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Abstract—Hyperspectral unmixing, which intends to decompose
mixed pixels into a collection of endmembers weighted by their
corresponding fraction abundances, has been widely utilized for re-
mote sensing image exploitation. Recent studies have revealed that
spatial context of pixels is important complemental information for
hyperspectral image processing. However, many well-known end-
member finding (EF) algorithms identify spectrally pure spectra
from hyperspectral images according to spectral information only,
resulting in limited accuracy of hyperspectral unmixing application
since they ignore spatial distribution or structure information in the
image. Therefore, in this article, several novel spatial exploiting
(SE) strategies are proposed to improve the performance of the
well-known spectral-based EF (sEF) algorithms by integrating
spatial information. Three different spatial exploiting strategies
are designed to use pixel spatial context, by which the spectral
variation of pixels can be alleviated to improve the performance of
hyperspectral unmixing. Specifically, in pixel domain, the pixels are
linearly reconstructed using their neighbors in which the spatially
derived factor to weight the importance of the spectral information
is generated using local linear representation and local sparse
representation, while in the feature domain, pixels are revised using
dominated features of neighboring pixels in singular value decom-
position. The proposed spatial exploiting strategies can not only be
used as a preprocessing stage to revise pixels for sEF algorithms, but
also be used as a postprocessing step to revise endmembers found
via sEF algorithms. Finally, experimental results on both synthetic
and real hyperspectral datasets demonstrate that the proposed
SE strategies can certainly improve the performance of several
well-known sEF algorithms, and obtain more accurate unmixing
results than several state-of-the-art spatial preprocessing methods.

Index Terms—Endmember extraction, hyperspectral unmixing,
singular value decomposition, sparse representation, spatial
preprocessing, spatial postprocessing.
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I. INTRODUCTION

THE development of imaging sensor technologies has made
hyperspectral remote sensing data widely available, pro-

viding a large amount of detailed information about the spectral
characteristics of the materials that are present in the scene
[1]–[3]. However, most of the pixels acquired by hyperspectral
remote sensors are composed of several inhomogeneous ground
objects, which are well known as mixed pixels or mixtures. The
phenomenon is caused by low spatial resolution of the sensor,
which would combine distinct materials into homogenous or
intimate mixture, making it difficult to separate different pure
ground objects [4], [5]. The wide presence of mixtures not only
influences the performance of image classification and target
recognition, but also is an obstacle to quantitative analysis of
hyperspectral images [6]. Therefore, spectral mixture unmixing
(SMU) is proposed to solve such mixed-pixel problems for
quantitative analysis of hyperspectral remote sensing images.

Generally, SMU techniques can be divided into three steps.
1) The estimation of virtual dimension that defined as the

number of spectrally distinct signatures in hyperspectral
data [7], [8], where several typical methods have been
proposed, including Neyman–Pearson detection theory-
based thresholding method (HFC) [9], noise-whitened
HFC [10], hyperspectral signal identification with min-
imum error (HySime) [11], and etc.

2) Endmember extraction that extracts spectrally virtual sig-
natures of ground objects or endmember finding (EF) that
seeks for the hypothetically existed pure signatures.

3) Abundance estimation (AE), which expresses each image
pixel in terms of linear/nonlinear combinations of spec-
tral signatures, known as fully constrained least squares
method [12], multichannel Hopfield neural network [13],
and etc.

Selecting an appropriate endmember set plays an extremely
important role in SMU since the ultimate aim of SMU is to
provide an accurate composition of ground objects and a poorly
constructed endmember set leads to incorrect interpretations.

Over the decades, many algorithms have been developed for
automatic or semiautomatic finding of spectral endmembers
[14]. By assuming the presence of pure pixels in the image, many
EF algorithms aim to identify endmembers directly from the
image, such as orthogonal subspace projection (OSP) algorithm
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[15], pixel purity index algorithm [16], N-FINDR algorithm
[17], automatic target generation process (ATGP) [18], vertex
component analysis (VCA) [19], and simplex growing algorithm
[20]. However, when such pure-pixel assumption does not hold,
virtual endmembers, which are not necessarily present in the
pixel set comprised of input data samples, are extracted by adopt-
ing an optimization strategy. The minimum volume assumption
[21] has been widely utilized to extract such virtual endmembers
by determining a simplex of minimum volume enclosing the
data, such as the minimum volume simplex analysis [22], and
minimum-volume enclosing simplex [23].

In addition, many blind unmixing algorithms are proposed to
extract virtual endmembers by performing EF and AE iteratively,
such as minimum volume constrained NMF [24], minimum end-
memberwise distance constrained NMF (MewDC-NMF) [25],
minimum dispersion constrained NMF [26], sparse constrained
NMF algorithms [27], [28], robust collaborative NMF algorithm
[29], deep NMF algorithms [30], to name a few. Other linear
unmixing methods based on nonnegative projection [31], convex
geometric approach [32], [33] and collaborative sparse [34] have
also been well developed. All of these EF algorithms identify
endmembers according to the spectral only, which denoted as
spectral-based EF (sEF) algorithms.

Due to the inevitable presence of spectral variation in hy-
perspectral images, unmixing results based on the endmembers
identified in the sEF algorithms may be of limited accuracy [35].
In order to achieve better performance in SMU, many spatial-
spectral-based EF algorithms are proposed to extract endmem-
bers by taking both spatial distribution and spectral discrimina-
tion into account, such as automated morphological endmember
extraction (AMEE) algorithm [36], the spatial-spectral endmem-
ber extraction tool [37], and spatial purity-based endmember
extraction (SPEE) algorithm [35]. It has been demonstrated that
the performance of spatial-spectral-based EF algorithms clearly
outperforms that of traditional sEF algorithms.

Recently, the performance of traditional sEF algorithms is
improved by exploiting spatial information at a preprocessing
stage. Many spatial preprocessing methods have been proposed
for this purpose [38]–[44], which can be categorized into two
groups. The first one alleviates the influence of spectral variation
on a specific pixel by smoothing the spectra using its neighbors,
such that a modified simplex is formed, using not only the
spectral signature but also spatial information [38]. However, its
performance is generally sensitive to noise. The second group
refines original pixel set to a small subset for sEF by integrating
spatial and spectral information [39]–[44]. Such preprocessing
algorithms can reduce the computational load of successive sEF
algorithms, as well as improving the accuracy of EF. However,
they tend to neglect small targets or anomalous areas that may
be present in the image, and guide the subsequent sEF algorithm
to homogenously mixed areas that do not contain pure pixels.

In this article, several novel spatial exploiting (SE) strategies
are proposed as a preprocessing or postprocessing step for the
sEF algorithms. In the pixel domain, similar to SPP algorithm
[38], each pixel in a hyperspectral image is modified by exploit-
ing its spatial context. Specifically, in this article, the spatially

derived factor to weight the importance of spectral information
is generated conveniently, instead of the complex parameterized
scalar factor generation in [38]. Moreover, spectral variation
within a local spatial neighborhood is also alleviated in the fea-
ture domain by reconstructing pixels using dominated features.
Particularly, three SE algorithms, which are based on singular
value decomposition (SVD), local linear representation (LLR),
and local sparse representation (LSR), are designed. More im-
portantly, the proposed SE algorithms are utilized as either a
preprocessing step or postprocessing step for the traditional sEF
algorithms. Geometric interpretation is further conducted for
the proposed SE algorithms as a preprocessing and postprocess-
ing step for sEF algorithms. Finally, experimental results over
both synthetic and real hyperspectral datasets indicate that, our
proposed SE strategies can improve the performance of sEF
algorithms in both preprocessing and postprocessing manner.
Moreover, compared with other available strategies for spatial
preprocessing, the anomalous endmembers can be well pre-
served by the proposed SE strategies for further spectral mixture
analysis.

The remainder of this article is organized as follows. Section II
proposes the spatial context exploiting techniques, and their pre-
processing combination and postprocessing combination with
existing sEF algorithms. Experimental results on both synthetic
and real hyperspectral datasets are reported in Section III. Fi-
nally, Section IV concludes this article with some remarks.

II. PROPOSED METHOD

In a hyperspectral image, spectral information treats a pixel
as an individual unit, which is independent of its neighboring
pixels, while spatial distribution accounts for the correlation
between pixels and their neighbors. The sEF algorithms ignore
the spatial distribution of pixels when finding endmember for
SMU, which means the data are not handled as an image but
as an unordered list of spectral signatures [36]. It has been
demonstrated that in the spatial-spectral-based EF algorithms
spatial information is helpful to alleviate the influence of spectral
variation and, thus, improve the performance of sEF [35], [36].
Therefore, in this article, spatial information is exploited a prior
or a posteriori to improve their performance.

A. SE Strategies

According to the linear mixture assumption, pixels in a hyper-
spectral image often fall into a simplex determined by endmem-
bers. Therefore, the intrinsic dimensionality of hyperspectral
data are much lower than its observed dimensionality defined
by the number of bands, indicating that the subspace other
than the simplex is occupied by spectral variation and noises.
If the hyperspectral data are projected to its intrinsic signal
space, the influence of spectral variation and noises can be
alleviated.

On the other hand, classical sEF algorithms only explore
spectral information but do not adequately incorporate spatial
information into hyperspectral images. Using spatial informa-
tion can alleviate the influence of spectral variation and, thus,
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improve the performance of unmixing. Therefore, in this article,
each pixel is refined by its spatially neighboring pixels or in
the feature domain. In order to alleviate the spectral variation
within pixels, LLR, and LSR are used to revise pixels in the
pixel domain by assuming that pixels can be linearly recon-
structed by some of their neighboring pixels, while SVD is
used to extract dominated features of the spatial neighborhood
around pixels to revise pixels in feature level by assuming
that nondominated features account for spectral variance and
noises [45].

1) LLR-Based SE Strategy: Recent studies have shown that
many real-world data is actually sampled from a nonlinear low-
dimensional manifold which is embedded in a high-dimensional
ambient space [46]. Therefore, each pixel in an image together
with pixels in its spatial neighborhood (SN) are expected to lie
on or close to a locally linear patch of the manifold. By character-
izing such local geometry of these patches, each pixel can be lin-
early reconstructed by pixels in its SN. Let r = (r1, r2, . . . , rb)

T

represents a b-band pixel in a hyperspectral image. The coeffi-
cients that reconstruct pixel r by its neighboring pixels can be
obtained by the following minimization problem:

w = argmin
w

∑

rj∈SN(r)

∥∥∥∥∥∥
r−

∑

j

wjrj

∥∥∥∥∥∥

2

(1)

in which rj represents the jth neighbor pixel in SN(r) and the
weightwj represents the contribution of rj to the reconstruction
of r. As for w, it is a vector composed of weight wj , which
just like the spatially derived factor to weight the importance
of the spectral information of neighbor pixels. Since the noises
can be alleviated by characterizing such locally linear patch to
reconstruct pixels, we can implement SE by reconstructing pixel
r according to LLR as

r̂ = N ·w (2)

in which r̂ represent the revised version of pixel r, N ∈ Rb×p

represents all the pixels in the spatial neighborhood of pixel r,
and p denotes the number of pixels in the spatial neighborhood.
By replacingrwith r̂, the performance of sEF and even unmixing
can be improved since local spectral variation is alleviated using
spatial context of pixels.

2) LSR-Based SE Strategy: Sparse representation has been
developed in many fields [47]–[49], and it has also received some
attention in the field of unmixing. Generally, pixels of homoge-
neous components are most likely present in neighboring areas.
Therefore, if a pixel is reconstructed by its neighboring pixels
that own homogeneous components, the local spectral variation
can be alleviated. However, pixels in a spatial neighborhood
may belong to heterogeneous categories, indicating that pixels
of homogeneous components may be sparsely present in a spatial
neighborhood. In order to alleviate the influence of local spectral
variation over SMU problems, sparse representation is used to
improve spectral signature of a pixel using its neighboring pixels.

The main idea of the LSR-based strategy is to find the optimal
sparse representation of each input pixel by its spatial neighbors.

Therefore, the LSR of pixel r can be formulated as

v = argmin
v∗

1

2
||r−Nv∗||22 + λ||v∗||1 (3)

while v represents a sparse vector of their corresponding
weights and λ is a regularization parameter. The first term
in (3) represents that pixel r can be linearly reconstructed
by its neighboring pixels while the second term in (3) guar-
antees a sparse reconstruction that only selects pixels of ho-
mogeneous components for representation. In this article, the
L1 Homotopy MATLAB Toolbox [50], which is available
online,1 is used to solve the representation coefficient v. Con-
sequently, in the proposed LSR-based strategy, pixel r can be
refined as

r̂ = N · v. (4)

3) SVD-Based SE Strategy: In order to exploit its spatial
context, all the pixels in its spatial neighborhood are taken into
account. The SVD of pixels in a spatial neighborhood N is
defined as [51]

N = S ·V ·D (5)

where D ∈ Rp×p contains the unit row eigenvectors of NTN
sorted in descending significance, S is a b× b matrix containing
the unit column eigenvectors of NNT , and V ∈ Rb×p is of the
following form:

V =

⎛

⎜⎜⎜⎜⎜⎜⎝

V11 · · · 0
...

. . .
...

0 · · · Vpp

...
. . .

...
0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎠
(6)

with Vii(i = 1, 2, . . . , p) being the square roots of nonzero
eigenvalues of NTN sorted in descending order.

It has been pointed out that the greater singular vectors come
about as a result of endmembers while the smaller singular vec-
tors come about as a result of the noise such as spectral variation,
measurement error, and etc. [51], [52]. Therefore, if we can
discriminate the singular vectors responsible for endmembers,
the influence of noises and spectral variation on pixels can be
alleviated by only utilizing singular vectors of endmembers.
Since the importance of singular vectors is represented by their
corresponding eigenvalues, the number of singular vectors for
endmembers is identified as

q = argmin
k

∑k
i=1 Vii∑p
i=1 Vii

< TSVD (7)

where TSVD is a threshold. As a result, the first q singular vectors
come as a result of endmembers, and thus, a revised data matrix
is reconstructed as

N̂ = S · V̂ ·D (8)

1https://intra.ece.ucr.edu/ sasif/homotopy/

https://intra.ece.ucr.edu/
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Fig. 1. Flowchart of SMU by using the proposed SE strategies as a prepro-
cessing stage.

where V̂ is determined as

V̂ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

V11 · · · 0 · · · 0
...

. . .
... · · · ...

0 · · · Vqq · · · 0
0 · · · 0 · · · 0
...

. . .
... · · · ...

0 · · · 0 · · · 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (9)

According to (8), the spatial context can be exploited to alleviate
the influence of spectral variation and noises on pixels.

B. Implementing Spatial Information Into sEF Algorithms

1) Preprocessing by the SE Strategy: According to the pro-
posed SE strategy, the influence of spectral variation and noises
on single pixels can be alleviated. Thus, a refined hyperspectral
image can be obtained by implementing the proposed SE strate-
gies pixel-by-pixel. As a result, the performance of traditional
sEF algorithms can be improved by implementing them on such
revised hyperspectral data. The flowchart of adopting the pro-
posed SE algorithms as a preprocessing step for SMU is shown
in Fig. 1. Similar to the SPP algorithm [38], the proposed SE
algorithms are directly performed on the original hyperspectral
image to alleviate the influence of spectral variation and noises.
Traditional sEF algorithms are then implemented on the revised
hyperspectral image to find endmembers. The combination of
the preprocessing by SE and sEF (shown in the red rectangular
in Fig. 1) can be viewed as a spatial-spectral-based EF algorithm
to find endmembers. In such way, the performance of traditional
sEF algorithms can be improved by considering spatial context.
Finally, the AE algorithms are adopted to estimate abundance
maps for endmembers. It should be noted that the AE algorithms
can be implemented on either the original or the revised hyper-
spectral image.

Fig. 2. Flowchart of SMU by using the proposed SE strategies as a post-
processing step.

2) Postprocessing by the SE Strategy: The proposed SE al-
gorithms can also be implemented as a postprocessing step
to improve the performance of traditional sEF algorithms. As
shown in Fig. 2, the proposed SE algorithms are performed after
the endmember finding step by the sEF algorithms. Under such
circumstance, only the spatial context of the found endmembers
are exploited. Thus, the performance of traditional sEF algo-
rithms can also be improved. Similarly, the combination of sEF
and postprocessing by SE (shown in the red rectangular in Fig. 2)
can be viewed as a spatial-spectral-based EF algorithm to find
endmembers. Since the number of pixels to be revised by SE in
postprocessing is much smaller than that in preprocessing, the
computation complexity of the proposed SE strategies as a post-
processing step is much lower than that as a preprocessing step.
Finally, the AE algorithms are adopted to estimate abundance
maps for the revised endmembers.

3) Geometric Illustration: Fig. 3 shows a geometric inter-
pretation of the proposed SE algorithms as a preprocessing and
postprocessing step for SMU. According to geometric analysis
of hyperspectral images in previous studies [53], [54], all the
pixels in an image fall into a simplex whose vertexes are deter-
mined by endmembers. As shown in Fig. 3(a), in a 2-D space,
all the pixels (denoted as blue solid dots) fall into a triangle
determined by endmember 1, 2, and 3. In the preprocessing
steps, all the pixels are revised pixel-by-pixel by exploiting their
spatial context through SE-LLR, SE-LSR, or SE-SVD. And
then EF step is applied to the revised image. As a result, all
the revised pixels (denoted as red solid dots) fall into a new
triangle determined by endmember 7′, 4′, and 3′. The revised
versions of original endmembers may not be the vertexes of
the new triangle, indicating that the pixels to be endmembers
vary after preprocessing by the SE algorithms. However, as
shown in Fig. 3(b), the nonendmember pixels remain the same
when SE strategies are adopted as a postprocessing step. Under
such circumstance, the proposed SE algorithms are performed
after the EF step by the sEF algorithms, where only the spatial
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Fig. 3. Geometric interpretation of the proposed SE strategies for: (a) prepro-
cessing; (b) postprocessing.

context of the found endmembers are exploited to revised the
endmembers. The new simplex (triangle 1′ − 2′ − 3′) can be
viewed as a revised version of the original simplex that enclosing
the pixels (triangle 1− 2− 3).

C. Improvement Over Anomalous Endmembers

Similar to many existing spatial-spectral-based EF algorithms
(such as AMEE [36] and SPEE [35]) and the SPP algorithm [38],
when our proposed SE algorithms are adopted as a preprocessing
step for sEF, the combined spatial-spectral-based EF algorithm
penalizes the selection of anomalous pixels and increases the
probability of selecting the majority of pixels that are homoge-
neous in nature. Even if the proposed SE strategies are adopted in
postprocessing that does not influence the finding of anomalous
endmembers by the sEF algorithms, the spectral signature of
anomalous endmembers may be smoothed excessively by its
inhomogeneous neighboring pixels. In order to solve this prob-
lem, the proposed SE step can be turned ON or OFF by checking
the spectral similarity between pixels r and its spatially revised

Fig. 4. Five synthetic images used in experiments, where spatial patterns were
generated using fractals.

signature r̂, which can be formulated as follows:

r̂ =

{
r, if SAD (r, r̂) > T
r̂, if SAD (r, r̂) ≤ T

(10)

where SAD(r, r̂) is the spectral angle distance (SAD) between r
and r̂ and T is an adjustable threshold. When the revised pixel is
significantly different from its original pixel, we believe there are
abnormal pixels in its spatial neighborhood or the current pixel
is the abnormal one. Then, our proposed SE strategies would
choose to turn OFF the revision of the current pixel.

III. EXPERIMENTS

In this section, extensive experiments are conducted to verify
the performance of the proposed SE strategies as a preprocessing
or postprocessing step for several well-known sEF algorithms,
including OSP [15], N-FINDR [17], ATGP [18] algorithms, and
VCA [19]. For that purpose, we test the same set of algorithms
with and without spatial preprocessing (so-called “ORI”). Sev-
eral state-of-the-art spatial preprocessing algorithms are adopted
for comparison, including SPP [38], RBSPP [39], SSPP [40],
and RCSPP [44]. Meanwhile, one typical spatial-spectral-based
EF algorithm, i.e., SPEE algorithm [35], is also selected. All
experimental results in this section are the average of 10 random
tests.

A. Datasets

1) Synthetic Dataset: The dataset of five 100× 100-pixel
synthetic hyperspectral scenes that used in [40] is adopted in
this experiment. These images are simulated using spectra of
minerals from a spectral library compiled by the U.S. Geological
Survey (USGS)2 under linear mixture assumption, shown in
Fig. 4. In all the five synthetic images, the number of endmem-
bers is fixed as p = 9. Moreover, zero-mean Gaussian noise
was added in order to simulate contributions from ambient
(clutter) and instrumental sources by following the procedure
described in [15]. As a result, the signal-to-noise ratio (SNR) of

2http://speclab.cr.usgs.gov/spectral.lib06

http://speclab.cr.usgs.gov/spectral.lib06
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Fig. 5. USGS library signatures used in the synthetic dataset labeled as “Frac-
tal 1” and the abundance maps associated to each reference USGS signatures
[40].

the synthetic dataset is varied from 10 : 1 to 70 : 1. Specially,
the nine spectra from the USGS spectral library that is used
to simulate a scene labeled as “Fractal 1”, together with their
corresponding abundance maps are shown in Fig. 5. Note that the
fractional abundances in each pixel of the dataset are positive and
add up to unity, ensuring that all pixel instances in the synthetic
fractal image strictly adhere to a fully constrained linear mixture
model.

2) Cuprite Dataset: The well-known AVIRIS dataset over
the Cuprite areas in Nevada, USA,3 which has 224 channels
ranging from 370 to 2510 nm with a ground instantaneous field
of view of 20 m, is used in this experiment. This dataset has been
widely used to validate the performance of endmember finding
algorithms. The cropped image corresponds to a350× 350pixel
subset of the sector labeled as f970619t01p02r02sc03.a.rfl in
the online data. In this experiment, only 186 reflectance bands
are adopted after removing bands 1− 4, 105− 115, 150− 170,
and 223− 224 due to water absorption and low SNR in those
bands. The Cuprite site is well understood mineralogically,
and has several exposed minerals of interest included in the
USGS spectral library. A few selected spectra from the USGS
library, corresponding to highly representative minerals in the
Cuprite mining district, are utilized as ground-truth spectra to
substantiate endmember signature purity, including Alunite, An-
dradite, Buddingtonite, Dumortierite, Jarosite, Kaolinite, Mont-
morillonite, and Muscovite. For the number of endmembers,
the HySime [11] provided an estimation of 16, as same as
that by HFC [9] method using the input false-alarm probability
PF = 10−5.

3) Urban HYDICE Dataset: The second real-world dataset
is the Urban HYDICE4 hyperspectral image. The image is of size
307× 307 over 210 spectral channels, with a spectral resolution
of 10 nm covering a spectral range from 400 to 2500 nm.

3http://aviris.jpl.nasa.gov/html/aviris.freedata.html
4http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-

View/Article/610433/hypercube/

After low SNR bands are removed (channels 1− 4, 76, 87,
101− 111, 136− 153, and 198− 210), only 162 bands remain
to be used in the experiment. The number of endmembers to be
found is set to 9 in all experiments after the consensus reached
between HySime [11] and the HFC [9] method, implemented
using PF = 10−3 as the input false-alarm probability [7]. In
subsequent qualitative assessment, we just adopt four distinct
targets of interest, including asphalt, grass, roof, and tree.

B. Evaluation Metrics

Two quantitative metrics are adopted to evaluate the perfor-
mance of our different SE strategies to improve well-known
sEF algorithms. The first metric is the SAD values (in degrees)
between the found endmembers and their ground-truth spectral
signatures. Let Êk be a found endmember and Ek be the most
similar spectral signature in the USGS library. The SAD between
two spectral signatures is defined as

SAD(Êk,Ek) = arccos

(
Êk ·Ek

‖Êk‖‖Ek‖

)
(11)

in which ‖ · ‖ represents the magnitude of vectors. Note that
low SAD scores mean high spectral similarity between the
compared vectors. This spectral similarity measure is invariant
in the multiplication ofe and ê by constants and, consequently, is
invariant before unknown multiplicative scalings that may arise
due to differences in illumination and angular orientation.

Further for quantitatively evaluating the performance of our
proposed SE algorithms on real-world data experiments, the
pixel reconstruction error (ReconEr), evaluated by the root-
mean-square error (RMSE) between the original b-band pixel
r and its reconstructed version using the unmixing results r̂,
which is defined as

ReconEr(r, r̂) =
1

b

b∑

i=1

(ri − r̂i)
2. (12)

C. Parameter Analysis

First of all, the impact of parameters, including λ for SE-LSR,
T for SE-SVD, and window size ws for all three SE strategies,
are discussed through several sets of simulated experiments.

1) ws for SE-LLR: As the only parameter in the proposed
LLR-based SE strategy, we analyzed the impact of the window
size ws considering 8-connected (3× 3 window), 24-connected
(5× 5 window), and 48-connected (7× 7 window). The upper
part of Fig. 6 lists the results of proposed SE-LLR as a prepro-
cessing step for different sEF algorithms. It is observed that, the
proposed SE-LLR does not vary much when different window
size is selected. Therefore, in the following experiment, ws is
set as 3 for low computational complexity.

2) ws and λ for SE-LSR: With regard to the proposed LSR-
based SE strategy, the impacts of ws and regularization param-
eter λ in (3) are also analyzed by varying ws as [3, 5, 7] and λ

from 102 to 106. The average performance of proposed SE-LSR
with different parameters for different sEF algorithms is shown
in the middle of Fig. 6. It is observed that when ws = 7, the

http://aviris.jpl.nasa.gov/html/aviris.freedata.html
http://www.erdc.usace.army.mil/Media/Fact-Sheets/Fact-Sheet-Article-View/Article/610433/hypercube/
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Fig. 6. Parameter analysis of the proposed SE algorithms through several sets of simulated experiments, including ws for all three SEs, λ for SE-LSR, and T for
SE-SVD.

value of SAD is almost at the lowest position in most cases. As
for λ, SAD may achieve a lower value when it is set as 103.

3) ws and T for SE-SVD: In the proposed SVD-based SE
strategy, the thresholdT is varied from 0.80 to 0.95 at intervals of
0.05 whilews is also selected as [3, 5, 7]. The lower part of Fig. 6
intuitively displays the subtle effect of mutative parameters on
the unmixing performance. It is observed that SVD under ws =
5 and T = 0.90 is less sensitive to noises and always able to
maintain better performance.

D. Experiments Using Synthetic Dataset

1) Preprocessing by Proposed SE Strategies: In this exper-
iment, all of the three SE strategies, including LLR, LSR, and
SVD, are considered. Table I shows the average SAD scores
(in degrees) between the ground-truth signatures and their cor-
responding found endmembers preprocessed by different algo-
rithms over synthetic dataset with different SNRs. It is observed
that, the combination of the proposed SE strategies with the
sEF algorithms generally provides better results (lower spectral
angles) over both the original version of sEF algorithms and the
state-of-the-art spatial preprocessing algorithms. It is worthy to
be noted that due to the absence of pure endmembers in this
synthetic dataset, the performance of pure pixel-based SPEE
is limited to some extent. In general, the improvement of our
proposed SE strategies is especially obvious when SNR level is
low, which means that the proposed SE strategies reduce noise
and variability of pixels in a local level. However, when the
SNR level is high, e.g., 70 dB, the original version of sEF algo-
rithms can achieve satisfying results. Under such circumstances,

the spatial preprocessing strategies cannot further improve the
performance of sEF. On the contrary, they may oversmooth
the endmembers. Specifically, as for the three proposed SE
strategies, the SE-LLR achieves excellent performance among
all the considered algorithms when SNR at 10 dB while SE-LSR
provides comparative results under the SNR level of 30 dB and
50 dB. Although the performance of SE-SVD is slightly worse
than the other two, it is still better than SPP [38], which also
aims to alleviate local spectral variation using spatial context.

2) Extracting Anomalous Endmembers: In order to test the
ability of proposed SE algorithms of selecting abnormal end-
members, we randomly select 10 spectral features from the
USGS spectral library (excluding those used in synthetic im-
ages), and replace the synthetic spectra in the 10 random non-
adjacent locations with the spectra of the current ones. In this
experiment, we setws = 3, SNR= 30 :1. Since VCA sometimes
cannot find the required number of endmembers in this case,
it is not considered further. Table II lists the probability value
of successfully reserving abnormal endmembers by various
spatial preprocessing SE strategies. It is observed that our three
proposed SE-based preprocessing strategies clearly outperform
other spatial preprocessing strategies in extracting anomalous
endmembers, which is even better than the original version of
sEF algorithms. This is because the anomalous endmembers are
not smoothed by turning OFF the SE processing according to (10)
in the proposed SE strategies. However, those clustering-based
preprocessing algorithms, like SSPP and RCSPP, would penalize
the selection of anomalous endmembers.

3) Postprocessing by Proposed SE Strategies: In this section,
our proposed SE strategies (SE-LLR, SE-LSR, and SE-SVD)
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TABLE I
AVERAGE SAD SCORES (IN DEGREES) BETWEEN THE GROUND-TRUTH

SIGNATURES AND CORRESPONDING FOUND ENDMEMBERS BY DIFFERENT

PREPROCESSING SE ALGORITHMS WITH DIFFERENT SNRS. THE BEST

RESULTS OF SPECIFIC SNR FOR A GIVEN SEF ALGORITHM ARE

IN BOLDED WHILE THE SUBOPTIMAL RESULTS ARE UNDERLINED

TABLE II
PROBABILITY VALUE OF SUCCESSFULLY FINDING ANOMALOUS ENDMEMBERS

BY VARIOUS SPATIAL PREPROCESSING SE STRATEGIES

are taken as a postprocessing step for traditional sEF algorithms.
Table III lists the SAD performance of the proposed SE strategies
as a postprocessing step for OSP, N-FINDR, VCA, and ATGP.
It is also confirmed that the proposed SE strategies are very
effective to alleviate spectral variation even as the postprocess-
ing step of traditional sEF algorithms. Similarly, SE-LSR gets
outstanding performance in most cases, mainly owing to its well
robustness to noise. This has coincided with that when the pro-
posed SE strategies as the preprocessing step of traditional sEF
algorithms.

E. Experiments Over Cuprite Dataset

The experimental results of unmixing on the original AVIRIS
Cuprite dataset and the revised images by the proposed SE

TABLE III
AVERAGE SAD SCORES (IN DEGREES) BETWEEN THE GROUND-TRUTH

SIGNATURES AND CORRESPONDING FOUND ENDMEMBERS BY THE PROPOSED

POSTPROCESSING SE ALGORITHMS WITH TRADITIONAL SEF ALGORITHMS.
THE BEST RESULTS OF SPECIFIC SNR FOR A GIVEN SEF ALGORITHM ARE IN

BOLDED WHILE THE SUBOPTIMAL RESULTS ARE UNDERLINED

algorithms as both preprocessing and postprocessing steps are
listed in Table IV. Two well-known sEF algorithms (N-FINDR
and VCA) and a typical spatial-spectral-based EF algorithm
(SPEE) are adopted in this experiment. For reference, the mean
SAD values across all eight USGS signatures are also reported. It
is observed that better spectral approximations can be obtained
for certain minerals by the proposed SEs, mainly due to the
alleviated influence of spectral variation and noise in pixels.
Specifically, preprocessing SE-LLR tends to estimate individ-
ual mineral spectra more accurately, while SE-SVD performs
well in reducing reconstruction error. Meanwhile, the SSPP
and SPEE could also extract more similar endmembers to the
truth spectra. While for the mean pixel-reconstruction error,
SE-SVD clearly outperforms all the other well-known spatial
preprocessing algorithms all the time. Fig. 7 further shows the
spectral curves for four groups of endmember signatures esti-
mated by several spatial preprocessing algorithms. Obviously,
SE-LLR and SE-SVD are able to fit the spectral curve well
in most times, which not give rise to an excessive smoothness
that would lead to the loss of physical meaning towards found
endmembers.

In order to further evaluate the performance of unmixing,
visual results are utilized for qualitative assessment. Fig. 8 shows
the corresponding ground-truth classification maps produced by
Tricorder software. Based on the endmembers found by VCA
algorithm, the fractional abundance maps of four main materials
preprocessed by SE strategies and comparison algorithms are
shown in Fig. 9. It can be found that the estimated abundance
maps by the proposed preprocessing SE strategies are more sim-
ilar to the distribution of the four materials in the classification
maps. In addition, Fig. 10 illustrates the fractional abundance
maps obtained by SE postprocessing strategies, which are in
good accordance with the real endmember abundances.
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TABLE IV
AVERAGE SAD SCORES (IN DEGREES) AND AVERAGE PIXEL-RECONSTRUCTION ERROR (RECONER) OBTAINED AFTER COMPARING THE ORIGINAL AVIRIS

CUPRITE DATASET WITH A RECONSTRUCTED VERSION OF THE SAME IMAGE BY THE PREPROCESSING AND POSTPROCESSING SE STRATEGIES. NOTE THAT THE

BEST RESULTS OF SPECIFIC SPECTRA AND SEF ALGORITHM ARE IN BOLDED

§implemented as the pre-processing step.
‡implemented as the postprocessing step.

Fig. 7. Comparison of the USGS library spectra with the corresponding signatures found in Cuprite dataset by different spatial preprocessing algorithms, taking
(a) Alunite, (b) Buddingtonite, (c) Montmorillonite, and (d) Muscovite as an example.
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Fig. 8. Classification maps in the 350× 350 pixel AVIRIS Cuprite dataset
produced by the USGS Tricorder algorithm.

Fig. 9. Qualitative comparison of fractional abundance maps inversed by
found endmembers preprocessed by SE strategies and comparison algorithms
in the 350× 350 pixel AVIRIS Cuprite dataset.

F. Experiments Over Urban HYDICE Dataset

Due to the lack of real-world spectra information as a prior,
we only utilized visual results of abundance maps for qualitative
assessment in this experiment. The corresponding referenced
fractional abundance maps is shown in Fig. 11. Here, we
just adopt four distinct targets of interest, including asphalt,
grass, roof, and tree. In these images, the brightness of a pixel
denotes the abundance of the endmember under consideration
while all endmembers found by VCA algorithm. In addition,
in Fig. 12, the comparison between the estimated abundance

Fig. 10. Qualitative comparison of fractional abundance maps inversed by
endmembers postprocessed by SE strategies in the 350× 350 pixel AVIRIS
Cuprite dataset.

Fig. 11. Referenced fractional abundance maps of the four reference spectral
signatures (asphalt, grass, roof, and tree) in the urban HYDICE hyperspectral
dataset.

maps by different preprocessing algorithms is presented. It
can be observed that each algorithm can obtain a reasonable
abundance of most materials. Moreover, compared with other
methods, the abundance maps produced by the proposed SE
algorithms show better consistency. Meanwhile, the fractional
abundance maps obtained by SE postprocessing strategies,
shown in Fig. 13, illustrate a high degree of similarity with the
reference abundances. Furthermore, the proposed SE strategies
lead to a much better representation of the grass and roof
endmembers when compared to the competing algorithms.

G. Computational Complexity

The computation times of different algorithms over both
synthetic and real-world images are reported in Table V. In this
experiment, N-FINDR algorithm is selected. The quantities are
measured with Inter Core i7-6700 CPU at 3400 GHz with 12 GB
of RAM using MATLAB R2016a on Windows 10 platform. In
the synthetic experiments, though preprocessing SE strategies
(especially LLR) take more preprocessing time than SPPs, the
total computation time including AE process is almost least.
This may be because endmembers preprocessed by proposed
SE strategies are more closely to ground-truth spectra than other
preprocessing methods so that the advantage of calculation in AE
step is obvious. Due to the sparse solution of LSR, it needs more
time to find endmembers in some scenarios. However, it has a
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TABLE V
PREPROCESSING TIMES ANALYSIS (IN SECONDS) OVER BOTH SYNTHETIC AND REAL DATASETS WHEN N-FINDR ALGORITHM IS SELECTED FOR SEF

Fig. 12. Qualitative comparison between the fractional abundance maps
estimated from the revised urban dataset preprocessed by SE strategies and
comparison algorithms.

noticeable efficiency in improvement of unmixing accuracy. As
for real-dataset experiments, the computational preprocessing
time of Cuprite is greater than urban HYDICE since the spatial
context of Cuprite dataset is much more complex than urban.
Moreover, the number of pixels in Cuprite image is larger than
urban dataset, which leads to more time being spent on identify-
ing spatially homogenous pixels. While comparing with the SPP
under similar principle, it is found that the preprocessing SE-
LLR algorithm takes up the same order of magnitude of running
time, which also proves the effectiveness of our proposed SE
algorithms. On the other hand, RBSPP and RCSPP significantly

Fig. 13. Qualitative comparison between the fractional abundance maps esti-
mated from the revised urban dataset postprocessed by our proposed SE-LLR,
SE-LSR, and SE-SVD.

TABLE VI
COMPARATIVE RESULTS OF OUR PROPOSED SE ALGORITHMS OVER

SPECTRAL VARIATION

reduce the extremely high complexity mainly due to the simpli-
fication refine of original image pixels to a subset for subsequent
processing.

H. Experiments Over Spectral Variation

In order to further verify that the proposed algorithm can miti-
gate the effects of spectral variation, a supplementary experiment
is conducted. A 100× 100 synthetic hyperspectral image used
in [35] is adopted in this experiment. In the simulation of this
synthetic image, 10 dB Gaussian noises are added to each row
of pixels to account for spectral variation within the global area,
and additional 50 dB Gaussian noises are added to the pixels
inside a block to simulate spectral variation within a local area.
We combined the proposed preprocessing and postprocessing
SE algorithms with traditional spectral-based VCA algorithm to
evaluate the performance of alleviating spectral variation.

The detailed comparative results of the proposed SE algo-
rithms against SPEE and VCA are shown in Table VI. As
observed from Table VI, the lowest value of RMSE (shown
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TABLE VII
SUMMARY OF THREE PROPOSED SE STRATEGIES

as coarsening) is achieved by both SPEE and preprocessing
SE-SVD. In terms of the SAD, endmembers preprocessed by
SE-LSR is more similar to their ground-truth signatures. In
general, the proposed SE algorithms could alleviate spectral
variation of larger areas, which makes it more effective to find
endmembers for SMU. Moreover, preprocessing SE strategies
are more effective on eliminating spectral variation than postpro-
cessing in most times. This is because only the spatial context of
several selected endmembers are considered in postprocessing
SE strategies, rather than all the spatial context of all the pixels
in preprocessing SE strategies.

IV. CONCLUSION

In this article, we developed several novel SE strategies, which
can be utilized as either a preprocessing step or postprocessing
step for the traditional sEF algorithms. Specifically, three pre-
processing SE algorithms based on LLR, LSR, and SVD are
designed, in which each pixel in a hyperspectral image is mod-
ified by exploiting its spatial context. Meanwhile, the proposed
spatial-spectral SE strategies can be combined (as a separate
module) with any sEF algorithm. A systematical summary of our
proposed SE strategies is shown in Table VII. Generally, SE-LSR
is better than SE-LLR, especially for the mixing neighborhood
consisting of pixels from different classes. This is because only
pixels from homogeneous class will help to alleviate spectral
variation in SE-LSR while pixels from inhomogeneous classes in
a neighborhood may oversmooth centering pixels in SE-LLR. As
for SE-SVD, if the threshold is properly settled, its performance
will be better than SE-LSR and SE-LLR since spectral variation
is alleviated in feature domain. Experiments over both simulated
and real hyperspectral data have demonstrated that the proposed
SE strategies can clearly improve the performance of sEF al-
gorithms by alleviating local spectral variation using spatial
context of pixels, as a preprocessing step or postprocessing step.
Moreover, anomalous endmembers can be reserved by simply
turning OFF such SE strategy if the pixel is over-smoothed.

In future, we will work toward the automatic identification of
anomalous endmembers and integrate this step in SE strategies
rather than distinguish all pixels separately. Another direction
of efforts is to design endmember identification algorithms to
reliably distinguish outliers from anomalous endmembers, so
as to retain anomalous endmembers and remove outliers in
order to substantiate its potential to improve spectral unmixing
techniques. Meanwhile, recent mixture proportion estimation
based works [55], [56] also offer a possible solution to enhance
the accuracy of estimated fractional abundances.
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