surface [25]. These NTL radiation signals are scattered
by aerosol particles in the air such as PM2.5. Therefore, the
radiation signals collected by NTL remote sensing satellites will
be influenced by PM2.5 concentrations [26]. In addition, the NTL
imagery is also shown to be a good indicator of urbanization
and human activity. Previous research has demonstrated that
population, economic growth, and urban expansion are the three
main driving forces that impact PM2.5 concentrations [27], [28].
Thus, the NTL data provided by NPP-VIIRS have been used
extensively as proxies for the urban geographic footprint of
human activities and is also for PM2.5 concentration [29], [30].
The predecessor NTL imagery is mainly derived from the Suomi
National Polar-orbiting Partnership Satellite (NPP-VIIRS). VI-
IRS has 22 channels, with a nominal spatial resolution of 375 m
in the five imagery bands (I-bands) and 750 m in 16 moderate-
resolution bands (M-bands), covering a spectral range from 0.41
to 12.01μm. It uses a whiskbroom procedure, scanning the earth
perpendicular to the track of the satellite. The unique Day–Night
band (DNB) that measures radiances over a broadband spectrum
from 0.4 to 0.9 μm with a nominal spatial resolution of 750 m
is designed to detect radiance during the night. It has 32 sym-
metrical aggregation schemes on each side of the scan, resulting

TABLE I
SENSOR PARAMETERS OF LJ1-01

in similar pixel size (742 m) throughout the whole scan. The
unique aggregating scheme in DNB also removes the “bowtie
effect” (the pixel area overlap) completely. Consequently, the
pixels in DNB NTL imagery have approximately the same
size throughout the whole scan [31]. Furthermore, the onboard
calibrations are also conducted on DNB NTL imagery to offer
a series of high-quality imagery. Zhang and Hu [32] integrated
MODIS AOD products, meteorological factors, and NPP-VIIRS
NTL data as predictors to predict PM2.5 concentrations, and
the results indicated that NPP-VIIRS NTL data have potential
for improving PM2.5 concentrations prediction and serving as
a useful supplemental data source for estimating ground-level
PM2.5 distributions [23]. However, the widespread application
of NPP-VIIRS NTL data is mostly limited to projects at a
moderate spatial resolution.

As a successor, the new generation NTL remote sensing
satellite named LJ1-01 was successfully launched on June 2,
2018 by Wuhan University in China. It is a 6-kg cube scientific
experimental satellite, equipped with a 129-m resolution NTL
remote sensing sensor and navigation enhancement load. The
frame push-broom imaging mode, the main imaging mode of the
LJ1-01 camera, uses its camera system to capture the NTL on
the ground. The sensor parameters are listed in Table I. Fur-
thermore, DNB and LJ1-01 have similar spectral response func-
tion, their dominated outdoor lights for the broadband radiance
are from pressure sodium lamps, fluorescent lamps, and light-
emitting diode lamps. These lamps are primarily in the visible
spectrum less than 0.65 µm by comparing the spectral radiances
emitted from these three types of lamps with the spectral trans-
mittance of in the LJ1-01 spectrum, they do not have the spectra
overlapped with these gas absorption and water vapor spectra.
Thus, water vapor and gas absorption has a negligible effect on
the DNB and LJ1-01 radiance [33]. The outstanding features of
LJ1-01 are also that:

1) have a broad spectral coverage (of 0.46–0.98 μm and half-
width and half maxima of the spectral response function
at 0.65 µm, Fig. 1);

2) use an electronic rolling shutter;
3) have two operation modes;
4) day and night imaging [31].
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Fig. 1. Spectral response curves of LJ1-01 and VIIRS.

TABLE II
PARAMETER COMPARISONS OF THE LJ1-01 AND VIIRS DATA

The NTL imagery generated from the LJ1-01 satellite has not
only enriched the available data for NTL remote sensing appli-
cations. These characteristics of the new generation NTL data
also greatly improve the quality of NTL data, enhance detection
capacity for artificial lighting and urban structure, bringing new
possibilities and insights to the researchers working on urban
environments. The parameters comparison for NPP-VIIRS and
LJ1-01 data is shown in Table II.

This study developed GWR-based models to estimate PM2.5

concentrations using MODIS AOD data, together with LJ1-01
NTL/NPP-VIIRS data, meteorological data, and geographic
data. The objectives of this article were to investigate whether
the NTL data can improve PM2.5 concentration prediction ac-
curacy and to validate the difference of LJ1-01/NPP-VIIRS in
AOD-based PM2.5 predict power. A cross-validation method
was utilized to verify the models’ performance. Temporal and
spatial distributions of predicted surface PM2.5 were then de-
rived from the model to illustrate the variations of ground-level
PM2.5 concentrations within the study area.

II. METHODOLOGY

A detailed flowchart of the procedure with LJ1-01 in AOD-
based PM2.5 concentration prediction is shown in Fig. 2. The
key steps of LJ1-01 NTL data for estimating monthly PM2.5

concentration is divided into the following three parts.

1) The vegetation index is an important factor to estimate
PM2.5 concentration. Considering the similarity of the
NDVI index and EVI index. We fit and validate the per-
formance of these two vegetation indexes by the method
of controlling variables, thus determine the appropriate
vegetation index as the input of vegetation variables.

2) We construct five models, with the additional explana-
tory variables of only NTL (LJ1-01, NPP-VIIRS), only
AOD, and NTL+AOD to predict PM2.5 concentration at
monitor sites. To test the effectiveness and reliability of
the proposed method, a comparison with the contribution
of LJ1-01/NPP-VIIRS in AOD-based PM2.5 prediction is
conducted, and the details are given in Section IV.

3) To further verify the potential and performance of LJ1-01
in AOD-based PM2.5 concentration prediction, we com-
pare the temporal and spatial distribution of predicted
PM2.5 concentrations at ground observation sites with
the resolution of 750 × 750 m and 10 × 10 km. The
spatial distribution and predict difference are elaborated
in Section IV.

A. GWR Model

The GWR model is a spatial regression model, which changes
the assumption that the objects are independent of each other
in traditional econometric and statistical studies, and it gives
full consideration to the spatial and temporal correlation of the
data for each observation unit. The estimation results of the
parameters change with the change in spatial position, which
can be quantified to reflect the heterogeneity or nonstationarity
relationship between the independent and dependent variables
[10]. The GWR model assumes that the predictors–PM2.5 rela-
tionship varies greatly with spatial locations in the study area,
and it has been adapted to describe the unstable relations between
PM2.5 concentrations and AOD, as well as other geographical
or meteorological factors [see (1)]. In this study, the constructed
five models based on the GWR model were used to predict PM2.5

concentrations. The five models and corresponding variables are
shown in Table III

PM2.5(i,j) = β0(i,j) + β1(i,j)Meteoro(i,j)

+ β2(i,j)Veg(i,j) + β3(i,j)DEM(i,j)

+ β4(i,j)AOD(i,j) + β5(i,j)ln(NTL(i,j)) (1)

where PM2.5(i,j) represents the PM2.5 concentration of ground
observation stations at position i on data j, β0(i,j) is a constant
coefficient denoting the location-specific intercept at position i
on data j, β1(i,j) − β3(i,j) denotes the location-specific slope or
coefficient of its corresponding auxiliary meteorological vari-
ables, vegetation index, and elevation variables, β4(i,j) denotes
the slope of AOD, and β5(i,j) represents the slope of the loga-
rithm of the NTL intensity.

B. Model Evaluation and Verification

Statistical indicators are commonly employed to evaluate
a model’s accuracy through comparing the fitted values with
ground observed PM2.5 concentration values, such as the R2, root
mean square error (RMSE) [24]. The R2 denotes the agreement
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Fig. 2. Flowchart of the analysis of the performance of LJ1-01 NTL data in MODIS AOD-based monthly PM2.5 concentration prediction.

TABLE III
DESCRIPTION OF THE FIVE SPECIFIC MODELS AND THE CORRESPONDING

EXPLANATORY VARIABLES

degree of fitting between predicted and observed PM2.5 con-
centrations. The RMSE indicates the prediction accuracy of the
models. Smaller RMSE values are indicative of a higher accu-
racy at the PM2.5 observation site. The formulas are as follows:

R2 = 1−
∑n

i=1

(
PMobs

2.5(i) − PMsat
2.5(i)

)2

∑n
i=1

(
PMobs

2.5(i) − PMobs
2.5(i)

)2 (2)

RMSE =

√
√
√
√

(
1

n

n∑

i=1

(
PMobs

2.5(i) − PMsat
2.5(i)

)2
)

(3)

where n denotes the number of ground observation stations,

PMobs
2.5(i) and PMobs

2.5(i) represent the PM2.5 concentration
and average PM2.5 concentration of the ground observation
stations, respectively, and PMsat

2.5(i) denotes the fitted PM2.5

concentration of the models.

In addition, there may be an overfitting phenomenon in the
process of model processing. This study used the method of
10-fold cross-validation to evaluate the performance of each
model. The dataset was first broken into 10 folds with approxi-
mately 10% of the total data points in each fold. In each round of
the cross-validation, the model was fitted with nine folds (90%
of the total dataset) and one fold was predicted by using the
fitted model. This step was repeated 10 times until every fold
was tested. The R2 and RMSE of the model fitted values and
observed PM2.5 concentrations values were utilized to evaluate
the performance of the models.

III. STUDY AREA AND DATA

A. Ground Observation Data

The Beijing–Tianjin–Hebei (BTH) region was selected as the
study area; this area is situated in northern China and extends
over 113–120°E and 36–43°N (see Fig. 3). It includes Beijing,
Tianjin, and eight neighboring cities in China’s Hebei Province.
There are 99 PM2.5 monitoring stations. We selected the data
from the PM2.5 monitoring stations during the latest available
period (366 days) from June 2018 to May 2019 for the analysis.
Fig. 3 shows the PM2.5 monitoring stations in the BTH re-
gion. Ground-level hourly PM2.5 concentrations were download
from China’s air quality publishing platform.1 Additional data
for environmental evaluation points and comparison points in
Beijing suburbs were obtained from the Beijing environmental
monitoring center.2 The PM2.5 concentrations were measured by
the Tapered Element Oscillating Microbalances method or beta
attenuation method (β-gauge). These data had an uncertainty of
less than 0.75%, with an accuracy reaching up to±1.5μg/m3 for

1[Online]. Available: http://106.37.208.233:20035/
2[Online]. Available: http://zx.bjmemc.com.cn/

http://106.37.208.233:20035/
http://zx.bjmemc.com.cn/
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Fig. 3. Sketch map of the BTH region analyzed in this study.

the hourly average, so these data were accurate enough to serve
as a ground truth for PM2.5 concentrations [22]. In accordance
with the study of Li et al. [23], PM2.5 concentration values
(<2 μg/m3) less than the detection range were removed. The
experiment of Fu et al. [12] and Wang et al. [33] showed that
PM2.5 concentration at nigh time (∼1:00, local standard time)
better represented daily-mean PM2.5 concentration. Hence, the
PM2.5 concentration at night time 1:00 was utilized to represent
the PM2.5 concentration of 24-h mean.

By referring to previous studies, we manually chose four
factors as preliminarily auxiliary meteorological variables, and
these factors included the temperature (TEM,°C), wind speed
(WIN, m/s), relative humidity (RHU, %), and planetary bound-
ary layer height (PBLH, m). The particle concentrations of
PM2.5 largely depend on meteorological conditions. A high
surface temperature will accelerate the atmospheric vertical
motion and the transportation of ground pollutants into higher
places. Wind speed is an effective index for quantifying surface
motions of airflow and affects the horizontal transport of ground
pollutants. Relative humidity allows for a correction of the
aerosol humidity in the atmosphere to achieve better matches
with ground dry PM2.5 concentrations. A high relative humidity
largely enhances the size and light extinction of particles, which
are comprised of sulfate, nitrate, and ammonium from coal and
biomass burning, industrial, and vehicular sources. The PBLH
is also taken as a meteorological variable because the height of
the boundary layer determines the mixing space of pollutants,
and the interactions between pollutants and the boundary layer
bring about changes to the stability of the atmospheric boundary
layer and the atmospheric allowable emissions [35]. These data
were obtained from the ERA-Interim reanalysis data archive
with a resolution of 0.125° × 0.125° at the European Center for
Medium-Range Weather Forecasts.3

B. NTL Imagery

In order to cover the entire BTH region, eight moonless and
cloudless LJ1-01 images from August 20, 2018 to October 13,

3[Online]. Available: https://apps.ecmwf.int/datasets/data/interim-full-
daily/

TABLE IV
DETAILED INFORMATION OF EIGHT LJ1-01 IMAGES COVERING THE BTH

REGION

Fig. 4. NTL images after radiometric correction and unit conversion in the
BTH region. (a) LJ1-01. (b) NPP-VIIRS.

2018 were obtained from the High-Resolution Earth Observa-
tion System of the Hubei Data and Application Center.4 The
detailed information of those images is shown in Table IV.

The LJ1-01 images were only processed by system geometry
corrections and had a low positioning accuracy (ranging from
0.49 km to 0.93 km). Therefore, the released images should
be geometrically corrected before analysis. Therefore, we car-
ried out efficient geometric correction processing based on the
research of Jiang et al. [35]. Because of the LJ1-01 imagery
with the high image resolution, the road network was clear and
identified as the ground control points (GCPs) (see Fig. 4). First,
30 evenly distributed GCPs were manually collected from road
intersections. According to these GCPs, the geometric correc-
tion was then conducted. The monthly composites NPP-VIIRS
day/night band data are filtered to exclude data impacted by stray
light, lightning, lunar illumination, and cloud coverage [36].
The composite data encompasses a suite of average radiance
composite imagery. It depicts persistent lights from towns, cities,
and other sites spanning the globe from 75°N latitude to 65°S.
The composite image in August, September, and October 2018
was derived from the website of EOG,5 then the images average
value of these three months is calculated. Due to the constraint
of data, at a specific location, we assume that surface features
do not change from June 2018 to May 2019. Consequently, the

4[Online]. Available: http://59.175.109.173:8888/
5[Online]. Available: https://ngdc.noaa.gov/eog/viirs/download_dnb_

composites.html

https://apps.ecmwf.int/datasets/data/interim-full-daily/
http://59.175.109.173:8888/
https://ngdc.noaa.gov/eog/viirs/download_dnb_composites.html
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intensity of NTL is treated as a constant for each location within
VIIRS and LJ1-01 pixel but is varied spatially.

Images from both NPP-VIIRS and LJ1-01 were absolute
radiation-corrected [36]. The radiance conversion formula of
the LJ1-01 image was

L = d3/2 ∗ 10−10 (4)

where L is the radiance value after absolute radiation correction
in Wm−2sr−1μm−1 and d is the gray value of the image.

It is observed that the radiation unit of NPP-VIIRS is
nWcm−2sr−1, which is not consistent with that of LJ1-01. The
reason for this fact is that the radiance of LJ1-01 is converted
to the central wavelength, while that of NPP-VIIRS uses the
full-band radiance. Therefore, the radiation unit of LJ1-01 is
converted to that of VIIRS by (5), the NTL images after
radiometric correction and unit conversion are shown in Fig. 4

L′ = L ∗ 105 ∗ w (5)

where L′ is the radiation value after unit conversion and w is
the bandwidth of LJ1-01. The radiometric range of LJ1-01 is
460–980 nm, so w is equal to 5.2 ∗ 10−7m.

C. MODIS AOD Data

The MODIS sensors on Terra and Aqua satellites have 36
visible to near-infrared spectral bands ranging from 0.4 to 14μm,
with a global revisit cycle of 1–2 days. Thus, MODIS provides
comprehensive global information on Earth’s atmospheric sys-
tem. Furthermore, the characteristics of high temporal resolu-
tion, reasonable spatial resolution, and good accuracy of AOD
products make it adaptable for characterizing earth surfaces
[22]. In this study, the monthly Terra MODIS Level-2 10-km
AOD product and Aqua MODIS Level-2 10-km AOD product
were downloaded from the Atmosphere Archive & Distribution
System of the National Aeronautics and Space Administration.6

However, there are portions of the region at specific months
where only one of the two retrievals is available. To overcome
this shortcoming, we used a simple linear regression to estimate
the missing AOD values according to the study of Zhang and Hu
[32], in which the derived regression equations are as follows:

τAQUA = 0.8406× τTERRA + 0.0517 (6)

τTERRA = 0.9137× τAQUA + 0.0621 (7)

where τ is the AOD. The missing AOD values were estimated
by using the above regression equations and then averaged.
Consequently, each AOD grid cell contains a mean AOD value.

D. Geographic Data

A change in elevation will impact the spread of air pollutants
due to the effect of gravity sedimentation, and a 90-m digital el-
evation model (DEM) of the SRTMDEM3 dataset was acquired
from the Geospatial Data Cloud.7 Studies have shown that PM2.5

concentrations are also closely related to the vegetation index

6[Online]. Available: http://ladsweb.nascom.nasa.gov/
7[Online]. Available: http://www.gscloud.cn/

[37]. Specifically, high vegetation coverage reduces the entry of
aerosols into the atmosphere and vegetation absorbs particles
in the atmosphere. Currently, MODIS NDVI and MODIS EVI
are the most widely applied vegetation index, and MODIS
NDVI is often used to estimate PM2.5 concentrations [21], [32].
However, Waring et al. [38] pointed out that MODIS EVI is a
more recent development and continuation of NDVI and shows
improvements from the NDVI formula and synthesis method.
Zhuo et al. [39] suggested that NDVI is susceptible to large
sources of error and uncertainty under variable atmospheric and
canopy background conditions. Thus, this study compares the
performance of these two vegetation indexes for the estimation
of PM2.5 concentrations, and the more appropriate vegetation
index was selected as the auxiliary variable for PM2.5 concen-
tration estimations thereafter. The monthly synthesized NDVI
and EVI products of MODIS (MOD13A3) were obtained from
NASA,8 and these data represent the vegetation coverage at
spatial resolutions of 1000 m.

E. Data Integration

The data used in this study (PM2.5 concentrations, MODIS
AOD, meteorological data, DEM data, NTL data, and vegetation
coverage data) have different temporal and spatial resolutions.
To create a synchronized dataset for modeling, validation, and
analysis, all collocated data were first integrated to the average
value of a month to reduce the impact of time mismatches and
noise errors. Then, the data were reprojected by using the Albers
equal-area conic projection. After that, all data were resampled
to a spatial resolution of 750× 750 m and 10× 10 km, the values
of each pixel ware extracted from the clipped administrative
boundaries in the BTH region. However, the coverage of a pixel
is large at the resolution of 10 × 10 km, many sites may be
located in one grid. Therefore, if a single geographical grid con-
tain more than one PM2.5 site, the average PM2.5 concentration
of these sites was taken as the true PM2.5 concentration. Finally,
the normalized MODIS AOD, NTL data, vegetation index, and
other auxiliary variables were spatially matched to each grid for
model fitting and validation.

IV. RESULTS

A. Descriptive Statistics

Fig. 5 shows the histograms of all related variables expressed
in frequency distributions. The descriptive statistics [e.g., mean,
standard deviation (SD), maximum (Max), and minimum (Min)]
for the variables are summarized in Table V. As shown in Fig. 5,
except for the temperature variable, all other variables presented
an approximate unimodal lognormal distribution pattern. The
annual average PM2.5 value from July 2018 to May 2019 was
56.81 μg/m3, with an SD of 14.20 μg/m3. MODIS AOD had an
overall mean value of 0.49, with an SD of 0.27. NDVI had an
overall mean value of 0.49, with an SD of 0.27. PBLH had a
mean value of 171.62 m, with an SD of 86.15 m. The frequency
distribution histograms of AOD, NDVI, and PBLH were similar

8[Online]. Available: http://ladsweb.nascom.nasa.gov/

http://ladsweb.nascom.nasa.gov/
http://www.gscloud.cn/
http://ladsweb.nascom.nasa.gov/
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Fig. 5. Histograms of all related variables in this study. (a) PM2.5. (b) MODIS
AOD. (c) NDVI. (d) RHU. (e) TEM. (f) WIN. (g) PBLH. (h) DEM. (i) LJ1-01.

TABLE V
DESCRIPTIVE STATISTICS FOR THE ANNUALLY RELATED VARIABLES

to that of PM2.5 concentrations. TEM (12.39±2.11 °C) showed
seasonal aggregation trends in winter, summer, autumn, and
spring. LJ1-01 (2.79±2.61) and NPP-VIIRS (2.84±1.18) NTL
brightness values showed irregular distributions, where 90% of
the pixels were distributed in the low and medium brightness
areas and a small portion of the pixel brightness values fluctuated
in the high-value range.

The seasonal changes for these variables were also analyzed.
The mean PM2.5 concentrations during the winter (82.91±34.71
μg/m3) were higher than those during the summer (40.05± 9.71
μg/m3). The mean PM2.5 concentrations in spring (47.58±12.56
μg/m3) and autumn (56.72±26.81 μg/m3) were close to each
other and slightly higher than those in summer. The mean
AOD values were much higher in the spring (0.52±0.22) and
summer (0.59±0.31) than those in the fall (0.38±0.23) and
winter (0.46±0.27); the same trend also existed in the NDVI
and EVI data. As for WIN, the highest mean value was ob-
served in the spring (4.84±0.40 m/s), while the lowest mean

TABLE VI
PEARSON’S CORRELATION COEFFICIENTS FOR THE PM2.5 CONCENTRATIONS

AND PREDICTOR VARIABLES

∗ p <0.05; ∗∗ p <0.01.

TABLE VII
FOUR MODELS AND CORRESPONDING EXPLANATORY VARIABLES

value was observed in the summer (1.94±0.41 μg/m3). Further-
more, on account of the summer’s intense solar radiation and
high frequency of heavy rainfall, the highest mean values of
RHU (83.78.57±12.98%), TEM (30.13±1.76°C), and PBLH
(342.99±51.63 m) all occurred in summer.

B. Determine the Appropriate Vegetation Index

Correlation analysis was used to study the correlations be-
tween PM2.5 concentrations and all predictors, where the influ-
ence of all predictors on PM2.5 concentrations was expressed by
Pearson correlation coefficients; the strength of the correlations
was assessed with p-values from statistical tests. The results
presented in Table VI show that TEM, AOD, and RHU had sig-
nificant positive correlations with PM2.5 concentrations, while
DEM, NDVI, EVI, WIN, and PBLH had significant negative
correlations with PM2.5 concentrations. Most variables’ effects
on PM2.5 concentrations were significant at the 0.01 level.
However, the LJ1-01 and VIIRS DNB NTL data appeared to
show less of an influence. Because NTL is closely related to
the intensity of human activity and population density [40], it
characterized regional aggregations and discrete distributions
of different regions, in which the results for the NTL are often
sparser than those for other variables. The sensitivity of PM2.5

to changes in NTL was low [21].
In this part, we used the method of control variables to con-

struct four models, which were GWR-LJ-EVI, GWR-LJ-NDVI,
GWR-NP-EVI, and GWR-NP-NDVI model, respectively. The
detailed information of the model and explanatory variables
are shown in Table VII. To avoid the potential problem of
strong multicollinearity among the predictor variables, variance
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Fig. 6. Fitted curves of observed monthly PM2.5 concentrations, with the fitted monthly PM2.5 concentrations and cross-verified monthly PM2.5 concentrations
(the number of points is 297), where x-axis represents the ground observed PM2.5 concentrations, y-axis represents the fitted PM2.5 concentration obtained from
constructed models. (a)–(d) Fitting results for the GWR-LJ-EVI, GWR-LJ-NDVI, GWR-NP-EVI, and GWR-NP-NDVI models, respectively. (e)–(i) Results for
the model cross-validation research. The solid and dashed lines in the figure are fitted regression curves and 1:1 reference curves, respectively.

inflation factor (VIF) was examined. The result showed that
the VIF between the predictors in the GWR model was all less
than 7.5. We determined the optimal vegetation index through
the performance of model fitting [see Fig. 6(a)–(d)] and cross-
validation [see Fig. 6(e)–(i)]. As can be seen from the figures,
compared with the fitting results for the GWR-LJ-NDVI model
(R2 of 0.72), the GWR-LJ-EVI model (R2 of 0.78) showed a
significant improvement, and the GWR-NP-EVI model (R2 of
0.75) had a better performance than the GWR-NP-NDVI model
(R2 of 0.69).

The 10-fold cross-validation results were shown in Fig. 6(e)–
(i), the cross-validation R2 and RMSE of the GWR-LJ-EVI
model were 0.71 and 7.45 μg/m3 [see Fig. 6(e)], and the GWR-
LJ-NDVI model were 0.65 and 8.42 µg/m3 [see Fig. 6(f)],
respectively. Compared with the GWR-LJ-NDVI model, the
cross-validation R2 of the GWR-LJ-EVI model improved by
6%, while the RMSE decreased by 0.97 μg/m3. Moreover, the
fitting slope of the GWR-LJ-EVI model is 6% higher than that
of the GWR-LJ-NDVI model in the cross-validation. As can
be seen from Fig. 6(g) and (i), the cross-validation R2 of the
GWR-NP-EVI model had improved by 5%, and the RMSE
decreased by about 1.41μg/m3; additionally, the slope increased
by 4%, compared with the GWR-NP-NDVI model. The results
indicated that the predicted PM2.5 concentrations with EVI as
the predictive variable were closer to the actual observed PM2.5

concentrations than that with NDVI as the predictive variable. In
other words, although there wase slight overfitting of the models,
the EVI index showed a better performance than the NDVI index
in estimating PM2.5 concentrations.

Some studies have indicated [38], [39], [41] that NDVI
has shortcomings in terms of atmospheric corrections and soil
background treatments in low-vegetation cover areas. When the
vegetation coverage ratio is less than 15% or more than 80%,

the sensitivity of NDVI to vegetation coverage decreases. The
EVI is an extension and improvement of the NDVI, which not
only takes into account the influence of the soil background, but
also makes further corrections to the atmospheric and saturation
problems, and thus, it has a higher sensitivity and superiority
in estimating the vegetation coverage [41]. The experiments in
this study confirmed the validity and effectiveness of the EVI in
AOD-based PM2.5 prediction.

C. Validation of the Contributions of LJ1-01/NPP-VIIRS in
AOD-Based PM2.5 Prediction

Fig. 6 compares the ability of the different vegetation
index to estimate the annual PM2.5 concentrations, and the
results clearly indicated that the performance of estimating
PM2.5 concentration with EVI as an auxiliary variable was
superior to that of NDVI. However, the scatter points and fitted
curves corresponding to the model fitted PM2.5 concentrations
and the observed PM2.5 concentrations were similar, which
resulted in difficulties in observing detailed seasonal changes.
Therefore, this section validates the seasonal performance of
LJ1-01/NPP-VIIRS DNB in AOD-based PM2.5 prediction with
the vegetation index of EVI.

Fig. 7 shows the R2 histogram of and RMSE cumulative
histogram of observed monthly PM2.5 concentrations, with
the fitted monthly PM2.5 concentrations of GWR-NP model,
GWR-LJ model, GWR-AOD model, GWR-NP-AOD model,
and GWR-LJ-AOD model. As shown in the figure, the prediction
abilities of the five models were stable. According to the deter-
mination coefficient R2 and the root-mean-squared prediction
error RMSE, GWR-NP, and GWR-LJ performed the worst (R2

of 0.66 and 0.67 in spring, 0.69 and 0.71 in summer, 0.76 and
0.77 in autumn, 0.73 and 0.75 in winter). The GWR-AOD model
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Fig. 7. R2 (a) and RMSE (b) of observed monthly PM2.5 concentrations, with the fitted monthly PM2.5 concentrations of GWR-NP model, GWR-LJ model,
GWR-AOD model, GWR-NP-AOD model, and GWR-LJ-AOD model in four seasons.

with the AOD as predict variable has modest improvement (R2

of 0.71 in spring, 0.73 in summer, 0.80 in autumn, and 0.84 in
winter) compared with the NTL as an auxiliary in GWR model.

By adding both the NTL and AOD to the GWR model, the
prediction performance of the GWR-LJ-AOD (R2 of 0.77 in
spring, 0.79 in summer, 0.83 in autumn, 0.87 in winter) and
GWR-NP-AOD model (R2 of 0.76 in spring, 0.77 in summer,
0.82 in autumn, 0.86 in winter) have been greatly improved. The
GWR-LJ-AOD model was improved by 5.80%, 5.39%, 3.33%,
and 3.13%, and the GWR-NP-AOD model was improved by
4.63%, 3.60%, 2.57%, and 1.99% compared with GWR-AOD
model in four seasons.

The fitting effect GWR-NTL-AOD model (the average R2 of
the GWR-NP-AOD and GWR-LJ-AOD model) was better than
that of the GWR-NTL model (the average R2 of the GWR-NP
and GWR-LJ model), with R2 increases by 10.22%, 7.79%,
6.50%, and 12.21% in four seasons. Furthermore, the superi-
ority of the GWR-NTL-AOD model over GWR-AOD model
and GWR-NTL model can also be proven by the RMSE in
Fig. 7(b). Compared with the GWR-NTL model, the RMSE of
the GWR-NTL-AOD model decreased by 1.10, 1.11, 1.94, and
4.89 μg/m3, respectively. The RMSE of the GWR-NTL-AOD
model is reduced by 0.51, 0.66, 0.59, and 1.19 μg/m3 compared
to the GWR-AOD model.

The fitting R2 of the GWR-LJ-AOD model in Fig. 8 is
slightly higher for the GWR-NP-AOD model. The superiority
of the GWR-LJ-AOD model to the GWR-NP-AOD model in
estimating PM2.5 concentrations is also confirmed by those
RMSEs and associated slopes in Fig. 8. The seasonal slope
of GWR-LJ-AOD has increased by 2%, 1%, 1.6%, and 1.3%
with comparison to the GWR-NP-AOD model. For low PM2.5

concentrations (less than 50 μg/m3), all models overestimated
the PM2.5 concentrations. When the PM2.5 concentrations were
greater than 60 μg/m3, underestimates existed in all models,
and the underestimates became more serious as the observed
PM2.5 concentration increased. This may be because the model

parameters were determined using mainly PM2.5 concentrations
smaller than 120 μg/m3, and high PM2.5 values got less weight
[21].

Table VIII shows the results for the seasonal cross-validation
of the GWR-NP model, GWR-LJ model, GWR-AOD model,
GWR-NP-AOD model, and GWR-LJ-AOD model. Slight over-
fitting occurred in all models because the R2 values of model
fitting and cross-validation were all less than 1, and the R2

values of cross-validation were smaller than those for the model
fitting. The performances of these models for each season were
similar. The GWR-LJ-AOD model and GWR-NP-AOD model
performed best (the R2 of 0.72 and 0.71 in spring, 0.73 and 0.72
in summer, 0.79 and 0.79 in autumn, 0.85 and 0.83 in winter),
while the GWR-AOD came third (the R2 of 0.71, 0.71, 0.77, and
0.80 in four seasons). The GWR-NP and GWR-LJ had the lowest
corrections (the R2 of 0.63 and 0.65 in spring, 0.67 and 0.69 in
summer, 0.72 and 0.73 in autumn, 0.73 and 0.74 in winter). The
better prediction performance of GWR-NTL-AOD indicates that
the NTL data are helpful for more accurate predicting the PM2.5

concentration.
Furthermore, the R2 of the GWR-LJ-AOD model is higher

than that of GWR-NP-AOD, with the 1.16%, 1.79%, 0.76%,
1.15% improvement in model fitting, and with the 1.04%, 0.85%,
0.78%, 1.37% improvement in cross-validation. The GWR-LJ
model is superior to GWR-NP, with the R2 improved by 0.87%,
2.60%, 1.14%, and 2.22% in model fitting and 1.75%, 2.52%,
0.58%, and 0.96% in cross-validation. The performance of the
models can also be verified by the change in RMSE. In general,
the GWR model with LJ1-01 performs better than that with
VIIRS DNB. The better estimation ability of LJ1-01 in AOD-
based PM2.5 prediction indicates that the new generation LJ1-01
NTL data in the GWR model is conducive to a more accurate
PM2.5 concentration prediction.

The performance of the GWR-LJ-AOD model and GWR-
NP-AOD model in autumn and winter were much better than
that in the spring and summer. According to the results of
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Fig. 8. Comparison of prediction performances for seasonal PM2.5 concentrations derived with the (a) GWR-LJ-AOD (the left column) and (b) GWR-NP-AOD
model (the right column). From top to bottom, the figures represent spring, summer, autumn, and winter, respectively. The number of points is 297. The x-axis
represents the ground observed PM2.5 concentrations, y-axis represents the fitted PM2.5 concentration obtained from constructed models. The solid and dashed
lines in the figure are fitted regression curves and 1:1 reference curves, respectively.
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TABLE VIII
TENFOLD CROSS-VALIDATION RESULTS FOR THE CONSTRUCTED FIVE MODELS

model fitting and cross-validation, this is probably because of
dense vegetation and low wind speed in autumn, leading to
the accumulation of aerosol particles in the BTH region, thus
enabling the model to best predict PM2.5 at this time. Winter is
the urban heating period, the main contribution to elevated PM2.5

concentrations is from coal and biomass combustion for heat-
ing. This information might be not captured by MODIS AOD,
whereas NTL as an indicator of human activity can reflect the
effect of heating to some extent. Thus, NTL data might introduce
into the model’s additional PM2.5 emission sources missed by
MODIS AOD, which could lead to predictions of PM2.5 that
are more accurate [32]. In spring, the drier climate, greater wind
speeds, and lower amounts of rainy weather were conducive to
the formation of dust conditions, which resulted in the diffusion
of aerosol particles and decreases in PM2.5 concentrations. In
summer, the increase in temperature, decrease in atmospheric
stability, and high frequency of heavy rainfall were conducive
to the diffusion, wet settlement, and dilution of atmospheric
pollutants [23]. In those conditions, PM2.5 concentrations in
spring and summer were lower than those in other seasons,
and the predictive performance for PM2.5 concentrations was
reduced.

D. Temporal and Spatial Distribution of Predicted
PM2.5 Concentrations

Fig. 9 showed the seasonal mean spatial pattern of the esti-
mated PM2.5 concentrations from June 2008 to May 2019, the
PM2.5 concentrations were calculated by using the GWR-LJ-
AOD and GWR-NP-AOD model with a 10 × 10 km and 750
× 750 m resolution around each of the PM2.5 sites in the BTH
region. To examine the spatial and seasonal prediction accuracy
of the model, the ground PM2.5 measurements were also shown
in Fig. 9.

Clearly, the temporal and spatial patterns of PM2.5 concen-
trations were very similar, with low values in the northwest and
high values in the southeast, i.e., a significant north-to-south
increasing gradient. These continuous PM2.5 concentration sur-
faces with 750 × 750 m depict more detailed information and
structural change than the resolution of 10 × 10 km and the
stationary monitoring sites. However, the PM2.5 concentrations
obtained by the GWR-NP-AOD model were lower than those
attained by the GWR-LJ-AOD model, especially when PM2.5

concentrations were higher.
The reason may be that the GWR-LJ-AOD model, which

integrates LJ1-01 data with more accurate artificial lighting

details, can more clearly reflect human activities and capture the
status of pollution sources, which improves model performance
and more accurately reflects the spatial distribution of PM2.5

concentration.
Spatially, the PM2.5 regional pollution differences in the BTH

region were greatly affected by topographical dynamics and
population [20], and the boundary of the polluted region was
basically consistent with the direction of the Yan Mountains in
the north and the Taihang Mountains in the west. The Taihang
Mountains and Yan Mountains in the northwest region have
a certain blocking and weakening effect on cold air activity,
causing the stagnation of airflow, and the concentration of pol-
lutants and water vapor. Pollutants along the leeward slope of
the Taihang Mountains cannot diffuse easily. Furthermore, the
suburbs and mountainous areas west and north of the Taihang
Mountains have a low population density, low levels of social and
economic activities, and few pollution sources, which resulted in
lower PM2.5 concentrations in this area. The highest population
density, traffic density, industrial production, and combustion
sources in the eastern plain region contributed to the high
PM2.5 concentrations in this region. This region includes the
highly urbanized and polluted Haidian, Daxing, Shunyi, and
Tongzhou districts in Beijing, where the PM2.5 concentrations
were 73.69, 74.86, 74.08, and 76.25 μg/m3. The PM2.5 concen-
trations were all higher than 80 μg/m3 in central and southern
Hebei. For example, the PM2.5 concentration of Shijiazhuang
was 84.98 μg/m3, Hengshui was 82.51 μg/m3, Xingtai was
84.97 μg/m3, and Handan was 86.10 μg/m3.

Fig. 9 shows the strong seasonal variations in the spatial distri-
butions of PM2.5 concentrations. Winter was the most polluted
season, in which the average predicted PM2.5 concentration
was 71.34 μg/m3. The average PM2.5 concentrations in many
areas were higher than 60 μg/m3 at this time. In the winter,
temperature inversions occur frequently and the dispersion of
pollutants is limited in the shallow mixing layer. Furthermore,
the smoke and dust released by centralized coal-fired power
plants during the heating period contribute to the accumulation
of fine particles, which leads to high PM2.5 concentration on the
ground. The summer with mostly flourishing vegetation, mainly
sunny weather, a higher boundary layer, and enhanced mixing in
the developing atmospheric boundary was the cleanest season,
in which the average predicted PM2.5 concentration was approx-
imately 36.48 μg/m3. The average predicted concentrations for
spring and autumn were between those for summer and winter.
In spring, the climate in the BTH area is dry, and local dust
emissions and subsequent transportation have a large influence
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Fig. 9. Distribution of seasonal PM2.5 concentrations from the (a) GWR-LJ-AOD model at a 750 × 750 m resolution. (b) GWR-NP-AOD model at a resolution
of 750 × 750 m. (c) GWR-LJ-AOD model at a 10 × 10 km resolution. (d) GWR-NP-AOD model at a resolution of 10 × 10 km. (e) Ground stationary monitoring
sites. From top to bottom, the figure represents the results from spring, summer, autumn, and winter, respectively.
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on urban pollution. Its average predicted PM2.5 concentration
was 37.86 μg/m3, which was slightly less than the average
predicted PM2.5 concentration in autumn (44.57 μg/m3). The
predicted annual PM2.5 concentration was 48.82 μg/m3, a value
far higher than the 35 μg/m3 standard for PM2.5 in the Chinese
National Ambient Air Quality Standards (gb3095-2012) [42].

V. DISCUSSION

Because of the sparse distribution of stationary air quality
monitoring sites, satellite data with a wide spatial coverage are
becoming an important supplementary tool for estimating PM2.5

concentrations in various regions including urban areas and areas
impacted by human activities. On the basis of the influence of
several factors including meteorological and geographic factors
on PM2.5 concentrations, this study selected the most suitable
vegetation index to predict PM2.5 concentrations in the BTH
region, where PM2.5 pollution is problematic. The selected data
were used to explore the ability of the new generation LJ1-01
NTL satellite product to help estimate PM2.5 concentrations in
comparison to traditional NPP-VIIRS NTL data. The results
showed that the EVI, as an auxiliary variable in the GWR model,
was better to evaluate of PM2.5 concentrations than the NDVI,
and subsequently, the EVI rather than the NDVI was used as
the vegetation variable input into the GWR model in further
analyses. In addition, the results demonstrated that LJ1-01 NTL
data had better predictive power than NPP-VIIRS NTL data
in AOD-based PM2.5 concentration prediction. This advantage
was partly due to the wide DN radiometric range and the spatial
detail reduction ability satellite. However, there are still some
uncertainties associated with the implementation process.

We used the monthly average values of Aqua MODIS and
Terra MODIS to represent the true aerosol status and the mean
AOD distribution of each grid cell. However, there were some
areas during one specific month when only one of the two
retrievals was available, thus resulting in a significant amount of
missing data for the average of MODIS AOD. While the linear
regression model, to a large extent, eased the absence of the
AOD values, uncertainty still existed because of the appearance
of clouds or high-reflectivity surface covers such as snow and ice
in some regions, so it was difficult to accurately fit the changes in
PM2.5 concentrations with AOD. In this study, there were AOD
anomalies and AOD deletions in Chengde and Zhangjiakou
almost every month, so we used the surrounding pixel interpola-
tion method to obtain the AOD values for missing points in eval-
uations of PM2.5 concentrations. The determination of AOD out-
liers and data interpolation brought about great uncertainty dur-
ing the model fitting. Furthermore, although the MODIS AOD
products showed good performance in evaluating the PM2.5 con-
centrations, the utilization of the AOD products was associated
with some limitations. For example, the satellite can only capture
the change values at one certain time (satellite overpass time),
so the established model was specific to a specific time. The
diurnal variability of PM2.5 and AOD can be significant [20],
so the prediction model for PM2.5 concentrations in other time
periods needs to consider more possible predictors to make up
for the impact caused by the limited timeliness of AOD data.

In this study, LJ1-01 data, as an important information source
for assessing the NTL intensity, were used to study the potential
for estimating PM2.5 concentrations. The experimental results
showed that LJ1-01 NTL data had a better ability to help predict
PM2.5 concentrations than NPP-VIIRS NTL data. The high
accuracy of the PM2.5 concentration assessment benefited from
the spatial characteristics of LJ1-01 NTL data. On the one hand,
LJ1-01 data have a high spatial resolution and a broad spectral
coverage, thereby LJ1-01 data can provide more variability
and capture finer spatial details in anthropogenic lighting. The
improvements achieved with the LJ1-01 data makes the spatial
distribution pattern of human activities more consistent with the
reference data. Thus, the LJ1-01 NTL data can precisely map
the radiation signals to help evaluate PM2.5 concentrations.

However, it is also well known that there are still some issues
for the utilization of LJ1-01 data. First, the high resolution
of LJ1-01 data limited the coverage of a single imaging, its
swath width is only 250 km and the revisit time is 15 days.
Furthermore, most of the data cover the region from tropical to
subtropical regions, with few goes to the high latitude. These
limitations pose a challenge for temporal sampling, application
scope, and large-scale observations at the same time. Addi-
tionally, LJ1-01 imagery is affected by moonlight, which will
bring about great uncertainty in remote sensing applications.
Wang et al. [43] have developed a nighttime shortwave radiative
transfer model capability in the UNifed and Linearized Radiative
Transfer Model (UNL-VRTM). In the UNL-VRTM, a spectrally
resolved moon-phase-based lunar irradiance model was added
to calculate lunar irradiance at the top of the atmosphere. After
learning the downward lunar radiance at the TOA, the radiative
transfer in the atmosphere and the interaction of the moonlight
with earth surfaces are treated in the similar manner as for the
shortwave radiative transfer at daytime in UNL-VRTM. Thus,
moonlight can be approximated as a collimated and directional
source when it reaches TOA and can be treated in the similar way
as is done for the solar due to the similarity of the polarization
characteristics and the comparable solid angle of the moon to that
of the Sun. However, the incorporating model still has several
limitations. First, when the moonlight is treated as a collimated
beam of electromagnetic plane waves as for direct-sun shortwave
radiation, the difference of the moonlight polarization properties
to that of the sun is ignored. Second, the uncertainty of the model
is in the range of 5%-10% on account of the inability to account
for temporal variations of the solar spectrum and libration effects
on the lunar surface albedo. Future research will aim to apply
the model to remove the effects of moonlight in LJ1-01 NTL
images, and further treat the limitations in the model, providing
more accurate knowledge.

The spatial and temporal mismatches of meteorological data,
AOD, PM2.5 concentration data, and geographical data will also
bring about uncertainty for evaluation the PM2.5 concentrations.
For example, MODIS AOD represents a 10-km resolution, the
DEM data resolution is 90 m, and the meteorological data
with a resolution of 0.125° × 0.125°. Resampling of images
with different resolutions, matching of point value data, and
continuous remote sensing spatial coverage data will affect the
results. In addition, some auxiliary variables in past studies
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were not added to the model as independent variables because
of data and resource limitations, such as wind vector data in
the four directions, traffic data, and demographic and economic
statistics data. If the above factors are taken into account or more
appropriate predictors are added to the model, the stability and
accuracy of the model for predicting spatiotemporal changes
will be improved. In future research, more data will be collected
to help predict PM2.5 concentrations and improve predict per-
formance.

VI. CONCLUSION

This study explored the potential for the use of LJ1-01 NTL
data in AOD-based PM2.5 concentration predictions. In this
study, five GWR-based models were established to illustrate
the nonstatic spatial variation relationships of predictors such as
the EVI and LJ1-01 NTL data with the PM2.5 concentrations.
Ground observation data for PM2.5 concentrations were used to
verify the accuracy of the model predictions. The established
models solved the problem in which low spatial resolution NTL
remote sensing data cannot accurately evaluate PM2.5 concen-
trations. The conclusions are as follows.

1) The annual prediction R2 with EVI variable all increased
by 6%, the slope had improved by 6% and 5% compared
with the variable of NDVI.

2) The seasonal R2 with NTL in AOD-PM2.5 model have
improved by 5.07%, 4.50%, 2.95%, 2.56% in model fitting
and 1.20%, 1.75%, 2.20%, 4.41% in cross-validation.

3) Compared with the NPP-VIIRS in AOD-PM2.5 model, the
seasonal R2 with LJ1-01 in AOD-PM2.5 model increased
by 1.16%, 1.79%, 0.76%, 1.15% in model fitting and
1.04%, 0.85%, 0.78%, 1.37% in cross-validation.

The findings of this study prove that EVI is a more appropriate
vegetation variable in PM2.5 concentration in the GWR model.
LJ1-01 data have better performance and potential for evaluating
PM2.5 concentrations, and accurately reflect the spatial distri-
bution of PM2.5 concentration. In the future, more predictors
will be integrated into the GWR model to further improve the
accuracy of PM2.5 concentrations.
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