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Abstract—Various methods for automatic building extraction
from remote sensing data including light detection and ranging
(LiDAR) data have been proposed over the last two decades but a
standard metric for evaluation of the extracted building boundary
has not been found yet. An extracted building boundary from
LiDAR data usually has a zigzag pattern with missing detail, which
makes it hard to compare the boundary with its reference. The
existing metrics do not consider the significant point (e.g., corner)
correspondences, therefore, cannot identify individual extralap and
underlap areas in the extracted boundary. This article proposes an
evaluation metric for the extracted boundary based on a newly
proposed robust corner correspondence algorithm that finds one-
to-one true corner correspondences between the reference and
extracted boundaries. Assuming a building has a rectilinear shape,
corners and lines are first detected for the extracted boundary.
Then, corner correspondences are obtained between the extracted
and reference boundaries. Each corner has two corresponding lines
on its two sides that ideally are perpendicular to each other. The
corner correspondences are finally ranked based on their distance,
angle, and parallelism of corresponding lines. The metric is de-
fined as the average minimum distance davg from the extracted
boundary points to their corresponding reference lines. Extralap
and underlap areas are identified by comparing the point distances
with davg. In experiments, the proposed metric performs more
realistic than the existing metrics and finds the individual extralap
and underlap areas effectively.

Index Terms—Building boundary extraction, evaluation, object-
based shape similarity, performance, polygon comparison.

I. INTRODUCTION

BUILDING outlines are a standard part of recent topo-
graphic databases. For many applications such as 3-D city

modeling, urban planning, and disaster management, the map-
ping of building outlines is important. Therefore, studies have
been conducted and numerous approaches have been developed
in fully automated or semiautomated manners using airborne
light detection and ranging (LiDAR) data and/or remote sensing
images to extract building boundaries [1]–[5].

A building boundary or outline can be defined as a closed
polygon that represents the outer shape of a building roof. In
order to evaluate the results of a building outline extraction
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method, extracted boundaries are compared with the corre-
sponding reference data. The existing evaluation methods for
extracted 2-D and 3-D building boundaries can be mainly cat-
egorized into two types, i.e., object-based [6]–[8] and area-
based [8]–[10] methods. They use evaluation metrics to estimate
the performance of an involved building extraction method. In
object-based evaluation either a boundary is labeled as cor-
rectly or wrongly extracted or a quality measure is assigned
to each extracted boundary [11]. It offers a quick assessment.
The area-based approach corresponds to the horizontal accuracy
of the extracted building footprint. Different metrics such as,
completeness (recall), correctness (precision), and/or quality
values are calculated using the traditional formulas that are based
on the total area of overlapping building parts and the area of
corresponding reference buildings [12]. If the image data are
used as an input, then a rasterization process must be performed
on the extracted building area [8]. But for the case of LiDAR
data, rasterization of the vector data [13] may lead to a severe
misalignment error and the estimated performance can distort
considerably when the average building size is small [6].

The existing metrics [12], [14] for evaluating the performance
of building boundary extraction techniques can be categorized
based on matched rates (e.g., completeness, correctness, and
quality rates) [6], [15], shape similarity (e.g., turning angle,
Fourier descriptors, and dominant angle rotation) [16], [17],
positional accuracy [e.g., the root mean square error (RMSE), the
normalized median absolute deviation (NMAD), and the mean
absolute error (MAE)] [18]–[22]. The matched rates are mainly
used by the area-based, also known as the pixel-based, ap-
proach [12]. Boundary level shape similarity metrics have been
used by many authors to evaluate the extracted buildings [16],
[23], [24]. Different topological relations such as corner posi-
tional difference, perimeter difference, and overlapping areas
between the reference and extracted buildings are used to define
a metric in this case [25], [26]. The RMSE is a frequently used
metric to measure the positional accuracy [7], [16], [24], [26]. It
is based on the distance of each corner of an extracted building
polygon to a corresponding reference corner. The NMAD and
the MAE are used to investigate the accuracy of the reconstructed
3-D buildings from the satellite imagery [21], [22]. Yet, there
is no standard metric for evaluation of the extracted building
boundaries in the remote sensing community [27].

In a strict mathematical terminology, a metric or a distance
function (d) should follow three basic properties for each pair of
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elements in a set ρ, such as, nonnegativity (d(x, y) ≥ 0), sym-
metry (d(x, y) = d(y, x)), and triangular inequality (d(x, y) ≤
d(x, z) + d(z, y)) for all x, y, z ∈ ρ [28]. For different shape
matching applications and extracted building boundary evalua-
tion, the Hausdorff [29] and the Chamfer [28] distances, which
allow different number of points in the reference and extracted
shapes, are used [30]–[32]. These distance metrics obviously
fulfill the nonnegativity and the triangular inequality properties,
but not the symmetry property because the distance measured
from the extracted boundary to the reference boundary is not
the same as that of from the reference boundary to the extracted
boundary [11], [12].

To fulfill the symmetry property, Avbelj et al. [28] proposed
the polygon and line segments (PoLiS) metric, where they
applied a symmetrization technique by simply averaging the
two distances (from the extracted to the reference and vice
versa). The PoLiS is straightforward and easy to implement [33].
It considers only the shortest distance from a corner of one
boundary to any point in the other boundary. However, this
may mislead the actual result sometimes, particularly, in the
case of segmentation errors (extralap and underlap areas) in an
extracted boundary. Moreover, for a complex building with a
higher number of extracted corner points than the number of
reference corner, or vice-versa, influences the actual distance
value considerably [12].

Extralap and underlap errors [10] in the extracted building
boundary are a common issue (see Fig. 1). Due to dissimi-
lar sources and methodologies involved in generation of the
reference and extracted boundaries, in practice, an extracted
boundary has always some misalignment (e.g., AreasD andE in
Fig. 1) with its reference boundary. Actual segmentation errors
(e.g., Areas A, B, and C in Fig. 1) happen when the involved
building extraction method fails to handle the various issues
(e.g., resolution, point density, shadow, and occlusion) with the
input data. The existing evaluation methods [6], [34], [35] do not
differentiate between the misalignment and segmentation errors.
Therefore, they also do not individually identify these errors.

This article proposes a new performance evaluation metric
that is based on robust corner correspondences between the
extracted and reference boundaries. The newly proposed robust
corner correspondence (RCC) algorithm finds one-to-one true
corner correspondences between the reference and extracted
boundaries. The obtained corner correspondences are ranked
based on distance, angle, and parallelism of lines. The proposed
metric, coined as the RCC metric, is then defined as the average
minimum distance davg from the extracted boundary points to
their corresponding reference lines. The RCC metric fulfills all
three conditions of a mathematical metric. During performance
evaluation, extralap and underlap errors are separately identified
by comparing the point to line distances with davg. While long
distances indicate a possible segmentation error, short distances
represent a misalignment error.

The particular contributions of the article are as follows.
1) The RCC algorithm finds one to one true corner corre-

spondences between the extracted and reference building
boundaries. The algorithm works in the presence of noise
(e.g., zigzag pattern) and extralap and underlap errors.

Fig. 1. Reference (red) and extracted (blue) building polygons. Gray, yellow,
and green areas represent true positive, false negative, and false positive areas,
respectively.

2) The newly proposed RCC metric offers a realistic mea-
surement of distances between the extracted and reference
building boundaries. Since the existing metrics do not use
corner to corner correspondences, they may sometimes
find unrealistic measurements.

3) During evaluation, we can identify the extralap or underlap
errors based on the proposed RCC metric. An extensive
experimentation has been carried out on datasets from
three geographic locations.

Note that like the exiting distance metrics (e.g., PoLiS,
RMSE), the proposed RCC metric finds the distance between
a reference building and its corresponding extracted building.
Each building correspondence, i.e., reference-extracted pair, is
chosen based on the maximum overlap between the reference
and extracted buildings [10].

The rest of this article is organized as follows. In Section II, we
review some existing metrics and their challenges. The proposed
metric is presented and discussed in Section III. Section IV rep-
resents the experimental results, and finally, Section V concludes
this article.

II. REVIEW OF EXISTING METRICS

The extracted building boundary Be from a building extrac-
tion method can be represented as an ordered set of n points
ai ∈ Se, 1 ≤ i ≤ n, where any two consecutive points ai and
ai+1 present two neighboring points on the boundary. Thus, the
representation is like a polygon consisting of n points (vertices)
and n lines (vector format) [28]. The reference boundary Br

also usually comes in the vector format consisting of points and
lines, bj ∈ Sr, where 1 ≤ j ≤ m.

In practice, while Be contains roof corner points (or points
close to corners) as well as the points between two consecutive
corners, Br contains only corner points. However, for the sake
of discussion in this article, we assume both Be and Br contain
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roof corners (or points close to corners) and the points between
successive corners. In Br, if the points in between corners are
not available, they can be simply inserted in an equal distance
depending on the input LiDAR point density. In Be, corners
can be detected and inserted following the method presented in
[36]. Let the number of corners in Br be p and that in Be be q.
Also, let the sets of corners in Be and Br be ak ∈ ζe ⊂ Se and
bl ∈ ζr ⊂ Sr, respectively, where 1 ≤ k ≤ q and 1 ≤ l ≤ p.

In this section, we discuss the challenges of some existing
metrics that are used for evaluation of the extracted building
boundary.

Recall Rc, precision Pr (also known as completeness Cm

and correctness Cr, respectively [37]) and quality Ql defined in
(1)–(3) are frequently used area-based metrics for evaluating
the extracted building boundary or individual roof parts of
buildings for generating 3-D models [37]–[40]. These are based
on the matched rates between the extracted and corresponding
reference polygon areas. Four different parameters are defined
for these three metrics. These are true positive (TP, common area
between Be and Br), true negative (TN, area which is neither in
Be nor in Br), false positive (FP, area in Be but not in Br), and
false negative (FN, area not in Be but in Br) [16], [41]. Fig. 1
shows an example of these parameters.

Rc =
TP

TP + FN
(1)

Pr =
TP

TP + FP
(2)

Ql =
TP

TP + FP + FN
. (3)

AlthoughRc,Pr, andQl are frequently used by many authors,
most of the times these three metrics require the rasterization
process that may introduce errors and should be avoided [6],
[12]. Rc and Pr do not fulfill the symmetry property of a
mathematical metric and they are more appropriate for the
applications like change detection [11]. Moreover,Rc (Cm) does
not consider about the FP and Pr (Cr) does not consider the FN
rates that sometimes give a false estimation when a large part
of a vegetation is extracted as building part or a large part of a
building remains undetected [11].

Metrics such as Matthew’s correlation coefficient (MCC) and
F1-score (F1), defined by (4) and (5), respectively, as follows
based on the point coverage of extracted boundaries, are used
by some authors to evaluate the reconstructed 3-D buildings [42],
[43]. Individual extracted roof parts are evaluated with the corre-
sponding reference data in this case. Orthogonal distances from
the points of the extracted plane to the corresponding reference
plane and the minimum distance of the detected corners are
also used by some authors to evaluate the extracted 3-D roof
planes [10], [44].

MCC =
TP× TN− FP× FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(4)

F1 =
2× TP

2× TP + FN+ FP
. (5)

Li et al. [39] use three different metrics to evaluate the quality
of the extracted 3-D roof planes of individual buildings. These
are boundary precision (Bpr), boundary recall (Brc), and average
of precision-recall (Fm). Equations (6)–(8) define these metrics,
respectively, where Be and Br denote the boundary points of the
extracted and corresponding reference planes, respectively, and
| | indicates the number of points in a set. The least-squares 3-D
surface matching (LS3D) method is applied by Akca et al. [45]
to assess the quality of 3-D building data. The metric they used
is based on the Euclidean distance between each extracted plane
to its reference plane.

Bpr =
|Be ∩Br|

|Be| (6)

Brc =
|Be ∩Br|

|Br| (7)

Fm =
2

1
Brc

+ 1
Bpr

. (8)

The Hausdorff and the Chamfer distances are frequently used
by many authors to quantify the object-based similarities be-
tween two shapes [30]. These metrics do not require to establish
the point correspondences [30], [46]. The Hausdorff distance
h(Se, Sr) between point sets Se and Sr is a max-min distance
and the Chamfer distance c(Se, Sr) is a sum of distance between
each point in Se and its closest point in Sr (see (9) and (10),
where ‖.‖ represents the Euclidean distance [47]). Both h and c
do not follow the symmetry property of a mathematical metric
[i.e., h(Se, Sr) �= h(Sr, Se) and c(Se, Sr) �= c(Sr, Se)] and they
are very sensitive to outliers. Thus, the evaluation result using
h or c is found to be unrealistic for a given extracted building
boundary [28].

h(Se, Sr) = max
ai∈Se

min
bj∈Sr

‖ai − bj‖ (9)

and

c(Se, Sr) =

p∑

ai∈Se

(
min
bj∈Sr

‖ai − bj‖
)
. (10)

The RMSE λ is another frequently used object-based metric to
measure the positional accuracy of the extracted boundary with
respect to its reference boundary [26]. For each point ai ∈ Se,
it finds the nearest point bj ∈ Sr. Using the Euclidian distance
between the points, the RMSE is then calculated using (11) [48]

λ(Se, Sr) =

√
1

n

∑n

i=1

(
min

ai∈Se,bj∈Sr

‖ai − bj‖
)2

. (11)

Some authors calculate the RMSE from the points of the
reference building to the extracted building. However, the RMSE
distance also does not follow the symmetry property of a mathe-
matical metric, that is, λ(Se, Sr) �= λ(Sr, Se) [49]. Some authors
instead of using all points along the boundaries, use the corners.
So, they regularize the extracted building boundary and detect
corners on the regularized boundary. Then, they calculate the
RMSE using the corners from the extracted and reference bound-
aries. Sometimes, they use a threshold to exclude some distances,
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which reduce the objectivity. Consequently, it brings several
complications because of not finding the correspondences be-
tween the corner points of the reference and extracted bound-
aries, even though the extraction method is effective enough [12].

The NMAD is considered as a robust metric to evaluate the
extracted building shapes in the presence of outliers with a non-
normal distribution [22], [50]. The MAE is another frequently
used metric, similar to the Chamfer distance used by several
authors to evaluate the extracted 3-D buildings [21]. The NMAD
ν and MAE μ̂ are defined in (12) and (13), respectively, where
	h is the set of all minimum distances from the extracted points
(Se) to the reference points (Sr) and cν = 1.4826 is a constant
to normalize the distance [22]. However, none of these satisfies
the properties of a mathematical metric discussed earlier.

ν(Se, Sr) = cν × mediani=1,...,n

(	hi−medianj=1...,n(	hj)) (12)

μ̂(Se, Sr) =
1

q

q∑

i=1

‖ 	 hi‖. (13)

The PoLiS is an object-based metric ℘ that does not use any
threshold [28]. The distance between each corner of the extracted
shape to any nearest point in the reference outline [see (15)] and
vice versa [see (16)] is calculated first. The average distance is
then considered as the final PoLiS distance [see (14)]. The result
using ℘ changes almost linearly with respect to small changes
that occur in rotation, translation, or scaling between Be and Br.

℘ =
℘(Se, Sr) + ℘(Sr, Se)

2
(14)

where

℘(Se, Sr) =
1

q

q∑

k=1

(
min
ak∈ζe

‖ak − bj‖
)2

(15)

and

℘(Sr, Se) =
1

p

p∑

l=1

(
min
bl∈ζr

‖bl − ai‖
)2

. (16)

Since, ℘(Se, Sr) �= ℘(Sr, Se), ℘(Se, Sr), or ℘(Sr, Se) alone
does not follow the symmetry property of a mathematical metric,
the average in (14) is applied to symmetrize the final PoLiS
distance [28].

The PoLiS or the RMSE consider the minimum distance that
sometimes results in a wrong distance measure, particularly,
when segmentation error happens. For example, Fig. 2 shows an
extracted (Be, black dots) and its corresponding reference (Br,
red lines) building boundaries. We assume that some part of the
building is not properly extracted (extralap or underlap error)
due to vegetation or missing LiDAR data. For the corner O
on Be, the nearest point on Br is A. So, by the definition, the
RMSE or the PoLiS will considerOA (dashed orange line) as the
estimated distance forO. But practically, if we considerQ andR
on Br as corresponding corners of W and Z on Be, respectively,
then OC should be considered as the estimated distance for
O. Therefore, both the RMSE and the PoLiS estimate wrong
distance in this case. The same happens for U as well.

Fig. 2. Reference (red line) and extracted (black dots) building polygons.
Filled circles represent some representative points or corners on the polygons.

To solve this issue, for each of the reference corners, we first
find a true corner correspondence from the extracted boundary.
Then, we estimate the distance appropriately by checking the
corresponding boundary segments between any two consecutive
true corners. For example, we can find the matching corner pairs
as (P,X), (Q,W ), (R,Z), and (S, Y ) between ζe and ζr. Then,
the two segments QR and WV UOTZ between (Q,W ) and
(R,Z) are checked to estimate the appropriate distances for V ,
U , O, and T to QR. By applying an appropriate threshold, we
can also correctly locate the extralap and underlap errors.

III. PROPOSED METHOD

From the aforementioned discussion, we can see that the
existing metrics are mainly based on the minimum distance and
do not consider the corner correspondences at all. This may
mislead the distance estimation. Moreover, they do not locate
the extralap and underlap errors. In this section, we first propose
a robust algorithm for finding the true corner correspondences
between ζe and ζr. Then, we define the new metric (RCC) that
provides the average minimum distance davg from Be to ζr. The
use of Be instead of ζe in the estimation of davg avoids any
changes introduced to the extracted boundary by the involved
boundary regularization technique. Finally, extralap or underlap
areas are identified based on an appropriate threshold, which
can be estimated based on either davg or the input LiDAR point
density.

A. Robust Corner Correspondence (RCC)

As shown in Fig. 3, let any two consecutive sides (lines) of
ζr be AP and PB and those of ζe be SQ and QR, where A, P ,
B, S, Q, and R are corners. A corner angle is shown between
consecutive lines, i.e., ∠APB and ∠SQR are reference and
extracted angles, respectively. In a rectilinear building, each such
angle is ideally a right angle. If P and Q form a pair (P,Q) of
corners between ζr and ζe, then ideally PA ‖ QS and PB ‖
QR, which mean there are two pairs of corresponding parallel
lines for (P,Q). However, in practice, a reference or extracted
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Fig. 3. Five properties to rank corner correspondences: (a) corner distance,
(b) angle difference, (c) distance between corresponding lines, (d) position of
adjacent corner pair, and (e) number of parallel line pairs. A, P , and B are three
consecutive reference corners and S, Q, and R are three consecutive extracted
corners.

corner may not show an exact right angle. Even if they show, their
orientation may get changed. Therefore, an angle threshold θth
is applied to decide parallelism [36]. Yet, parallel lines may not
be found for a true corner correspondence, particularly, due to
segmentation error or absence of data. Therefore, five different
properties including distances and angle difference described as
follows are considered to rank the corner pairs between ζr and
ζe. For each property, a matrix Mf of size p× q is constructed,
where p and q are number of reference and extracted corners,
respectively, and 1 ≤ f ≤ 5.

1) Distance between corners: For each reference corner, its
distance to each of the extracted corners is calculated. The
matrix M1 is then constructed where M1(k, l) indicates
the distance from kth extracted to lth reference corners.
If (P,Q) is a true corner correspondence, then ‖PQ‖ is
expected to be the smallest among all the distances [see
Fig. 3(a)] in the corresponding column in M1.

2) Angle difference between corners: False corners may not
have angles close to the right angle. So, for each reference
angle, its absolute difference with each of the extracted
angles is calculated. The matrix M2 is then constructed
where M2(k, l) indicates the absolute angle difference
between kth extracted angle and lth reference angle. If
∠SQR is the corresponding extracted angle for ∠APB
[see Fig. 3(b)], then |∠APB − ∠SQR| is expected to be
the smallest difference among all the differences in the
corresponding column in M2.

3) Average distance between corresponding lines: For each
pair of the reference and extracted corners, two distances
are calculated between the corresponding parallel lines
[see Fig. 3(c)]. The matrix M3 is then constructed where
M3(k, l) indicates the average parallel line distance from
the kth extracted corner to lth reference corner. If (P,Q)
is a true corner correspondence and PA ‖ QS and PB ‖

QR, then their average distance is expected to be the small-
est among all the average differences in the corresponding
column in M3.

4) Position of adjacent corner pairs: Referring to Fig. 3(d),
for the corner pair (P,Q), it has two adjacent corner pairs
(A,S), which is corresponding to parallel lines PA and
QS, and (B,R), which is corresponding to parallel lines
PB and QR. If (P,Q) is a true corner correspondence,
an intuitive observation is that the two corners in each
of the adjacent corner pairs reside on the same side of
the line PQ. In Fig. 2 for the true corner correspondence
(R,Z), corners S and Y of the pair (S, Y ) reside on the
same side of the line RZ. Moreover, corners Q and T of
the pair (Q,T ) reside on the other same side of RZ. For
the false corner correspondence (R, T ), though the pair
(S,O) satisfies this observation, the other pair (Q,Z) does
not with respect to line RT . For the false correspondence
(S, T ), none of the pairs (R,O) and (P,Z) satisfy this
with respect to line ST . The matrix M4 is constructed
such that M4(k, l) = 0.25 when both pairs satisfy this,
M4(k, l) = 2N otherwise where N > 1.

5) Number of parallel line pairs: For each pair of the ref-
erence and extracted corners, the number of parallel line
pairs is recorded [see Fig. 3(e)]. The matrix M5 is con-
structed such that M5(k, l) = 0.25 when both pairs of
lines are parallel, M5(k, l) = 0.5 when only one pair of
lines is parallel, and M5(k, l) = N when no pairs of lines
are parallel.

Two different thresholds are used to find corresponding par-
allel lines. A flexible threshold θth = π

4 is used for all matrices
except for M4, for which θth = π

8 is set [36]. The flexible value
allows to find parallel lines even for false candidates, but the
tight value offers credits mostly for the true correspondences.

Since the aforementioned first three properties are based on
the distance and angle, the values of each of the matrices (M1,
M2, or M3) are normalized by using its maximum value

Mf (k, l) =
Mf (k, l)

max(Mf )
(17)

where f = 1, 2, 3. Finally, the following formula is defined to
rank the pairs of extracted and reference corners:


(k, l) =
5∏

f=1

Mf (k, l). (18)

The values in 
 are sorted in ascending order, so the corner pair
(the kth extracted and the lth reference corners) with the smallest
value is at the top of the rank.

The position property (M4) shows high capability in differen-
tiating the true and false corner correspondences between ζr and
ζe. Any corner pair that does not satisfy this property is decided
to be an “unsuitable” candidate and remains at the bottom of
the rank or removed. For example, as shown in Fig. 2, for the
reference corner P , only two (X and U ) out of eight extracted
corners satisfy the property, where (P,X) is a true correspon-
dence and (P,U) is a false correspondence. The remaining six
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pairs are “unsuitable” candidates. Consequently, only 8 out of a
total of 32 correspondences will have M4(k, l) = 0.25 and the
rest (“unsuitable”) will have M4(k, l) = 2N . In contrast, the
parallel line property (M5) has relatively low capability as due
to extralap or underlap error, some true corner correspondences
may not satisfy this property. Thus, M5(k, l) = N is set (as
compared to M4(k, l) = 2N when the position property is not
satisfied for a correspondence which is more likely false) so that
a true correspondence that does not meet the parallel property is
at a higher rank than an “unsuitable” correspondence that does
not meet the position property. For this purpose, the value of N
is chosen to be a large number (say, 106).

The product of the normalized values of the first three prop-
erties in (18) is within the range [0,1]. Thus, when a given
correspondence satisfies the fourth, the fifth, or both properties,
it becomes at a higher rank. On the contrary, if it does not satisfy
both the fourth and the fifth properties, it can come at the bottom
of the rank.

For a given reference corner, the aforementioned ranking
based on the numerical value only may put a false correspon-
dence at a higher rank than its true correspondence. So, the
final corner correspondences are decided based on the “adjacent
correspondence consistency” property, where to decide a true
corner correspondence (P,Q), the adjacent corners of P and
Q are also checked if they are true correspondences too. For
example, from Fig. 2, the reference corner P has two “suitable”
candidate pairs (P,X) and (P,U). If (P,U) has a smaller
ranking value than (P,X), (P,U) will be chosen as the true
corner correspondence, which is a wrong decision. To avoid
this, their adjacent corner pairs are checked. For (P,U), the
adjacent pair (S,O) can be ranked high but (Q,V ) is not
because it is an “unsuitable” candidate. So, (P,U) is eventually
decided as a false candidate. In contrast, for (P,X), both of
the adjacent pairs (S, Y ) and (Q,W ) are “suitable” candidates
and eventually found to be true correspondences by checking
their adjacent corners. Thus, (P,X) is decided to be a true
candidate. The recursive procedure, therefore, finalizes all four
true correspondences (P,X), (Q,W ), (S, Y ), and (R,Z). Two
stop conditions are considered for the recursion. If forP , no true
candidate pair is found, its adjacent corners are decided based
on their other adjacent corners. After the “adjacent correspon-
dence consistency” check, if there are more than two “suitable”
candidates found for P , the one with the lower numerical value
(i.e., 
(k, l)) is decided to be the true candidate.

Fig. 4 shows the true corner correspondences within red
dashed ellipses for another representative building.

B. RCC Metric

Now, in order to quantify the overall dissimilarity between
Be and ζr, we find the average minimum distance davg from the
LiDAR points on Be to lines of ζr.

Because of the nature of remote sensing data, Type-I (false
positive) and Type-II (false negative) errors [51] are common in
any building boundary extraction methods. The proposed RCC
metric finds the best corner correspondences, thus there can be
some remaining corners in the extracted or reference boundaries

Fig. 4. True corner correspondences within red-dashed ellipses for another
representative building. Green circles represent corners of the reference polygon
ζr consisting of orange solid lines and red rectangles show corners of the
extracted polygon Be represented by blue dot (LiDAR) points. C, D, E, and F
are missed true corners and S, T , and U are extracted false corners.

that do not have any matched correspondences. For example,
in Fig. 4, the remaining corners in the extracted boundary
lead to Type-I error and those in the reference boundary cause
Type-II error. Therefore, there can be one of the following three
situations between any two consecutive corner correspondences:
a reference line corresponds to one extracted segment (e.g., AB
with PQ or AH with PV ); a reference line corresponds to two
or more extracted segments (e.g., GH with RSTUV ) because
of the Type-I error; and an extracted segment corresponds to two
or more reference lines (e.g., QR with BCDEFG) because of
the Type-II error.

For the first two situations, between the two consecutive
corner correspondences, we have only one reference line that
corresponds to one or more extracted boundary segments. The
perpendicular distances are calculated from the LiDAR points
on the extracted segments to the corresponding reference line.
For example, in Fig. 4, the extracted segment PQ and the
reference line AB are within the true corner correspondences
(A,P ) and (B,Q). The green lines between PQ and AB
are the estimated perpendicular distances. Similarly, within the
true corner correspondences (G,R) and (H,V ), there are four
extracted segments RS, ST , TU , and UV for the reference line
GH and the perpendicular distances, shown by green and red
lines between RSTUV and GH , are calculated.

For the third situation, between the two consecutive corner
correspondences, we have only one extracted segment that
corresponds to one or more reference lines. The perpendicular
distances are again calculated from the LiDAR points on the
extracted segment to its corresponding parallel reference lines.
For example, in Fig. 4, the extracted segment QR has five
corresponding reference lines BC, CD, DE, EF , and FG
within the true corner correspondences (B,Q) and (G,R). In
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this situation, the corresponding reference line for an extracted
boundary point is selected based on the 2-D position (i.e., the
start and end points) of the reference line and the extracted
point. The perpendicular distances, shown by green and red
lines between QR and BCDEFG, are calculated. The expla-
nation for choosing two different color lines will be provided in
Section III-C.

After calculation of all such distances, the RCC metric that
calculates davg from the extracted to the reference boundaries is
defined as follows:

davg(Se, Sr) =
1

n

n∑

t=1

dp (19)

where n is the total number of LiDAR points along Be, and
dp is the perpendicular distance from a LiDAR point to the
corresponding reference line. Two consecutive pair of corner
correspondences indicate the exact reference lines for which
dp is calculated for the extracted boundary points within the
consecutive matched corners on the extracted boundary. Like
the PoLiS distance in (14), the aforementioned RCC metric
can be symmetrized by taking the average of davg(Se, Sr) and
davg(Sr, Se).

C. Segmentation Errors

We identify the segmentation errors (extralap and underlap
areas) automatically by using the average minimum distance
of the perpendicular distances between two consecutive corner
correspondences. The extralap and underlap areas can be dis-
tinguished based on the overlap and nonoverlap areas between
the extracted polygon and its reference polygon [10], [27], [52].
We mainly follow the definition in Awrangjeb and Fraser [10].
The common area shared by both the reference and the extracted
boundaries is called the overlap area. When the boundary of the
reference building splits the extracted boundary into more than
one part, then the parts of the extracted boundary that fall outside
the reference polygon are considered as extralap areas. Similarly,
when a reference polygon is split by the extracted boundary
into more than one part, then the parts which fall outside the
extracted polygon are known as underlap areas. Figs. 1 and 4
show examples of these three types of areas. So, an extralap
happens when some extracted points are found outsideBr and an
underlap happens when some extracted points are found inside
Br. However, many such areas (e.g., AreasD andE in Fig. 1) are
not important since a misalignment between Be and Br always
happens in practice. So, we follow the following three steps to
find noticeable errors (e.g., Areas A, B, and C in Fig. 1) using
(19) between two consecutive corner correspondences, where
we have one of the three situations discussed in Section III-B.

First, between two consecutive true corner correspondences,
there is only one reference line that corresponds to more than
one extracted segment. The perpendicular distances from the
LiDAR points on the extracted segments to the reference line are
compared with their average minimum distance (dp > c.davg,
where c > 1). For example, in Fig. 4, for the reference line GH ,
there are four segments RS, ST , TU , and UV . The perpen-
dicular distances (green and red lines) from these segments to

GH are compared with their average distance. The red lines
related to the points with high dp are decided to be in an extralap
area since these LiDAR points on the extracted segments are
outside Br. Green lines indicate the distances with no extralap
or underlap areas. Similarly, in Fig. 2, the points within the
extracted segments V U , UO, and OT form an underlap area
with the reference line QR since these points are inside the
reference PQRS.

Second, similarly we find the errors when between two con-
secutive true corner correspondences, there is only one extracted
segment that corresponds to more than one reference line. For
example, in Fig. 4, for the extracted segment QR, there are five
reference lines between corners B and G. The perpendicular
distances (green and red lines) from these segments to BC,
DE, and FG are compared with their average distance. The
red lines related to the points with high dp are decided to be
in an underlap area since these LiDAR points on the extracted
segments are inside Br.

Finally, we exclude the extracted points related to the extralap
and underlap areas found previously, and the overall davg is
recalculated using (19). Then, we find the errors (extralap or
underlap) when between two consecutive true corner correspon-
dences, there is only one extracted segment that corresponds
to only one reference line. For example, in Fig. 4, for the
extracted segment PV , there is only one reference line AH .
The perpendicular distances (red lines) between PV and AH
are compared with their average distance. These lines are related
to the points with high dp, therefore, are decided to be in an
underlap or extralap areas depending on their positions inside or
outside Br. This last step is iteratively followed until no extralap
or underlap is found between two consecutive corner correspon-
dences where there is only one reference line corresponding to
only one extracted segment.

To choose the value for c in real datasets, first, we visually
identify 12 different extralap and underlap areas, shown in Fig. 5,
as the ground truth from the buildings of three different test
datasets. Fig. 6 plots the number of the identified segmented
areas against different values of c. We can see that for c = 3, all
12 true extralap and underlap areas are identified correctly. For
low values of c, we observe that many false segmented (extralap
or overlap) areas are found, whereas for high values of c, many
true extralap and underlap areas remain unidentified. Therefore,
c = 3 is chosen in the algorithm. In our performance study,
presented in the following section, c = 3 has been used for all
synthetic and real test datasets.

IV. PERFORMANCE EVALUATION

To evaluate the proposed RCC metric, we first use some
synthetic building polygons with their corresponding refer-
ence boundaries. Thereafter, we evaluate the extracted building
boundaries from three real datasets with different LiDAR point
densities [10]. We compare the proposed RCC metric with the
existing metrics. Using our method, we also find the individual
extralap and underlap areas, if exist, between the extracted
and reference building polygons. Finally, we present the time
complexity of the proposed RCC metric. We used the MATLAB
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Fig. 5. Some extralap and underlap areas visually identified from three dif-
ferent datasets. Red polygons indicate reference and blue polygons represent
extracted boundaries. Green solid circles show extralap and yellow stars repre-
sent the underlap areas.

Fig. 6. Selection of a value for the parameter c. The number of identified
segments plotted against different values of c.

platform (R2016a) to implement our method and conducted the
experiments on a computer with Intel Core i7 2.6-GHz CPU and
16-GB RAM.

A. Datasets

We use Aitkenvale (AV) and Hervey Bay (HB) areas from the
Australian benchmark datasets and Vaihingen (VH) area from
the ISPRS benchmark datasets [10]. The AV datasets contain
two different areas. The first area (AV1) covers 66 × 52 m2 with
a high point density (40 points per m2) and contains five different
buildings. The second area (AV2) contains 61 different buildings
with point density 29 points per m2. AV2 covers 214 × 159 m2

area. The HB area has a medium point density (12 points per

Fig. 7. Australian datasets with reference buildings of Aitkenvale (AV) and
Hervey Bay (HB) areas: (a) AV1, (b) HB, and (c) AV2.

Fig. 8. ISPRS benchmark datasets with reference buildings of Vaihingen (VH)
area: (a) VH1, (b) VH2, and (c) VH3.

Fig. 9. Individual roof plane and building boundary extraction results using
the method proposed by Dey et al. [53]: (a) Sample building. (b) Segmented
LiDAR points of individual roof planes. (c) Extracted boundaries of individual
roof planes (yellow). (d) Extracted building boundary (blue).

m2) and covers 108 × 104 m2 area with 28 different buildings.
The ISPRS benchmark datasets have three different sites from
Vaihingen (VH) area of Germany. We evaluated the buildings
from all of these sites. The first site (VH1) consists of 37 different
buildings with point density 3.5 points per m2. The second site
(VH2) has 14 large high rising buildings with 3.9 points per m2

and the third site (VH3) contains 56 buildings with point density
3.9 points per m2. Fig. 7 shows the three sites from the Australian
benchmark datasets with the corresponding reference polygons
and Fig. 8 shows the three sites of the ISPRS benchmark datasets
with corresponding reference buildings by cyan polygons. The
buildings with area less than 5 m2 were not considered for
evaluation in our experiments. We follow the method proposed
by Dey et al. [53] for building boundary extraction. Fig. 9 shows
the steps of extracting individual roof planes and the boundary of
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Fig. 10. Examples of finding distances using different metrics on a building
with an underlap area V UOT . Note the RMSE, the NMAD, and the Chamfer
find the same distance correspondences, and so, shown in the same figure.
(a) Hausdroff (h). (b) Chamfer (c) or RMSE(λ) or NMAD (v). (c) PoliS (℘).
(d) RCC.

a sample building from the AV1 dataset using the method. The
reference boundary polygons of buildings and individual roof
planes have been extracted by monoscopic image measurement
using the Barista software [19] (see Figs. 7, 8, and 13). Corners
on an extracted building boundary have been detected by the
method proposed in [54].

We also apply the proposed method to three simple synthetic
building shapes with no extralap or underlap errors (SB1), with
an underlap error (SB2), and an extralap error (SB3) generated
from real point cloud data (see Fig. 11).

B. Experimental Results

First, we present and compare the estimated distances by dif-
ferent metrics when they are applied to evaluate the 2-D building
polygons as well as the 3-D roof boundaries (both distances
are estimated in 2-D). Second, we provide a sensitivity analysis
when the number of points is varied in the building boundary
or small geometric transformations are applied to the building
boundary, and third, we present some visual results illustrating
the identification of the individual extralap and underlap errors
by the proposed RCC method.

1) Distance Estimation: For every pair of the reference and
its corresponding extracted boundaries, we compute the distance
using the proposed RCC metric and compare the result with
the PoLiS [28], the Hausdorff, the Chamfer [28], [29], the
RMSE [7], and the NMAD [20] distances. Fig. 10 shows some
examples of the estimated distances using different metrics on
the building shown in Fig. 2. The extracted building boundary
has an underlap area V UOT , which means V , U , O, and T
are false corners. For each metric, the distance is measured
twice, (Se, Sr) (from the extracted to the reference, green dashed

Fig. 11. Synthetic data: reference (red lines) and extracted (black dots)
building polygons, where corners are shown by red and green solid circles,
respectively. (a) Overlap area. (b) Underlap area (VUOT). (c) Extralap area
(PQRS).

TABLE I
COMPARISON OF THE CALCULATED DISTANCES FOR SYNTHETIC BUILDING

POLYGONS (SB1, SB2, AND SB3 IN FIG. 11)

All the distances are calculated in meters.

lines) and (Sr, Se) (from the reference to the extracted, magenta
dashed lines). As can be seen in Fig. 10(a)–(d), the existing
metrics mostly find wrong distances (green lines (Se, Sr)) for
the false corners. For instance, for the false cornerU , they obtain
the distance to either a noncorresponding reference corner (P
using h(Se, Sr), c(Se, Sr), λ(Se, Sr), and ν(Se, Sr)) or a point
(using ℘(Se, Sr)) on the reference boundary. Clearly, these do
not represent a realistic distance estimation using the existing
metrics. In other word, the existing metrics do not work well
if there is any segmentation error. In contrast, the proposed
RCC metric is based on the true corner correspondences that
are shown in Fig. 10(d) (blue lines). It finds the distances from
the points on an extracted segment to its corresponding reference
line. Therefore, these distances (see cyan lines from V , U , O,
and T to QR) represent more realistic estimation.

For a fair comparison, we estimate the symmetrized distance
for all metrics and present in this article. Table I shows the
comparison of different metrics using three synthetic building
polygons. We can see that for SB1, all metrics show almost the
same result except the Hausdorff distance. This is because SB1 is
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TABLE II
COMPARISON OF THE CALCULATED DISTANCES FOR DIFFERENT SITES OF

AUSTRALIAN (AV1, AV2, AND HB) AND ISPRS (VH1, VH2, AND VH3)
BENCHMARK DATASETS

All the distances are calculated in meters.

a very simple building polygon with no-segmentation error and
the corresponding reference looks also almost the same as the
extracted polygon. When the extracted and reference building
polygons are almost the same, ideally the distance between the
polygons should be close to zero, and so, each metric should
calculate the similar evaluation result. However, the Hausdorff
distance provides a different result because according to (9), it
estimates the maximum among all the minimum distances from
all the extracted points (Se) to all the reference points (Sr). This
is better explained and visualized using building SB2, where
there is an underlap area as shown in Fig. 11. The Hausdorff
distance finds the distance from U to P (marked by yellow
dashed line) as the maximum among all the minimum distances
from Se to Sr. The same phenomenon is observed with SB3
where there is an extralap area as shown in Fig. 11(c). Therefore,
the Hausdorff distance estimates the highest distance in all three
synthetic buildings. The proposed RCC metric shows slightly
larger than the PoLiS, the NMAD, and the Chamfer distances
but slightly smaller than the RMSE distance. It is expected as
the proposed metric considers the true corner correspondences
as explained in Section III. We also observe that the Chamfer
distance is very close to the PoLiS and the NMAD distances for
all of the three polygons. It is because of the symmetric nature
of the Chamfer, the NMAD, the PoLiS, and the proposed RCC
metrics and this was clearly explained in Avbelj et al. [28].

Table II compares the results on the real datasets. Each value
in this table represents the average result of all the buildings in
a test datasets, except the last row that shows the average on all
test datasets. Again, we can observe that the average distance by
the RCC metric is close to the results of the PoLiS, the Chamfer,
and the NMAD metrics.

Fig. 12 shows davg using the RCC for some selected buildings
from three different sites of the test datasets with their corre-
sponding extracted (cyan) and reference (blue) boundaries. The
color bar is scaled to show from the best estimated distance
(green) to the worst (red). We can see that while the three
extracted buildings in Fig. 12(a), (b), and (e) are well estimated,
the two extracted buildings in Fig. 12(d) and (f) are not. For
the building in Fig. 12(b), although there are some underlap
areas because of probable missing LiDAR data, the extracted
boundary mostly coincides with the reference boundary. In
contrast, the extralap areas in Fig. 12(f) because of similar height
vegetation has contributed to the high RCC distance estimation.

Fig. 12. Extracted and reference building polygons from: (a) and (b) Aitken-
vale; (c) and (d) Hervey Bay; and (e) and (f): Vaihingen areas. Cyan polygons
represent the extracted buildings and blue polygons indicate the reference
buildings. The color bar indicates the distance estimation davg by the RCC
metric and is scaled from the largest (red) to the smallest (green). The extracted
LiDAR points within each extracted boundary are shown in the color that comes
from the color bar according to the estimated RCC value using (19).

Fig. 13. Reference roof planes (marked with blue polygons) of selected
buildings from three sites of Australian benchmark datasets. First row shows
individual roof planes from AV1 area, and second and third rows show the roof
planes of HB and AV2 areas, respectively.

The 3-D model reconstruction using a data-driven approach
requires individual roof planes to be extracted properly [38],
[55], [56]. The proposed RCC metric is also applicable to
evaluate the 2-D shapes of the individual extracted roof planes of
a building. For this purpose, we tested our method on individual
roof planes of 12 selected buildings from the AV1, HB, and AV2
datasets. Fig. 13 shows these selected buildings with individual
reference roof plane boundaries in blue polygons. We used the
method proposed by Dey et al. [53] to extract the individual
roof planes and apply the RCC metric to evaluate the extracted
planes.
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TABLE III
COMPARISON OF THE CALCULATED DISTANCES FOR EXTRACTED ROOF PLANES

IN AUSTRALIAN BENCHMARK DATASETS

All the distances are calculated in meters.

Fig. 14. Sensitivity of different metrics with respect to the change of the
number of points in the reference boundary: (a) Green polygon represents the
extracted boundary with eight points (black circles) and blue polygon represents
reference polygon with four points (red circles). (b) First three examples of
added points (orange circles) to the reference polygon. (c) Estimated distance by
different metrics when the number of points in the reference boundary changes.

Table III shows the average distances using different metrics
including the proposed RCC metric. Like the building footprint
extraction performance, the RCC, the PoLiS, and the Chamfer
offer almost the same distance. The NMAD provides a shorter
distance than these three. As usual, the Hausdorff distance is the
highest among all the tested metrics.

2) Sensitivity Analysis: The proposed RCC metric is not
sensitive to the number of points in the boundaries. It shows
almost the same distance from the extracted polygon to the
corresponding reference polygon irrespective of the number of
points in the boundaries, which is expected. This situation can
be explained using Fig. 14. We initially consider an extracted
polygon (green) with eight points and corresponding reference
(blue) building polygon with four points [see Fig. 14(a)]. To
observe the performance, we manually add different number of
points with equal distances in the reference polygon [orange,

Fig. 15. Average distance using different metrics when different geometric
transformations are applied to the reference polygon in Fig. 14(a): (a) translations
(horizontal directions), (b) rotations, and (c) scaling.

Fig. 14(b)] and each time calculate the distance using different
metrics. Fig. 14(c) shows the calculated distances using different
state-of-the-art metrics. The performance of the RCC metric (the
linearity of the red line) indicates that it is not much sensitive
to the number of additional points in the reference boundary,
while the other metrics show different results with respect to the
number of points in the boundary.

Like the PoLiS, in the case of small georeferencing errors, the
performance of the RCC metric can also be approximated by a
linear function. This means with the change of small geomet-
ric transformations, the estimated distance changes linearly in
each situation, e.g., translate horizontally in the right direction,
rotate clockwise, and scale up. Fig. 15 shows the three types of
geometric transformations for the reference building polygon
of Fig. 14(a), while the extracted building polygon is kept
unchanged. During distance estimation, the metrics are not sym-
metrized, i.e., only the distance from the extracted points to the
reference shape are considered. It can be observed that while the
Chamfer, the PoLiS, and the RCC metrics mostly maintain the
linear property, the other metrics show a parabolic nature.

3) Segmentation Errors: Fig. 16(a) shows some automati-
cally detected extralap and underlap building areas (marked
with green lines) by the proposed RCC method. The reference
and extracted boundaries are shown in blue and cyan colors,
respectively. Fig. 16(b) explains the detection process for an
underlap area of a complex building from the Vaihingen area of
the ISPRS datasets. The underlap area indicated in the left side
of Fig. 16(b) is automatically marked with green lines, as shown
in the right side of Fig. 16(b), by the proposed RCC method. For
this building, the two consecutive true corner correspondences
are (P,A) and (Q,B). Initially davg is calculated using (19)
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Fig. 16. Automatically obtained extralap and underlap areas: (a) Some sample
buildings from different test datasets with reference (blue) and extracted (cyan)
boundaries. Green lines represent perpendicular distances of the extralap and un-
derlap areas. (b) Illustration for detection of an underlap area for a building from
(a). Extracted LiDAR points are shown in red within the extracted (cyan) and
reference (blue) boundaries. Green lines represent the perpendicular distances
for the underlap area.

as 0.75 m. But the perpendicular distances (green lines) from
the LiDAR points between corners P and Q to the reference
line AB are in between 5 and 6 m. So, by using the technique
presented in Section III-C, we find these points and consider this
area as an underlap area since the LiDAR points are within the
reference polygon.

C. Time Complexity

There are three main steps in the proposed RCC method:
finding the corner correspondences (see Section III-A), esti-
mating the distance (see Section III-B), and identifying the
segmentation errors (see Section III-C). For a pair of an extracted
building and its reference building, the extracted and reference
boundaries (Be and Br) and the corners (ζe and ζr) are provided
as inputs. In the first step, five Mf matrices are constructed for
the five different properties we considered. The size of each
of these matrices is p× q, where p = |ζr| and q = |ζe|. So, the
construction of each Mf takes O(pq) time. Their normalization
and multiplication in (17) and (18) also take O(pq) time. In the
second step, the estimation of the RCC distance in (19) takes
O(n) time, where n = |Be|. Similarly, the third step takes O(n)
time to compare the perpendicular distances with their average.
Consequently, the total time complexity of the proposed RCC
method is O(pq + n). Since, in practice, n � p and n � q,
particularly, for large buildings and when the LiDAR point

density is high, the best-case time complexity isΩ(n). However,
when all points on Be and Br are corners, i.e., n = q and
m = p, the worst-case time complexity is O(mn) ≈ O(n2),
where m = |Br| and m ≈ n.

V. CONCLUSION

To assess the quality of the extracted building boundaries
from a dataset in a more realistic way is the main contribution
of this article. For this purpose, we propose the RCC metric
to estimate the average dissimilarity for an extracted building
polygon compared to the corresponding reference building. It
is a combined measure of the positional accuracy and shape
similarity. We have tested its performance using several real
datasets from three geographic areas and synthetic polygonal
shapes where we obtained the expected result. Experimentally, it
is shown that the proposed method provides the similar distance
as the existing Chamfer and PoLiS distances. However, while
the existing metrics offer unstable measurements in the presence
of noise, segmentation errors, and variable number of points in
the boundary, the RCC metric offers a quite stable performance.

Moreover, unlike the existing metrics, the proposed metric
can be used to find individual underlap and extralap areas au-
tomatically. Some area-based metrics such as the area omission
and commission errors Awrangjeb and Fraser [10] can estimate
the overall extralap and underlap errors, respectively. So, they
do not differentiate between the acceptable misalignment be-
tween the extracted and reference boundaries and the noticeable
segmentation errors. In contrast, the proposed method makes
differentiation between these two types of segmentation issues
and indicates individual underlap and extralap areas.

We used the proposed metric to evaluate the shapes of the
2-D extracted building and plane boundaries. However, a further
investigation can be done to extend the proposed RCC method
to apply it to evaluate the 3-D building shapes. In this case, to
calculate the corner correspondences between the reference and
extracted polyhedrons, the five properties in Section III-A need
to be modified to find true 3-D corner correspondences. After
obtaining the corner correspondences, the orthogonal distances
from the extracted plane points to the reference planes would be
estimated. Moreover, we have so far considered the residential
buildings that are mainly in simple and complex rectilinear
shapes. We have not considered the nonrectilinear complex
buildings, e.g., round-shaped buildings with nonplanar roof parts
or building with atrium. Our future research could include a full
investigation to evaluate such buildings and planes.
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[12] M. Potüčková and P. Hofman, “Comparison of quality measures for
building outline extraction,” Photogrammetric Rec., vol. 31, no. 154,
pp. 193–209, 2016.

[13] F. Rottensteiner, J. Trinder, S. Clode, and K. Kubik, “Building detection
by fusion of airborne laser scanner data and multi-spectral images: Per-
formance evaluation and sensitivity analysis,” ISPRS J. Photogrammetry
Remote Sens., vol. 62, no. 2, pp. 135–149, 2007.

[14] M. Awrangjeb and C. S. Fraser, “Automatic segmentation of raw Li-
DAR data for extraction of building roofs,” Remote Sens., vol. 6, no. 5,
pp. 3716–3751, 2014.

[15] D. S. Lee, J. Shan, and J. S. Bethel, “Class-guided building extraction from
IKONOS imagery,” Photogrammetric Eng. Remote Sens., vol. 69, no. 2,
pp. 143–150, 2003.

[16] C. Zeng, J. Wang, and B. Lehrbass, “An evaluation system for building
footprint extraction from remotely sensed data,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 6, no. 3, pp. 1640–1652, Jun. 2013.

[17] T. H. Nguyen, S. Daniel, D. Gueriot, C. Sintes, and J.-M. L. Cail-
lec, “Unsupervised automatic building extraction using active contour
model on unregistered optical imagery and airborne LiDAR data,” 2019,
arXiv:1907.06206.

[18] M. Awrangjeb, M. Ravanbakhsh, and C. S. Fraser, “Automatic detection of
residential buildings using LiDAR data and multispectral imagery,” ISPRS
J. Photogrammetry Remote Sens., vol. 65, no. 5, pp. 457–467, 2010.

[19] M. Awrangjeb, C. Zhang, and C. S. Fraser, “Automatic extraction of
building roofs using LiDAR data and multispectral imagery,” ISPRS J.
Photogrammetry Remote Sens., vol. 83, pp. 1–18, 2013.

[20] X. Gong, L. Shen, and T. Lu, “Refining training samples using median
absolute deviation for supervised classification of remote sensing images,”
J. Indian Soc. Remote Sens., vol. 47, no. 4, pp. 647–659, 2019.

[21] K. Bittner, M. Körner, and P. Reinartz, “DSM building shape refinement
from combined remote sensing images based on WNET-CGANS,” in Proc.
IEEE Int. Geosci. Remote Sens. Symp., 2019, pp. 783–786.

[22] T. Partovi, F. Fraundorfer, R. Bahmanyar, H. Huang, and P. Reinartz,
“Automatic 3-D building model reconstruction from very high res-
olution stereo satellite imagery,” Remote Sens., vol. 11, no. 14,
2019, Art. no. 1660.

[23] O. Henricsson and E. Baltsavias, “3-D building reconstruction with
ARUBA: A qualitative and quantitative evaluation,” in Automatic Extrac-
tion of Man-Made Objects From Aerial and Space Images (II). Berlin,
Germany: Springer, 1997, pp. 65–76.

[24] Y. A. Mousa, P. Helmholz, D. Belton, and D. Bulatov, “Building detection
and regularisation using DSM and imagery information,” Photogrammet-
ric Rec., vol. 34, no. 165, pp. 85–107, 2019.

[25] J. L. Dungan, “Focusing on feature-based differences in map comparison,”
J. Geographical Syst., vol. 8, no. 2, pp. 131–143, 2006.

[26] W. Song and T. L. Haithcoat, “Development of comprehensive accuracy
assessment indexes for building footprint extraction,” IEEE Trans. Geosci.
Remote Sens., vol. 43, no. 2, pp. 402–404, Feb. 2005.

[27] S. Jozdani and D. Chen, “On the versatility of popular and recently pro-
posed supervised evaluation metrics for segmentation quality of remotely
sensed images: An experimental case study of building extraction,” ISPRS
J. Photogrammetry Remote Sens., vol. 160, pp. 275–290, 2020.

[28] J. Avbelj, R. Müller, and R. Bamler, “A metric for polygon comparison and
building extraction evaluation,” IEEE Geosci. Remote Sens. Lett., vol. 12,
no. 1, pp. 170–174, Jan. 2015.

[29] J. Zhang, R. Collins, and Y. Liu, “Representation and matching of articu-
lated shapes,” in Proc. IEEE Comput. Soc. Conf. Comput. Vision Pattern
Recognit., 2004, vol. 2, p. II.

[30] K. Liu, H. Ma, L. Zhang, Z. Cai, and H. Ma, “Strip adjustment of
airborne LiDAR data in urban scenes using planar features by the minimum
Hausdorff distance,” Sensors, vol. 19, no. 23, 2019, Art. no. 5131.

[31] L. Xie et al., “Hierarchical regularization of building boundaries in noisy
aerial laser scanning and photogrammetric point clouds,” Remote Sens.,
vol. 10, no. 12, 2018, Art. no. 1996.

[32] H. Oriot and A. Michel, “Building extraction from stereoscopic aerial
images,” Appl. Opt., vol. 43, no. 2, pp. 218–226, 2004.

[33] R. Dos Santos, M. Galo, and A. Carrilho, “Building boundary extraction
from LiDAR data using a local estimated parameter for alpha shape
algorithm,” Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci.,
vol. 42, no. 1, pp. 127–132, 2018.

[34] Y. Wei, Z. Zhao, and J. Song, “Urban building extraction from high-
resolution satellite panchromatic image using clustering and edge de-
tection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2004, vol. 3,
pp. 2008–2010.

[35] B. Xiong, S. O. Elberink, and G. Vosselman, “A graph edit dictionary for
correcting errors in roof topology graphs reconstructed from point clouds,”
ISPRS J. Photogrammetry Remote Sens., vol. 93, pp. 227–242, 2014.

[36] M. Awrangjeb, “Using point cloud data to identify, trace, and regularize
the outlines of buildings,” Int. J. Remote Sens., vol. 37, no. 3, pp. 551–579,
2016.

[37] Y. Chen, L. Tang, X. Yang, M. Bilal, and Q. Li, “Object-based multi-modal
convolution neural networks for building extraction using panchromatic
and multispectral imagery,” Neurocomputing, vol. 386, pp. 136–146, 2019.

[38] M. Awrangjeb, S. A. N. Gilani, and F. U. Siddiqui, “An effective data-
driven method for 3-D building roof reconstruction and robust change
detection,” Remote Sens., vol. 10, no. 10, 2018, Art. no. 1512.

[39] L. Li, J. Yao, J. Tu, X. Liu, Y. Li, and L. Guo, “Roof plane segmentation
from airborne LiDAR data using hierarchical clustering and boundary
relabeling,” Remote Sens., vol. 12, no. 9, 2020, Art. no. 1363.

[40] H. Yang, P. Wu, X. Yao, Y. Wu, B. Wang, and Y. Xu, “Building extraction in
very high resolution imagery by dense-attention networks,” Remote Sens.,
vol. 10, no. 11, 2018, Art. no. 1768.

[41] D. M. McKeown, S. D. Cochran, S. J. Ford, J. C. McGlone, J. A. Shufelt,
and D. A. Yocum, “Fusion of HYDICE hyperspectral data with panchro-
matic imagery for cartographic feature extraction,” IEEE Trans. Geosci.
Remote Sens., vol. 37, no. 3, pp. 1261–1277, May 1999.

[42] J. Sreevalsan-Nair, A. Jindal, and B. Kumari, “Contour extraction in
buildings in airborne LiDAR point clouds using multiscale local geometric
descriptors and visual analytics,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 11, no. 7, pp. 2320–2335, Jul. 2018.

[43] F. Dornaika, A. Moujahid, Y. El Merabet, and Y. Ruichek, “Building de-
tection from orthophotos using a machine learning approach: An empirical
study on image segmentation and descriptors,” Expert Syst. Appl., vol. 58,
pp. 130–142, 2016.

[44] S. O. Elberink and G. Vosselman, “Quality analysis on 3D building models
reconstructed from airborne laser scanning data,” ISPRS J. Photogramme-
try Remote Sens., vol. 66, no. 2, pp. 157–165, 2011.

[45] D. Akca, M. Freeman, I. Sargent, and A. Gruen, “Quality assessment of
3D building data,” Photogrammetric Rec., vol. 25, no. 132, pp. 339–355,
2010.

[46] B. He, Z. Lin, and Y. F. Li, “An automatic registration algorithm for the
scattered point clouds based on the curvature feature,” Opt. Laser Technol.,
vol. 46, pp. 53–60, 2013.

[47] D. P. Huttenlocher and W. J. Rucklidge, “A multi-resolution technique for
comparing images using the Hausdorff distance,” Cornell Univ., Ithaca,
NY, USA, Tech. Rep. TR-92-1321, 1992.

[48] D. H. Lee, K. M. Lee, and S. U. Lee, “Fusion of LiDAR and imagery for
reliable building extraction,” Photogrammetric Eng. Remote Sens., vol. 74,
no. 2, pp. 215–225, 2008.



DEY AND AWRANGJEB: ROBUST PERFORMANCE EVALUATION METRIC FOR EXTRACTED BUILDING BOUNDARIES 4043

[49] F. Rottensteiner, G. Sohn, M. Gerke, J. D. Wegner, U. Breitkopf, and
J. Jung, “Results of the ISPRS benchmark on urban object detection and 3D
building reconstruction,” ISPRS J. Photogrammetry Remote Sens., vol. 93,
pp. 256–271, 2014.

[50] J. Höhle and M. Höhle, “Accuracy assessment of digital elevation models
by means of robust statistical methods,” ISPRS J. Photogrammetry Remote
Sens., vol. 64, no. 4, pp. 398–406, 2009.

[51] K. M. Masoud, C. Persello, and V. A. Tolpekin, “Delineation of agricultural
field boundaries from Sentinel-2 images using a novel super-resolution
contour detector based on fully convolutional networks,” Remote Sens.,
vol. 12, no. 1, 2020, Art. no. 59.

[52] Y. Liu et al., “Discrepancy measures for selecting optimal combination of
parameter values in object-based image analysis,” ISPRS J. Photogram-
metry Remote Sens., vol. 68, pp. 144–156, 2012.

[53] E. K. Dey, M. Awrangjeb, and B. Stantic, “Outlier detection and robust
plane fitting for building roof extraction from LiDAR data,” Int. J. Remote
Sens., vol. 41, no. 16, pp. 6325–6354, 2020.

[54] M. Awrangjeb, G. Lu, C. S. Fraser, and M. Ravanbakhsh, “A fast corner
detector based on the chord-to-point distance accumulation technique,” in
Proc. Digit. Image Comput.: Techn. Appl., Dec. 2009, pp. 519–525.

[55] S. Canaz Sevgen and F. Karsli, “An improved RANSAC algorithm for
extracting roof planes from airborne LiDAR data,” Photogrammetric Rec.,
vol. 35, no. 169, pp. 40–57, 2020.

[56] F. Tarsha Kurdi and M. Awrangjeb, “Automatic evaluation and improve-
ment of roof segments for modelling missing details using LiDAR data,”
Int. J. Remote Sens., vol. 41, no. 12, pp. 4702–4725, 2020.

Emon Kumar Dey received the B.Sc. (Hons.) and
M.S. degrees in computer science and engineering
from the University of Dhaka, Dhaka, Bangladesh, in
2009 and 2011, respectively. He is currently work-
ing toward the Ph.D. degree with Griffith University,
Nathan, Australia.

He is currently an Assistant Professor with the
Institute of Information Technology (IIT), University
of Dhaka. His research interests include automatic
building extraction, image processing, pattern recog-
nition, remote sensing data processing, and machine
learning.

Mohammad Awrangjeb (Senior Member, IEEE)
received the Ph.D. degree from Monash University,
Clayton, VIC, Australia.

He is a Senior Lecturer with Griffith University,
Nathan, Australia. Before joining Griffith University
as a Lecturer, he worked as a (Senior) Research Fel-
low with Federation University, Monash University,
and University of Melbourne. His research interest
includes automatic feature extraction and matching,
multimedia security and image processing.

Dr. Awrangjeb was the recipient of the Discov-
ery Early Career Researcher Award by the Australian Research Council
(2012–2015).



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


