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Deep Induction Network for Small Samples
Classification of Hyperspectral Images

Kuiliang Gao , Wenyue Guo , Xuchu Yu, Bing Liu , Anzhu Yu, and Xiangpo Wei

Abstract—Recently, the deep learning models have achieved
great success in hyperspectral images (HSI) classification. However,
most of the deep learning models fail to obtain satisfactory results
under the condition of small samples due to the contradiction
between the large parameter space of the deep learning models and
the insufficient labeled samples in HSI. To address the problem,
a deep model based on the induction network is designed in this
article to improve the classification performance of HSI under the
condition of small samples. Specifically, the typical meta-training
strategy is adopted, enabling the model to acquire stronger gen-
eralization ability, so as to accurately distinguish the new classes
with only a few labeled samples (e.g., five samples per class). More-
over, in order to deal with the disturbance caused by the various
characteristics of the samples in the same class in HSI, the class-
wise induction module is introduced utilizing the dynamic routing
algorithm, which can induce the sample-wise representations to
the class-wise level representations. The obtained class-wise level
representations possess better separability, allowing the designed
model to generate more accurate and robust classification results.
Extensive experiments are carried out on three public HSI to verify
the effectiveness of the proposed method. The results demonstrate
that our method outperforms existing deep learning methods under
the condition of small samples.

Index Terms—Deep learning, hyperspectral images (HSI)
classification, induction network, meta-learning, small samples
classification (SSC).

I. INTRODUCTION

HYPERSPECTRAL images (HSI) contain rich spatial and
spectral information, which makes it possible to accu-

rately identify and classify ground objects. With the continuous
development of imaging spectrometer, the spectral resolution
and spatial resolution of HSI is increasing, which makes the
description of gound object characteristics more elaborate. HSI
classification, one of the most important steps in HSI analysis
and application, has become an active research subject in the
field of remote sensing [1].

Initially, some methods, such as principal components anal-
ysis [2] and linear discriminant analysis [3], are widely utilized
to extract discriminant features from the abundant spectral in-
formation in HSI, so as to alleviate the Hughes phenomenon
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in the classification. Subsequently, many spatial information
utilization methods, such as local binary patterns [4], extended
morphological profile [5], and superpixel segmentation [6], are
introduced to further improve the classification accuracy. In
the traditional classification mode, the above feature extraction
methods are usually combined with support vector machine
(SVM) [7], random forest [8], extreme learning machine [9] and
other classifiers to complete the classification. Admittedly, the
traditional methods are somewhat effective in HSI classification,
but its shallow learning model cannot extract the deep abstract
features in HSI [10]. In addition, their classification accuracy
largely depends on the handcrafted features and parameter set-
tings, while lacking robustness in practical application.

Deep learning models, which can implement end-to-end
learning by building a hierarchical framework, are very powerful
for features extraction. In recent years, many deep models have
been applied to HSI processing and analysis. Stacked AutoEn-
coder [11], ladder network [12], recurrent neural network [13],
and deep belief networks [14] are first introduced to HSI classi-
fication. Given enough labeled samples, the above models can
yield encouraging results. However, these models cannot fully
take advantage of the spatial information in HSI because they
cannot directly process the image data with 2-D structure. 2-D
convolutional neural network (2D-CNN), which can directly
perform 2-D convolution operation on images, has been widely
used in HSI classification [15]. With the deepening of the net-
work and the increase in the number of convolution kernels,
2D-CNN can extract rich features conducive for classification,
which allows 2D-CNN to obtain better classification results.
In [16], Xu et al. designed a 2D-CNN-based Random Patches
Network utilizing the strategy of multiscale patch extraction.
In [17], Zhu et al. proposed a novel deformable HSI classification
method by introducing the deformable convolutional sampling
locations. In [18], Zhao et al. trained a deep 2D-CNN model
utilizing the strategy of multisource deep transfer learning. HSI,
consisting of hundreds of bands, is a typical 3-D data cube.
Therefore, compared with 2D-CNN, 3D-CNN can make better
use of spatial-spectral information in HSI, to further improve the
classification accuracy [19]. In [20], Fang et al. proposed a novel
end-to-end 3-D dense convolutional network with spectral-wise
attention mechanism to classify HSI. In [21], Wang et al.
designed an alternately updated spatial-spectral convolutional
network with a recurrent feedback structure to extract the refined
spectral and spatial features in HSI. In [22], Li et al. proposed
a multiscale deep middle-level feature fusion network, which
can fully fuse the strong complementary and related information
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among different scale features for HSI classification. In addition,
CNN is also combined with capsule network (CN) [23], siamese
network [24], and other novel network structures, obtaining
satisfactory results with sufficient labeled samples.

Deep learning, a data-driven machine learning method, de-
pends heavily on the quantity and quality of the labeled sam-
ples [25]. However, obtaining high-quality HSI labeled samples
is both time- and labor-consuming in practice. For this reason,
many researchers resort to data augmentation and semisuper-
vised learning to improve the classification accuracy with limit
labeled samples. For example, Haut et al. [26] utilize the random
occlusion data augmentation for training model, and Li et al. [27]
increases the number of training samples by building the pixel-
pairs model. Semisupervised learning, which can combine the
information of labeled and unlabeled samples, has become a hot
research topic. Selftraining, an effective semisupervised learn-
ing method, has been introduced into the training phase of deep
learning model [28], [29]. Generative adversarial network, con-
taining a generative module and a discriminative module, is also
widely combined with semisupervised learning to improve the
HSI classification effect with limit labeled samples [30]–[32].
Another advanced semisupervised model, graph convolutional
network (GCN), is also used for HSI classification and refreshes
the classification accuracy [33]–[35]. Admittedly, the above
methods can improve the classification accuracy to some extent,
but a certain number of labeled samples must be required as
guarantees for training vast network parameters. In other words,
most of existing deep models cannot obtain satisfactory results
when classifying HSI with only a few labeled samples (e.g., five
labeled samples per class), which is called the small samples
classification (SSC) of HSI [36].

When dealing with the problem of SSC, the deep learning
models are very easy to overfit due to the large number of
trainable parameters [37]. Humans, by contrast, particularly
excel in learning with small samples because they can quickly
and accurately identify objects with only a few examples. The
core reason is that humans can make full use of the existing
learning experience and have the ability to learn how to learn.
Meta-learning, which can imitate this learning mechanism,
has become a new research direction to solve the problem
of SSC [38], [39]. In the field of remote sensing, Liu et al.
first introduced the training mechanism of meta-learning into
HSI classification and obtained encouraging results with a few
labeled samples available [40]. Subsequently, Tang et al. utilized
prototype network, a meta-learning implementation method, to
further explore the small samples classification of HSI [41].
Gao et al. and Ma et al., respectively, designed different meta-
learning frameworks based on relation networks (RN) for HSI
classification [42], [43]. These studies have yielded promising
results and opened new visions for SSC of HSI.

The above meta-learning-based methods all adopt task-based
learning strategies, in which a query set are compared to a
very small support set at the sample-wise level, to simulate the
SSC [44], [45]. However, it is a common phenomenon that the
same class has different characteristics, and different classes
have similar characteristics in HSI. Therefore, the sample-wise
level learning may be severely disturbed by this phenomenon,

which will lead to unstable classification results. In order to miti-
gate the problems as much as possible, a generalized class-wise
abstract representation rather than sample-wise representation
needs to be learned [46]. In other words, there is a need for
an architecture which can model the abstract representations of
samples and dynamically induce sample-wise level representa-
tions to class-wise level representations.

The purpose of this article is to further explore the problem
of HSI SSC utilizing the idea of meta-learning, so as to obtain
more robust and better results. Different from previous meta-
learning-based classification methods, this article attempts to
learn a generalized class-wise level representation in deep metric
space. Specifically, a deep model based on induction network is
designed for HSI SSC (DIN-SSC). The designed model includes
three modules: the feature embedding module, the class-wise
induction module, and the relation-learning module. The feature
embedding module, equivalent to a nonlinear transformation
function, is responsible for generating abstract representations
of the support samples and query samples. The class-wise in-
duction module, the core module of the designed model, can
dynamically induce sample-wise level representations to class-
wise level representations leveraging the matrix transformation
and the dynamic routing algorithm which are the information
transmission mechanism in CN [47]. In practice, sample-wise
representations and class-wise representations are treated as the
input and output capsules, respectively. The relation learning
module generates a relation score by comparing the similarity
between the class-wise representations from the support sets
and the sample-wise representations from the query sets, so as
to complete the SSC of HSI. The proposed method is actually
a metric-based meta-learning method. The core idea is to trans-
form the input data into a deep metric space where samples
belonging to the same class are clustered together, and samples
belonging to different classes are separated. The standard meta-
training process, i.e., the task-based learning strategy, is used for
training the designed model. The designed model first performs
meta-training on the precollected HSI, and then classifies the
target HSI with small labeled samples (five labeled samples per
class). It should be noted that there is no intersection between
the HSI for meta-training and the HSI for SSC.

The main contributions of this article can be summarized as
follows

1) We design an end-to-end deep model based induction
network for SSC of HSI and train it with the standard
meta-training strategy. Specifically, we design the feature
embedding module utilizing 3-D convolution and deep
residual structure, to make full use of the spatial-spectral
information in HSI. Furthermore, we design the relation
learning module by combining the convolutional layers
with the fully connected layers, to carry on relation learn-
ing in the deep metric space.

2) To deal with the disturbance caused by the various
characteristics in the same class in HSI, the class-wise
induction module is introduced, which can enable the
model to induce the class-wise level representations from
the sample-wise representations, so as to enhance the
separability between samples from different classes and
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Fig. 1. Designed deep induction network model for SSC of HSI. xs
i,j and xq

i,j denotes the support samples and the query samples, respectively, esi,j and eqi,j
denotes the sample-wise representations, ui denotes the class-wise level representations.

the aggregation between samples from the same classes.
To the best of our knowledge, it is the first attempt to apply
the class-wise induction module in HSI classification. In
addition, we make a visual analysis on the effectiveness
of this module.

The remainder of this article is structured as follows. In
Section II, the designed deep model (DIN-SSC) and meta-
training strategy are described in detail. In Section III, ex-
perimental results and detailed analysis are presented. Finally,
Section IV concludes this article.

II. PROPOSED METHOD

The designed model, based on the typical meta-learning
framework where tasks containing support sets and query sets
are treated as the basic unit for training, mainly contains three
modules: the feature embedding module, the class-wise induc-
tion module, and the relation learning module (see Fig. 1). Given
a task consisting of a small support set and a query set, the feature
embedding module first models the abstract representations of
the samples. Then, the class-wise induction module transforms
the sample-wise representations from the support sets to the
class-level representations. Finally, the relation learning module
calculates the relation score by comparing the similarity between
the sample-wise representations from the query sets and the
class-level representations from the support sets to determine
the classes of the query samples. In the following sections, the
designed model and the meta-training strategy are described in
detail.

A. Feature Embedding Module

For clarity, the support set and the query set are denoted as S
andQ, respectively. Following the general principles for building
tasks in meta-learning [44], [45], the support set consisting
of C classes with K samples per class can be denoted as
S = {(xs

i,j , y
s
i,j)}i=1,...,C,j=1,...,K , and the query set consisting

of C classes with N samples per class can be denoted as Q =

{(xq
i,j , y

q
i,j)}i=1,...,C,j=1,...,N . The feature embedding module,

which can be regarded as a nonlinear function f(), is responsible
for mapping the samples xi,j to the abstract representations
f(xi,j). This nonlinear mapping is at the sample-wise level due
to it performs the same operations for each sample from the
support sets and query sets.

Considering the fact that HSI contain both abundant spatial
and spectral information, we design the feature embedding mod-
ule based on the 3-D convolution and the deep residual structure
(see Fig. 2). The feature embedding module takes the data cubes
around the pixels in HSI as input and the feature vectors, i.e.,
the sample-wise representations, as output. 3-D convolution,
extracting more informative and robust features in spatial and
spectral domains at the same time, has been widely used in HSI
processing and analysis. The feature embedding module is a
deep residual network including many basic operational units
which contains 3-D convolutional layers, batch normalization
layers and Relu activation function. The residual structure is
conducive for training the deep network which can allow the
convolutional layers gradually extract more abstract features
from the input data cube. Batch normalization layers and Relu
function both can alleviate the problem of vanishing gradient
and speed up the convergence. In convolutional layers, the
kernel size is uniformly set to 3× 3× 3, which has been proved
to be effective for local features extraction [48]. Between the
residual blocks, the max-pooling layers are added to reduce the
dimension of the feature maps.

In summary, a deep residual network consisting of three
residual blocks and ten convolutional layers is constructed, to
take full advantage of the spatial-spectral information in HSI
and generate the sample-wise level representations.

B. Class-Wise Induction Module

The phenomenon that the samples from the same class possess
different characteristics and the samples from different classes
possess similar characteristics, is very common in HSI. In this



GAO et al.: DEEP INDUCTION NETWORK FOR SMALL SAMPLES CLASSIFICATION OF HYPERSPECTRAL IMAGES 3465

Fig. 2. Feature embedding module based on the 3-D convolution and the deep residual structure. BN denotes a batch normalization layer, conv3D denotes a 3-D
convolution layer.

case, it is susceptible that only utilizing the sample-wise level
representations for comparison in the metric space. Therefore,
the designed model should be able to ignore the information
irrelevant to classification, encapsulate the information closely
related to classification into a class vector, which is just the
goal of the class-wise induction module. For the samples from
the support sets, the class-wise induction module induce the
sample-wise representations belonging to the same class esi,j to
the class-wise level representations ui

{esi,j}i=1,...,C,j=1,...,K �→ {ui}i=1,...,C . (1)

The dynamic routing algorithm, which is the core information
transmission mechanism in CN, is introduced to implement
the class-wise induction module. In CN, the dynamic routing
algorithm is used to model the abstract spatial relationship
between the parts in low-level capsules and the whole in high-
level capsules. In the problem of HSI SSC, we can regard the
samples as the parts and the classes as the whole. In other words,
the sample-wise level representations are treated as the input
capsules and the class-wise level representations are treated as
the output capsules in the dynamic routing algorithm.

Specifically, the weight-sharable transformation matrix Ws

and bias bs are employed across all the support samples, to
accommodate all possible inputs, i.e., a C-way K-shot task at
any scale. In this case, the prediction vector êsi,j can be computed
by

êsi,j = squash(Wse
s
i,j + bs) (2)

squash(x) =
‖x‖2

1 + ‖x‖2
x

‖x‖ . (3)

In (3), squash is a nonlinear squashing function designed for
vector calculation [47], which can keep the direction of the
vector unchanged but scales its magnitude to [0, 1]. Through the
affine transformation, (2) implements the map from sample-wise
space to class-wise space. Next, we need to apply the dynamic
routing algorithm to induce the abstract representations belong-
ing to the same class to a class-wise level representation

di = softmax(bi) (4)

ûi =
∑

j

dij · êsi,j (5)

Fig. 3. Visual representation of the class-wise induction module.

ui = squash(ûi) (6)

bij = bij + êsi,j · ui. (7)

The dynamic routing algorithm can be mainly divided into
four steps: “routing softmax,” calculating weighted sum, apply-
ing squash function and updating coupling coefficient. In (4),
bi denoting the logits of coupling coefficients is initialized by
0 in the first iteration. The coupling coefficients di, which can be
automatically modified in each iteration, sum to 1 between class
i and all support samples in this class. Each class candidate
vector ûi is obtained by calculating the weighted sum of all
sample prediction vectors êsi,j in this class (5). Then, the squash
function is applied to the vector ûi, to ensure its magnitude
will not exceed 1 (6). Finally, the logits of coupling coefficients
bij is updated according to the scalar output between the out
class vector ui and the sample prediction vectors êsi,j . This
update is very effective for the SSC due to it does not need
to save any parameters. In order to clearly illustrate the whole
workflow, the class-wise induction module is summarized as
Algorithm 1 in the form of pseudocode. In addition, Fig. 3
shows the visual representation of the class-wise induction
module.

Utilizing transformation matrix and dynamic routing algo-
rithm in the class-wise induction module, multiple sample-wise
representations from the same class are finally encapsulated
into one representation. In the process, the various information
irrelevant to classification in the sample-wise representations is
abandoned, and the discriminant information closely related to
classification is reserved. Consequently, the obtained class-wise
representations possess better separability in the metric space,
which will be verified in Section III-F.



3466 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Algorithm 1: The Class-Wise Induction Module.
Require: The sample-wise representations esi,j in the
support sets and the logits of coupling coefficients bij is
initialized as 0.

Ensure: The class-wise level representations ui

1: for all sample-wise representations j = 1, . . . ,K in
class i: êsi,j = squash(Wse

s
i,j + bs)

2: for r in iterations do
3: di = softmax(bi)
4: ûi =

∑
j dij · êsi,j

5: ui = squash(ûi)
6: for all sample-wise representations j = 1, . . . ,K in

class i: bij = bij + êsi,j · ui

7: end for
8: return ui

Fig. 4. Relation learning module. FC denotes a fully connected layer.

C. Relation Learning Module

After the action of the first two modules, the abstract represen-
tations of the query samples and the class-wise level represen-
tations of the support samples have been obtained. The purpose
of the relation learning module is to determine the class of the
query samples by comparing the similarities between different
representations in the deep metric space. As shown in Fig. 4, the
abstract representation of each query sample is concatenated to
the class-wise representations from the support set. Then, the
relation score of the resulting concatenation is calculated by a
designed network. Specifically, if the two representations in a
concatenation belong to the same class, the relation score should
be equal to 1, otherwise 0.

Theoretically, any network structure can be used to calculate
the relation scores. Referring to [45], 2-D convolutional layers
and the fully connected layers are utilized to construct the net-
work. The convolutional layers, which are packed in an operation
unit as Section II-A, can further extract the feature information
in different representations, while the fully connected layers can
deepen the network, to enhance the nonlinearity. In addition,
Dropout is added between the fully connected layers to enhance

Fig. 5. Meta-training strategy for HSI SSC.

the generalization capability of the network. At the end of
the network, the sigmoid function is used to map the output
to [0, 1].

D. Meta-Training Strategy

The core of meta-learning is to enable the model to acquire
rich transferable knowledge and master the ability of how to
learn through vast task-based learning, which can simulate SSC
in the early stage. However, there is no large available image
database like ImageNet in the field of remote sensing. Therefore,
we artificially divide the existing HSI into the precollected
HSI and the target HSI, so that the model to fully perform
meta-learning. In addition, we randomly select five samples
per class from the target HSI to build the fine tuning sets, and
utilize the remaining samples as the testing sets. As shown in
Fig. 5, the designed model is first trained on the precollected
HSI (meta-learning), then trained on the fine-tuning sets, and
finally perform the classification on the testing sets. During the
training phases, the mean square error (MSE) is adopted as the
loss function of the designed model

LMSE =

C∑

i=1

C×N∑

k=1

(ri,k − 1 · (yqk == i))2 (8)

where ri,k denotes the relation scores, yqk denotes the true labels
of the query samples.

In the whole process, only five samples per class are randomly
selected from the target HSI to fine tune the designed model. In
other words, only five samples per class, which are extremely
small, are utilized as the supervised samples. Therefore, what
the designed model performs is the SSC of HSI.

III. EXPERIMENTS AND DISCUSSION

The designed model and other algorithms are developed and
implemented based on Python and Pytorch library. All exper-
imental results are generated on a laptop with an Intel Core
i7-9750H, 16 GB memory, and an NVIDIA GeForce RTX 2070.
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TABLE I
DETAILS OF THE HSI FOR META-LEARNING

Ground sample distance (GSD) (m), spatial size (Pixel), spectral range
(nm), airborne visible infrared imaging spectrometer (AVIRIS), and
reflective optics system imaging spectrometer (ROSIS).

TABLE II
DETAILS OF THE TARGET HSI

Ground sample distance (GSD) (m), spatial size (Pixel), spectral range
(nm), airborne visible infrared imaging spectrometer (AVIRIS), and
reflective optics system imaging spectrometer (ROSIS).

A. Building the Experimental Datasets

In order to verify the effect of DIN-SSC on HSI SSC, the
experiments are carried out using the six HSI, including In-
dian Pines (IP), Kennedy Space Center (KSC), Chikusei (CH),
University of Pavia (UP), Salinas (SA) and Houston (HS). The
six HSI are captured by different imaging spectrometers with
different ground objects, ground sample distance and spectral
range, which is helpful for building rich and various tasks for
meta-learning (see Tables I and II). In the experiments, the
meta-training strategy in Section II-D was employed. Specif-
ically, the first three HSI are used for meta-learning and the
last three for classification. This is a viable strategy, and in
fact any other strategy leveraging knowledge in the precollected
HSI can be adopted. In practice, an advanced band selection
method (ISSC) [49] was utilized to select 100 bands instead of
all bands for each HSI, to standardize the spectral dimensions of
the different HSI, while reducing spectral redundancy. Referring
to [50], the 17 × 17 × 100 cubes around the pixel are selected
as the input data. The above approaches can ensure that the
samples from different HSI have a uniform data dimension,
which facilitates subsequent calculations. For IP, KSC, and CH,

TABLE III
OVERALL ACCURACY (OA) (%) UNDER DIFFERENT TASK SETTINGS

200 samples per class are randomly selected to build to the
datasets for meta-learning. Consequently, the resulting dataset
consists of 41 class with 8200 samples For UP, SA, and HS, five
samples per class are randomly selected to build to the datasets
for fine-tuning, and the remaining samples are used for testing.

B. Experimental Setting

The model performs meta-learning on the precollected HSI,
to acquire a wealth of knowledge and develop the ability to
learn how to learn. In the meta-learning phase, tasks are the
basic units of model training. In other words, a task is just
an iteration. Specifically, a task, generated randomly from the
precollected HSI, is determined by the number of classes C,
the number of the support samples per class K, and the number
of the query samples per class N . Therefore, the influence of
C, K, and N on the classification accuracy is first investigated
experimentally.

It can be seen from the results in Table III that the values ofC,
N , and K have a significant impact on the classification results,
which indicates that tasks setting in the meta-learning phase is
very important. Specifically, the following two observations can
be summarized from Table III.

1) The number of the classes C can directly affect the com-
plexity of the tasks, i.e., the larger the value ofC, the more
complex the tasks. The appropriate value of C can enable
the model to obtain the best classification results, too
large or too small will lead to the decline in classification
accuracy. For UP and SA, the optimal value of C is 20,
while for HS, the optimal value of C is 30. This indicates
that the optimal value of C is correlated with the number
of classes in the target HSI (UP:9, SA:16, HS:30).

2) K and N determine the ratio between the support samples
and the query samples in a task. Some studies have shown
that setting K far less than N in the tasks (e.g., K = 1
and N = 19) can improve the classification accuracy by
simulating the condition of SSC in the training phase [42],
[44]. However, in the designed model, the class-wise in-
duction module needs a certain number of support samples
for the induction of class-level representations, which is
beneficial to accurately determine the classes of query
samples. Considering the above two points, it is easy to
understand why the optimal values of K and N are 5 and
15, respectively.

The dynamic routing algorithm is the key to implement
the class-wise induction module. In each training iteration, the
number of routing r has a great influence on the effect of the
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Fig. 6. Influence of r. (a) OA under different r. (b) Meta-learning time under different r.

Fig. 7. Loss value of the designed model with different learning rate.

dynamic routing algorithm. Fig. 6 shows the influence of r on the
classification results and the meta-learning time. As we can see,
with the increase of r, the classification accuracy increases grad-
ually at first and then tends to be stable, while the meta-learning
time increases linearly. Considering the classification accu-
racy and execution efficiency comprehensively, r is uniformly
set to 3.

The learning rate determines the convergence speed of the
model, which can indirectly affects the meta-learning. Referring
to relevant experiments, we explored the influence of learning
rate at 0.01 and 0.001 on the loss value. Fig. 7 shows the
experimental results. It can be found that a smaller and more
stable loss value can be obtained when the learning rate is 0.001,
which means that the model can learn more fully.

Finally, we explored the influence of different network struc-
tures on the classification results of UP. Specifically, the residual
structure and the dimension of the convolution operation in
the feature embedding module, and the number of network
layers in the relation learning module are investigated in detail.
Table IV lists the specific structure settings and the correspond-
ing classification accuracy. For example, COV3(16) denotes a
3-D convolutional layer with 16 convolution kernels, RB(16)
indicates that the number of all convolution kernels in the
residual block is 16, and FC (128) denotes a fully connected layer
containing 128 neurons. Apart from the information listed in this
table, the network details are exactly identical to Sections II-A

TABLE IV
OA (%) ON UP UNDER DIFFERENT NETWORK STRUCTURE

The Feature Embedding Module (FEM), The Relation Learning Module (RLM), Resid-
ual Block (RB), Max Pooling (MP), Fully Connected Layer (FC). CONV Denotes a
Convolutional Layer. The Superscript 2 or 3 Denotes Two or 3-D Operations.

and II-C. According to the results in Table IV, the following
three observations can be obtained.

1) Comparing No .1 and No. 3 network settings, we can find
that 3-D convolution operation can produce higher clas-
sification accuracy compared 2-D convolution operation.
HSI possesses rich spectral and spatial information at the
same time, and 3-D convolution can make full use of
the spatial-spectral information, to further improve the
classification accuracy.

2) By comparing No.2 and No.3 network settings, it is easy
to see that the model with residual structure can obtain
the higher classification accuracy. By introducing residual
structure, the model can extract more abstract and robust
features, thus further improving the classification perfor-
mance.

3) By comparing No.3 and No.4 network settings, we find
that using deep network in the relation learning module
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON UP (FIVE SAMPLES PER CLASS ARE USED AS THE SUPERVISED SAMPLES; BOLD VALUES

REPRESENT THE BEST RESULTS AMONG THESE METHODS)

will not improve the classification accuracy further. The
network consisting of a convolutional layer and two fully
connected layers is sufficient to implement the relation
learning between the different representations.

In summary, through the above experiments, the hyperparam-
eters including the optimal task settings, the number of routing,
and learning rate in the meta-learning phase, as well as the
network settings of the model are explored in detail, so that the
design model can obtain the best classification effect. Referring
to [40] and [42], the number of iterations in the meta-learning
phase and the fine-tuning phase are set to 10 000 and 1000,
respectively. The process of meta-learning and fine-tuning is
task-based, and a task is equivalent to an iteration. It means that
10 000 and 1000 tasks need to be generated for meta-learning
and fine-tuning, respectively. In addition, Adam is adopted as the
optimization algorithm, so that the design model can perform the
sufficient meta-learning.

C. Comparison and Analysis

In order to verify the effectiveness of the proposed model
in the SSC of HSI, we compare the experimental results with
SVM, two classical deep learning methods 3-D-CNN [51] and
iCapsNet [23], two advanced semisupervised deep learning
methods HSGAN [31] and CNN+GCN [33], and two meta-
learning-based methods RN-FSC [42] and DFSL+SVM [40].
SVM, more suitable for processing the high-dimensional data
than other traditional classifiers, has been widely used in HSI
classification. 3-D-CNN, a classical deep learning model in-
cluding 3-D convolutional layers and fully connected layers,
can make full use of the spatial-spectral information in HSI.
iCapsNet, a variant of the CN used for HSI classification, can
encode the abstract features at a higher level utilizing the capsule
neurons. Both HSGAN and CNN+GCN can further improve the
classification accuracy by using the information of unlabeled
samples. RN-FSC and DFSL+SVM, also designed based on the
meta-learning framework, have been demonstrated to achieve
better results in the problem of HSI SSC. In addition, a deep

transfer learning method TL+CRNN [52], which utilizes the
UBC dataset for transfer learning, is also used for comparison.
It should be emphasized again that for all methods, there are
only five labeled samples per class of the target HSI as the
supervised samples. In addition, the OA, average accuracy (AA)
and Kappa coefficient are selected as the evaluation indicators
to quantitatively compare the classification results of different
methods.

Tables V–VII list the classification results of different meth-
ods, which can be summarized as the following five points.

1) The classification results of SVM are generally better than
the two classic deep learning models. With only five la-
beled samples per class used for training, the deep learning
models are prone to overfit, which seriously affects the
classification accuracy. For example, the OA of 3-D-CNN
on SA is only 74.24%. More seriously, the classification
accuracy of iCapsNet on No. 9 class of UP is 0.00%.

2) TL+CRNN, a typical transfer learning method, effectively
improves the classification accuracy by utilizing the trans-
ferable knowledge from the UBC dataset. In the three HSI,
the classification performance of TL+CRNN is better than
that of other two deep learning models. However, there
is still a significant gap between the classification results
of TL+CRNN and that of the three meta-learning-based
methods. Transfer learning aims at transferring knowledge
from a specific task space, while the goal of meta-learning
is to develop the ability of learning how to learn through
vast different tasks.

3) Semisupervised learning can effectively utilize the infor-
mation in unlabeled samples and alleviate the problem
of overfitting caused by insufficient labeled samples to
some extent, so as to improve the classification accuracy.
Therefore, it can be found that HSGAN and CNN+GCN,
two semisupervised deep learning models, possess better
classification results than 3-D-CNN and iCapsNet on the
three HSI.

4) Two meta-learning-based methods, RN-FSC and
DFSL+SVM, can further improve the classification
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TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON SA (FIVE SAMPLES PER CLASS ARE USED AS THE SUPERVISED SAMPLES; BOLD VALUES

REPRESENT THE BEST RESULTS AMONG THESE METHODS)

accuracy of HSI when only a few labeled samples are
available. Before classifying the target HSI, both RN-FSC
and DFSL+SVM have performed sufficient meta-learning
on the precollected HSI, which can significantly improve
the generalization ability of the models. Therefore,
compared with the deep learning models which only
utilize the information in the target HSI, RN-FSC, and
DFSL+SVM can achieve higher classification accuracy.

5) The proposed method, DIN-SSC, obtains the best classifi-
cation results on the three HSI, with the highest OA, AA,
and Kappa. Compared with the other two meta-learning-
based methods (RN-FSC and DFSL+SVM), the signifi-
cant advantage of DIN-SSC is the class-wise induction
module, which can dynamically induce the sample-wise
representations to the class-wise level representations and
enhance the separability between different classes, thus
further improving the classification accuracy. On the three
HSI, DIN-SSC improves the OA by 4%− 7% and Kappa
by 4%− 8% than the other meta-learning-based methods,
which is a significant improvement.

6) The Houston data set including 30 classes, is very chal-
lenging for accurate classification. As can be seen from
Table VII, the OA of all classification methods is below
52% except the proposed method. The OA and Kappa of
DIN-SSC are 8.20% and 8.15% higher than DSFL+SVM,
which can show the advantages of DIN-SSC in processing
the complex HSI.

The classification maps, which can more directly show the
spatial information of ground objects, is very important for HSI
processing and analysis. Therefore, we utilize the above methods
to classify all the samples in the three HSI, so as to generate the

global classification maps (see Figs. 8–10). It can be seen that,
with the continuous improvement of classification accuracy, the
misclassification phenomenon in the global classification maps
gradually decreases. From the perspective of spatial consistency,
DIN-SSC can obtain the best global classification map.

In order to enhance the persuasion of the experimental results,
we repeated the experiment ten times utilizing different methods
and plot the boxplots of Kappa. In Fig. 11, different colors
represent different methods, and the circles (◦) represent outliers
in the experimental results. As we can see, the Kappa of DIN-
SSC on the three HSI are more clustered than other methods,
which means it has better robustness. In addition, the information
contained in the boxplots can indicate that the observed increase
in classification accuracy is statistically significant.

D. Influence of the Spatial Size of the Input Cubes

As described in Section III-A, the 17× 17× 100 cubes
around the pixel are selected as the input data. In this section,
the influence of the spatial size of the input cubes on the classi-
fication results is explored in detail. The spatial size of the input
cubes affects how much spatial information it contains. Theoret-
ically, the larger the spatial size, the more neighborhood pixels
the cube contains and the more spatial information the model
can utilize. Table VIII lists the results of DIN-SSC using cubes
with different spatial size. In general, the classification accuracy
has a significant improvement as the spatial size becomes larger,
and then decreases slightly after reaching the peak. It indicates
that the appropriate spatial size can enable the model to achieve
the best classification performance, too large or too small will
lead to the decline in classification accuracy.
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TABLE VII
CLASSIFICATION RESULTS OF DIFFERENT METHODS ON HS (FIVE SAMPLES PER CLASS ARE USED AS THE SUPERVISED SAMPLES; BOLD VALUES REPRESENT THE

BEST RESULTS AMONG THESE METHODS)

TABLE VIII
CLASSIFICATION RESULTS(OA, %) OF DIN-SSC USING CUBES WITH

DIFFERENT SPATIAL SIZE

E. Influence of the Number of Labeled Samples

In order to further verify the effectiveness of the proposed
method in HSI SSC, the classification results of different meth-
ods with different number of labeled samples are investigated.
Specifically, 10, 15, 20, and 25 labeled samples per class are
randomly selected as the supervised samples in the experiments.
It should be noted that all setups in the experiments are identi-
cal to the previous sections, except for the number of labeled

samples. Fig. 12 shows the experimental results. As we can
see, the OA of all methods is increasing with the increase of
labeled samples, and the OA of DIN-SSC is always higher than
that of other methods, which indicates that DIN-SSC possesses
the best adaptability to the variation of the number of labeled
samples.

The above experiments have demonstrated that the proposed
method can effectively improve the classification accuracy un-
der the condition of small samples. However, an ideal model
should be adaptable enough to the classification condition, so
as to meet the requirements in practical application. To this
end, we explore the classification effect of DIN-SSC when the
number of labeled samples is further increased. Take UP as
an example, 50, 100, and 200 labeled samples per class are
randomly selected as the fine-tuning datasets to fully train the
designed model. Table IX lists the experimental results of the
proposed methods and several advanced classification methods
including MDSFV [53], IEPF-G-c [54], SVM+SCNN [24], and
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Fig. 8. Global classification maps resulting from different methods on UP. (a) Pseudo-color image. (b) Ground truth. (c) SVM. (d) 3D-CNN. (e) TL+CRNN.
(f) iCapsNet. (g) HSGAN. (h) CNN+GCN. (i) RN-FSC. (j) DFSL+SVM. (k) DIN-SSC.

Fig. 9. Global classification maps resulting from different methods on SA. (a) Pseudo-color image. (b) Ground truth. (c) SVM. (d) 3D-CNN. (e) TL+CRNN.
(f) iCapsNet. (g) HSGAN. (h) CNN+GCN. (i) RN-FSC. (j) DFSL+SVM. (k) DIN-SSC.

CSA-MSO3DCNN [55]. Compared with MDSFV, the proposed
method can obtain comparative classification results while uti-
lizing fewer labeled samples. When the number of labeled
samples is fixed at 100, the proposed method can achieve better
classification results than IEPF-G-c. When the number of labeled
samples is fixed at 200, the difference between the proposed
method and CSA-MSO3DCNN is only 0.05% according to
the OA.

In addition, we explore the performance of DIN-SSC with
unbalanced sampling. DIN-SSC utilizing fewer labeled samples
(4%) achieves the comparative results to that of CSVM-MSS
(5%) [56], which again proves its effectiveness in HSI classi-
fication. Generally speaking, DIN-SSC can obtain competitive
results compared with the state-of-the-art methods, which indi-
cates that the classification performance of the proposed method
is not limited to the condition of small samples.
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Fig. 10. Global classification maps resulting from different methods on HS. (a) Pseudo-color image. (b) Ground truth. (c) SVM. (d) 3D-CNN. (e) TL+CRNN.
(f) iCapsNet. (g) HSGAN. (h) CNN+GCN. (i) RN-FSC. (j) DFSL+SVM. (k) DIN-SSC.

Fig. 11. Boxplots of Kappa of different methods. (a) UP. (b) SA. (c) HS.

Fig. 12. OA of the different methods with a different number of labeled samples. (a) UP. (b) SA. (c) HS.
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TABLE IX
CLASSIFICATION RESULTS OF THE DIFFERENT METHODS ON UP

Fig. 13. Illustration of the effectiveness of the class-wise induction module. (a) The input data cubes. (b) The sample-wise representations generated by the
feature embedding module. (c) The class-wise level representations generated by the class-wise induction module.

F. Effectiveness of the Class-Wise Induction Module

The meta-learning-based classification methods represented
by RN-FSC and DFSL+SVM perform the comparison and cal-
culation at the sample-wise level, which is very susceptible to
the phenomenon that the samples belonging to the same class
possess the different characteristics, and the samples belonging
to different class possess similar characteristics in HSI. The
processing for the support samples in RN-FSC and DFSL+SVM
is limited to the sum operations or the average operations. In
fact, such simple algebraic operations inevitably lose important
discriminant information and are easily interfered with the use-
less information. Compared with RN-FSC and DFSL+SVM,
the biggest advantage of DIN-SSC is actually the class-wise
induction module, which can induce the class-wise level rep-
resentations from the sample-wise representations utilizing the
dynamic routing algorithm, so as to improve the accuracy and ro-
bustness of the classification results. Specifically, the class-wise
representations generated by the class-wise induction module
are characterized by the aggregation of the samples from the
same class, and the separation of the samples from the different
classes. As a result, the classes of the query samples can be
determined more accurately by comparison with the class-wise
level representations in the deep metric space.

In order to illustrate the effectiveness of the class-wise induc-
tion module more intuitively, we carried out the visualization ex-
periments on UP. As shown in Fig. 13, the t-SNE algorithm [57]
is utilized to visualize the input data cubes, the sample-wise
representations generated by the feature embedding module and
the class-wise level representations generated by the class-wise
induction module. It is easy to see that there is still classes con-
fusion (the red circles) in Fig. 13(b), which undoubtedly leads to
the misclassification. Compared with Fig. 13(b), the class-wise

TABLE X
EXECUTION TIMES OF DIFFERENT METHODS ON THE THREE HSI (FIVE

LABELED SAMPLES PER CLASS ARE USED AS THE SUPERVISED SAMPLES)

level representations in Fig. 13(c) are more clustered, which is
conducive to determine the classes of the query samples more
accurately. In summary, the visualization experiments directly
demonstrate the effectiveness of the class-wise induction module
in improving the classification accuracy.

G. Execution Time Analysis

In this section, we compare the execution efficiency of RN-
FSC, DFSL+SVM, and DIN-SSC. Table X shows the execution
time of the three methods on the three HSI. As we can see, all the
three methods can be divided into three phases: meta-learning,
fine-tuning (training), and classification. Compared to the latter
two phases, the meta-learning phase takes a longer time because
a large number of tasks are generated to enable the model to be
fully trained. RN-FSC possesses the longest execution time due
to the 3-D convolution operations and the complex concatena-
tions in its feature extraction phase. DFSL+SVM utilizes SVM
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TABLE XI
STATISTICS OF PARAMETERS AND FLOPS OF THE PROPOSED METHOD

DURING META-LEARNING

as classifier which can avoid the complex network computation
to some extent. Therefore, the fine tuning time and classification
time of DFSL+SVM are the shortest. In general, the proposed
method is superior to RN-FSC but inferior to DFSL+SVM
in execution efficiency. However, considering the significant
improvement of DIN-SSC in classification accuracy, such a time
cost is acceptable.

In addition, we count the number of parameters and FLOPs of
DIN-SSC during meta-learning. Table XI shows the results. We
employ the model with the same structure for the three different
HSI, so the number of parameters in Table XI is all 493729. The
optimal task setting is (30-way 5-shot 15-query) for HS, while
the optimal task settings for the other three HSI are (20-way
5-shot 15-query). It means that there is a significant increase
in the amount of data going through the network. Therefore,
when classifying HS, the meta-learning phase requires more
computation and time.

H. Discussion

When performing the SSC of HSI, deep learning models are
often difficult to obtain satisfactory results due to the severe
overfitting. To address the problem, some researchers have at-
tempted to improve the classification accuracy using the idea of
meta-learning. The designed model (DIN-SSC), also based on
the meta-learning framework, can achieve better classification
results with a few labeled samples available. The main reasons
can be analyzed from the following two aspects.

First, the importance of meta-learning. The designed model
first performs meta-learning on the precollected HSI, to acquire
sufficient transferable knowledge and cultivate the ability to
learn how to learn. Specifically, the typical task-based training
strategy is employed to simulate the condition of HSI SSC. As a
result, the model can acquire stronger generalization ability and
identify new classes with only a few labeled samples. Further-
more, in order to adapt to the characteristics of HSI, a deep 3-D
residual network is designed for meta-learning, making full use
of the spatial-spectral information while effectively improving
the computational efficiency.

Second, the further improvement owing to the induction of
the class-level representations. The sample-wise representations
obtained in the feature extraction phase are susceptible to the
common phenomenon in HSI that the samples from the same
class possess the different characteristics, and the samples from
different class possess similar characteristics. The class-wise
induction module can induce the sample-wise representations
to the class-wise level representations possessing better separa-
bility in the metric space, to further improve the accuracy and
robustness of the classification results.

The experimental results on the three HSI demonstrate that
the designed model has higher classification accuracy and better
robustness compared with the existing deep learning models.
Moreover, the boxplots show that the observed improvement is
statistically significant. The classification accuracy is gradually
increasing as the number of labeled samples increases, indicating
that the designed model has a good adaptability to the number
of labeled samples and is not limited to the small samples
condition. Finally, the execution time of different methods are
compared and analyzed, showing that the proposed method is
more efficient.

IV. CONCLUSION

In order to further improve the classification accuracy of
HSI under the condition of small samples, this article design
a deep model based on the induction network and train it with
the typical meta-training strategy. The meta-learning phase on
the precollected HSI can enable the designed model to acquire
rich transferable knowledge and stronger generalization ability,
to identify the new classes more accurately with only a few
labeled samples. The obtained class-wise level representations
are characterized by the aggregation of the samples from the
same class, and the separation of the samples from the different
classes, allowing the model to generate the more accurate and
robust classification results. The experiments on three public
HSI demonstrate that our model possesses better classification
performance than existing deep learning models under the con-
dition of small samples.
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