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Improving Land Cover Change Detection and
Classification With BRDF Correction and Spatial
Feature Extraction Using Landsat Time Series:

A Case of Urbanization in Tianjin, China
Yuwei Guan, Yanru Zhou, Binbin He , Xiangzhuo Liu, Hongguo Zhang, and Shilei Feng

Abstract—As one of the important coastal cities in China, Tian-
jin has been urbanized dramatically over the past 40 years, and
the urbanization rate has been up to 83.15% by 2018. In this
study, we used the continuous change detection and classification
algorithm to comprehensively understand the urban expansion
processes in Tianjin based on the Landsat time series from 1985
to 2018 with 30-m resolution. Specially, we applied the c-factor
approach with the Ross Thick-LiSparse-R model to correct the
bidirectional reflectance distribution function (BRDF) effect for
each Landsat image and calculated a spatial line density feature for
improving the change detection and the classification. Based on the
study in Tianjin, we found that BRDF correction can substantially
improve the change detection (9.00% higher overall accuracy) and
classification (1.08% higher overall accuracy); and the line density
is also beneficial to classification (0.48% higher overall accuracy),
especially for impervious surface (1.70% less commission errors
and 1.49 % less omission errors). By analyzing the imperious
surface change processes, we observed that Tianjin has undergone
rapid urban expansion in the past decades, and the urban area was
mainly transformed from cropland around the central area before
2005 and later from the coast.

Index Terms—Bidirectional reflectance distribution function
(BRDF), continuous change detection and classification (CCDC),
Landsat time series (LTS), line density, Tianjin, urbanization.

I. INTRODUCTION

URBANIZATION has been an important social and eco-
nomic phenomenon taking place at an unprecedented

scale and rate all over the world [1]. As an important port
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and transportation hub in China, Tianjin has experienced rapid
urban expansion since the Chinese reform and opening in 1978.
Understanding the urban expansion processes of Tianjin is vi-
tal for guiding the future urban management and sustainable
development planning [2].

To understand the dynamics of urban expansion processes,
long-term land change and land cover data are required [3],
and the Landsat time series (LTS) with 30-m spatial resolution
and 8-d temporal resolution has become one of most valuable
datasets for this task [3], [4]. Currently, lots of LTS-based
algorithms have been proposed for change detection especially
since the free and open policy was implemented in 2008 [5], [6].
Kennedy et al. [7] proposed Landsat-based detection of trends in
disturbance and recovery (LandTrendr) for identifying spectral
trajectories of surface changes by yearly LTS. It is based on
temporal segmentation and it can capture gradual change (e.g.,
regrowth) and abrupt change (e.g., deforestation). However, the
yearly spectral deviation heavily depends on the observations
acquired in neighboring years, and thus it is hard to identify the
changes in the first and last year. Huang et al. [8] developed a
vegetation change tracker based on the spectral-temporal char-
acteristics of land cover and forest change processes. Hamunyela
et al. [9] used spatial contexts to reduce seasonal variations in
LTS data, which can detect deforestation events well. Both of
them were designed especially for forest disturbances, being less
applicable for dynamics in other kinds of land cover (e.g., urban
area) [10]. The breaks for additive season and trend algorithm
was designed for detecting change based on MODIS time series,
by decomposing the entire time series into trend, season, and
noise components [11], [12]. Recently, it also shows potential
availability of monitoring forest disturbances [9, 13], agriculture
cultivation [14], and wetland dynamic [15] from LTS; but few
of them focused on impervious surface. The continuous change
detection and classification (CCDC) algorithm used all spectral
bands to detect various kinds of land cover change continuously
[16], [17]. It has been implemented into the USGS land change
monitoring, assessment, and projection (LCMAP) program for
generating land cover and land change products for the United
States [18]–[20] and also widely used in many applications, such
as urban expansion [19], [21], [22], hydrology dynamic [23], and
forest disturbance [24].
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Although LTS has been widely used to detect land cover
changes, the LTS temporal consistency has received less at-
tention. For data consistency, we can define that “simultaneous
collection images should have exactly the same value” [25].
One of the crucial issues is the effect of solar-surface-sensor ge-
ometry, often described as bidirectional reflectance distribution
function (BRDF), especially when the images are acquired from
adjacent satellite orbit swaths [26]. Note that the orbit of drift
Landsat satellite would also influence the BRDF [26]. In this
case, the BRDF effect is particularly significant since for same
pixel the sensor view angles can vary from −7.5° to 7.5° and the
solar angles will also be different at different acquisition dates
[27]. Although, BRDF correction can significantly improve the
temporal consistency of LTS [25], its effect on change detection
accuracy still needs to be quantitatively answered.

Land cover classification has attracted attention for many
years. The traditional approach only requires single-date image
and calculates spectral and spatial features to classify different
land cover types. For example, Guindon et al. [28] classified
different kinds of land cover using spectral bands, and also
used a spatial rule to optimize the final map. Zhang et al. [29]
proposed a spectral-spatial approach to extract urban area from
Landsat images by combining multivariate variogram textures
and spectral information. Recently, extra temporal features can
be derived from time series of satellite observations to improve
the classification accuracy greatly [30]–[32]. Jia et al. [33] used
single-date Landsat eight data to classify different land cover
types, but extra integrated temporal features downscaled from
time series of MODIS normalized difference vegetation index
to improve the classification accuracy. In addition to change
detection, the CCDC algorithm can classify land cover using
the information in spectral and temporal dimensions [16]. Al-
though, these time-series-based classification approaches can
take advantage of spectral and temporal features, few of them
considered the spatial information to improve classification.
Therefore, it is expected that the fusion of spatial, spectral, and
temporal dimensions can generate better classification results.

In this study, we selected the widely used CCDC algorithm
[16] as the core to detect land cover change and classify land
cover types, but mainly focused on assessing whether BRDF
correction can improve the change detection and classification
of land cover, integrating a spatial line-density feature to improve
the classification of land cover especially for impervious surface,
and applying it to analyze the temporal-spatial change of imper-
vious surface (it is the most intuitive indicator of urbanization
[34]) and the land cover conversion in Tianjin, China over the
past decades.

II. STUDY AREA AND DATA

A. Study Area

The study area is located in Tianjin, China, of which the area is
about 12, 000 km2 (Fig. 1). As the center of the Bohai economic
circle, Tianjin has been known as the “third growth pole of
the Chinese economy” [35]. This area includes kinds of land
cover such as cropland, forest, grassland, water, impervious,
and bareland. At the same time, it has experienced dramatic
urbanization over the past 40 years. Therefore, Tianjin is a

Fig. 1. Study area (Tianjin, China). The background is CCDC synthesized
Landsat image on July 1, 2018 (composed by SWIR1, NIR, and Red Bands).

TABLE I
LANDSAT DATA USED IN THIS STUDY

good study area to test the approach of land cover change and
classification, and its historical change process also needs to be
well understood.

B. Data

1) Landsat Data: Four Landsat Collection 1 scenes, pro-
vided in the worldwide reference system two path/row, were
used for covering the entire Tianjin (Fig. 1). In each Landsat
scene, we downloaded all available images with cloud cover less
than 80% from 1985 to 2018 (Table I), which include surface
reflectance, brightness temperature (BT), solar/sensor angles,
and quality assurance (QA) band. The QA band can provide the
mask of clouds and cloud shadows generated by the CFmask
(C version of Fmask) algorithm [36]. Note that the overlapped
areas by adjacent Landsat images also provide good locations to
study the effect of BRDF on change detection and classification.

2) Land Cover Change Reference: We randomly selected
200 points over the study area to generate the land cover change
reference data. In each point, we manually interpret when the
change occurred based on the corresponding LTS, with aid of
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TABLE II
LAND COVER TYPES

Google Earth historical high resolution (HHR) images. If there
are multiple changes over one location, we only consider the
last (or cumulative) change to validate since we do not want the
pixels with multiple changes to bias the accuracy. This finally
gave us 98 changed pixels and 102 stable pixels (no change
within the entire LTS) (Fig. 1), which will be used to validate
the change detection results.

3) Land Cover Reference: Since the land cover reference
data collected in any analysis period (1985–2018) can be used
for training classification model of the CCDC algorithm [16],
we selected a total of 6 000 sample points over the whole study
region randomly from the finer resolution observation and moni-
toring of global land cover (FROM-GLC) map in 2017 [37]. The
FROM-GLC is the first 30-m resolution global land cover maps
produced using Landsat thematic mapper and enhanced thematic
mapper plus (ETM+) data [38]. To ensure the accuracy of our
samples, for each sample we further carefully interpreted the
corresponding Google Earth HHR and Landsat image to correct
the wrong land cover types. At the same time, we excluded
the samples that we cannot make the confident interpretation.
Finally, a total of 4 959 land cover samples were collected for
training and validation (Table II).

III. METHODS

We use the CCDC algorithm [16] as the basis for land cover
change detection and classification due to its relatively high
accuracy and easy-to-use. Built on the CCDC algorithm, in this
study, we will correct the BRDF effect for each Landsat image
to build a more consistent LTS and expect that this can improve
both change detection and classification. At the same time, a
spatial feature (i.e., line density) will be computed for improving
the classification. Finally, the urban expansion in Tianjin will be
quantitatively described based on the annual land cover products
for the past decades. Fig. 2 illustrates the flowchart of this study.

A. CCDC Algorithm

The CCDC algorithm is based on the LTS without (or at
least with few) noises such as clouds and cloud shadows, and

Fig. 2. Flowchart of the approach in this study. The components of CCDC are
from the CCDC algorithm.

requires the surface reflectance of blue, green, red, NIR, and
two SWIR bands and the BT of thermal band as the inputs [16],
[17]. The clouds and cloud shadows can be screened out by
CFmask (derived from QA band) [36] and multiTemporal mask
algorithm [39], which are integrated in CCDC package. For each
individual pixel, it can continuously detect various land cover
changes once new Landsat images are collected. CCDC can
predict observations for each band based on three sets of Fourier
models (e.g., simple with (k = 1), and advanced (k = 2), and full
(k = 3)) (1) [17]. The simple model requires at least 12 clear-sky
Landsat observations, whereas 18∼24 clear-sky observations
will generate the advanced model. If more than 24 clear-sky
observations, the full model will be triggered. A more complex
time series model would better model the intraannual variations.
By comparing the model predictions and the actual satellite
observations six times consecutively, the CCDC algorithm can
identify land cover changes. If a change is detected, two time
series segments will be generated before and after the change;
or, only one time series segment will be generated for the stable
pixel (no change).

In each time series segment, the coefficients and root mean
square errors (RMSE) of the corresponding model for each
band (they can provide spectral and temporal information at the
same time) will be inputted into random forest (RF) model to
classify different kinds of land cover types [16]. Note the overall
value (a0) will be adjusted by adding the original value (a0) and
the slope (c1) multiplied by the middle time of the time series
segment [16]. Besides of those coefficients, we extra computed
a spatial feature (line density) to improve the classification
performance (see Section III-C for details).

ρ̂i,t = a0,i + c1,it+

3∑
k=1

(
ak,icos

2kπt

T
+ bk,isin

2kπt

T

)
(1)

where t is the Julian date; i is the ith Landsat band (i = 1, 2, 3,
4, 5, and 7); k is the temporal frequanct of Fourier component
(k = 1, 2, and 3); T is the number of days per year (365.25);
a0,i, c1,iare the overall (intercept) and interal-annual change
(slope) coefficients for the ith Landsat band; ak,i and bk,i are
the intraannual change coefficients for the ith Landsat band; ρ̂i,t
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is the predicted surface reflectance for the ith Landsat band at
the Julian date t.

B. BRDF Correction for Improving Change Detection

A temporally consistent LTS is often expected for change
detection, but the images would be significantly affected by the
BRDF effects especially when the images are from adjacent
Landsat orbit swaths (overlapped area) [25]. To eliminate the
BRDF effects in LTS, we use the c-factor method with the Ross
Thick-LiSparse-R model [25], [27], [40] (2) for each Landsat
image and expect this can be beneficial to improve accuracy of
change detection. Note that the normalized solar zenith angle
(Ω′) is determined by the central latitude of Landsat image (3)
[41].

ρ′ = ρ · fiso + fvol ·Kvol (Ω
′, 0◦, 0◦) + fgeo ·Kgeo (Ω

′, 0◦, 0◦)
fiso + fvol ·Kvol (Ω, α, β) + fgeo ·Kgeo (Ω, α, β)

(2)
where α is the view zenith angle; β is view-sun relative azimuth
angle; Ω is the solar zenith angle; Ω′ is the normalized solar
zenith angle [determined by (3)]; ρ is the original reflectance;ρ′

is the BRDF-normalized reflectance (at nadir); fiso,fvol, and
fgeo are the BRDF model parameters [40]; Kvol(Ω, α, β) and
Kgeo(Ω, α, β) are the Ross Thick kernel and the LiSparse-R
kernel, respectively [42].

Ω′ = 31.0076− 0.1272× μ+ 0.01187× μ2 + 2.4× 10−5

× μ3 − 9.48× 10−7 × μ4 − 1.95× 109 × μ5

+ 6.15× 10−11 × μ6 (3)

where μ is the central latitude of Landsat scene.

C. Line Density for Improving Classification

We generated annual land cover products based on the CCDC
algorithm, but extra integrated a line-density feature to improve
them. The calculation of the line density is based on a clear-sky
Landsat image of each year, and the basic idea is that lines can be
extracted using a combination of an unsupervised cluster model
(e.g., K-Means) and a morphological approach (e.g., expansion
and corrosion) and then the line density will be computed using
a moving window.

As it is difficult to obtain a perfect clear-sky Landsat image, we
used the CCDC algorithm to synthesize a Landsat image on July
1 (middle day) for each year [17]. July 1 was selected mainly be-
cause the spectral aliasing problem can be significantly reduced
in summer [43]. The synthetic Landsat image will be segmented
into lots of objects using the K-Means clustering algorithm [44].
In the K-Means, the key parameter is the number of clusters and
we set this six by following the number of land cover categories
in the reference data [45]. For each object, we extracted the
boundaries using a simple morphological edge detector with
a size of 3 pixels × 3 pixels such as the expansion-corrosion
residue operator [46], [47], and only remained the straight lines
by a spatial convolution with four direction templates (Fig. 3).
The spatial convolution will filter each pixel in the boundary
image using each of the template and retain the maximum
response, which can highlight the straight line features in urban

Fig. 3. Four line-enhancement kernels which respond maximally to horizontal,
vertical, and oblique (+45° and −45°) lines.

Fig. 4. Line-density image in 2017.

(e.g., roads) [48]. Finally, a moving window of 7 pixels × 7
pixels is used to calculate the line density, which is the area
ratio of the remaining straight lines and the entire window [49].
The window size was determined by visual assessment and
a size of 7 can provide a good layer to highlight urban area
(Fig. 4).

We generated the annual land cover map on July 1 (mid-
dle day) as a representative of the annual status by follow-
ing LCMAP program [20]. For each year, we extracted the
coefficients and RMSE of the time-series segments in CCDC
across July 1, and combined them with the line density (spatial
information) together to produce annual land cover maps.

D. Urban Expansion Analysis

We applied the CCDC algorithm with line density to gen-
erate the annual land cover products (on July 1, full sample
training) from 1985 to 2018 based on BRDF-corrected LTS
since we found that both BRDF correction and the line density
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Fig. 5. Accumulated change map based on original LTS versus BRDF-corrected LTS. (a) Accumulated change map based on the original LTS. (b) Accumulated
change map based on the BRDF-corrected LTS. (c) Different between (a) and (b). Overlap area is from the Landsat footprints (65.2% of the entire study area are
located at the overlapped areas). (d) Histogram of difference for change values (the year of the last detected change) (1985–2018).

can improve the results (see Section IV for details). Although,
the annual products will not present the near-real time changes
detected by CCDC, it would not seriously affect the analysis of
the urbanization at such a long period. In order to comprehend
the urbanization processes, in this study, we mainly consider the
impervious surface distribution and changes. To quantitatively
describe the mutual transformation relationship between the
impervious surface and other land covers in the process, we
will calculate the annual land cover transfer matrix based on the
land cover products.

IV. RESULTS AND DISCUSSIONS

A. Improvement of BRDF Correction on Change Detection

We used the CCDC algorithm to detect change but also
focused on the effects of BRDF correction on LTS. Since there
are only limited number of changes in each individual year,
the annual change map can be accumulated into one (hereafter
“accumulated change map”), so that the changes can be observed
in a continuous mode, and the accumulated map does show
out the last changes detected by CCDC. Fig. 5 compares the
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TABLE III
COMPARISON OF CHANGE DETECTION ACCURACY BEFORE AND

AFTER BRDF CORRECTION

accumulated change detection result from the original LTS and
that from the BRDF-corrected LTS. Although, the two results
are generally similar [Fig. 5(a) versus (b)], most of the differ-
ences (green and blue colors) can be observed from the overlap
areas between different Landsat scenes [Fig. 5(c)]. Fig. 5(d)
shows the histogram of the difference for change years from
the accumulated change maps based on the original LTS and
the BRDF-corrected LTS. Most of the differences in the last
change value are less than five years (partially due to that
the last or accumulated change were focused), although there
are some large differences. Against the selected sample pixels
located in the overlap areas with large differences, the visual
assessment indicates that the BRDF-corrected LTS can result in
better detection of land cover changes (Fig. 6). Fig. 6(a) shows
that cropland was changed to develop. The change is properly
detected using the BRDF-corrected LTS, but omitted from the
original LTS. Fig. 6(b) shows that the BRDF-corrected LTS
generated a better result over the location where the developed
area has no change. Fig. 6(c) shows a pixel where a change
process occurred in the past years, but the results using the
original LTS are incorrect. Fig. 6(d) shows there is a change
from low-intensity to high-intensity developed area that can be
correctly identified by CCDC if we use the BRDF corrected LTS.
Table III shows the confusion matrix for the results using original
LTS and using BRDF-corrected LTS. Compared to the original
LTS, the BRDF-corrected LTS can improve the change detection
accuracy significantly (84.50% versus 93.50%). Additionally,
both producer’s and the user’s accuracy for change and stable
samples are higher, which mean BRDF correction can reduce
the omission and commission errors at the same time. This is
mainly because that BRDF correction can result in an LTS with
better temporal consistency, and further improve the estimation
of the time series model in CCDC. We observed BRDF correc-
tion cannot vary the reflectance too much for each individual
observation, but BRDF correction would make the entire LTS
more consistent [25]. This means that the BRDF-corrected LTS
can better predict CCDC time series model, with a smaller
RMSE value (Fig. 6). CCDC detects change by comparing
model predictions and satellite observations; but the change
detection threshold is adjusted based on the RMSE. A smaller
RMSE would reasonably provide with a smaller threshold to

detect changes [16]. As a result, the original LTS would omit
to detect such kind of changes that only varied the reflectivity
of several spectral band, but the BRDF-corrected LTS would be
better [e.g., Fig. 6(a)]. In this study, we only tested the effects
of BRDF correction on CCDC results in Tianjin, China, the
conclusion may be different if another time series algorithm is
used.

B. Improvements of BRDF Correction and Line
Density on Classification

Fig. 7 visually compares the classification results with and
without BDRF correction and line density. As they share a simi-
lar pattern at large scale, we only show the entire land cover map
in 2017 generated by the approach using the BRDF-corrected
LTS with line density (the best one). At smaller scales, compared
to the results only using the original LTS, we find that the
combination of BRDF correction and line density can better
classify different land cover types. For example, Fig. 7(a) and (b)
shows that the approach using only the original LTS misclas-
sified cropland as forest. However, the combination of BDRF
correction and line density can reduce those commission errors
significantly. Fig. 7(c) and (d) shows the results in urban area
where BRDF correction and line density can also improve the
identification of impervious surface. Fig. 7(e) shows a cropland
around water. BRDF correction and line density significantly
reduce the misclassification errors of cropland as impervious
surface. Fig. 7(f) shows that the original LTS led to misclassify
impervious surface (e.g., roads) as water around paddy fields.
Compared to the original LTS, using BRDF correction and line
density reduced this kind of errors. Note since the paddy field is
often flooded continually, we think classification as water is not
a problem.

The accuracies are assessed using a cross validation against
our 4 959 reference pixels in 2017. We randomly selected 80%
of the reference data to train the RF model and utilized the
remaining 20% to calculate the classification accuracy [50]. This
process was repeated 20 times, and we found every time the
approach with BRDF correction and line density achieved the
highest overall accuracy compared to the other classification
scenarios (e.g., BRDF correction only, line density only, and
none of them) (Fig. 8). Table IV shows that the confusion matrix
for different scenarios. Combination of BRDF correction and
line density can improve 1.49% overall accuracy compared to
the approach without them (88.91% versus 87.42%). If we only
consider BRDF correction or line density, the overall accuracy
increases with incremental magnitudes of 1.08% and 0.48%,
respectively. Compared to the other land cover types, identifica-
tion of impervious surface is most substantially improved, with
4.46% higher producer’s accuracy and 3.04% user’s accuracy.

BRDF correction is more important for improving classifi-
cation compared to line density. This is mainly because BRDF
correction can result in better change detection results (Table III)
and indirectly affect classification of any kinds of land cover
(e.g., cropland, water, and bareland); however, the line density
is designed especially for the urban area. In addition, there are
still lot of confusions between bareland and impervious surfaces
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Fig. 6. Examples of change detection comparison between original LTS and BRDF-corrected LTS. (a) Cropland changes to developed at the location A in
Fig. 5(c). (b) No change at the location B in Fig. 5(c). (c) One change at the location C in Fig. 5(c). (d) Change from low-intensity to high-intensity urban at the
location D in Fig. 5(c). Note the right high-resolution images are from Google Earth and the red polygons indicate the Landsat observation.
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Fig. 7. Classification map in 2017. The center is the entire land cover map in 2017 generated by the CCDC algorithm using the BRDF-corrected LTS with line
density. For each pop-up panel, the upper-left image shows the result using the BRDF-corrected LTS with line density. The upper-right image shows the result only
using the original LTS. The lower-left image shows Google Earth HHR image in 2017.

Fig. 8. Comparison of classification overall accuracy using different inputs. The cross validation with 80% for training and 20% for validating was repeated
20 times.
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TABLE IV
CONFUSION MATRICES FOR ASSESSING THE ACCURACY OF CLASSIFICATION IMAGES BY DIFFERENT METHODS

Note: Since the classification training data contains only a small number of forest and grass pixels and these two land covers are not identified well during the
validation process, the user’s accuracy is none (labeled as “NA”).

(Table IV), although the CCDC algorithm makes full use of
spectral and temporal information. This finding can also be
found in the studies of Brown et al. [20] and Deng and Zhu
[22]. Fortunately, the inclusion of spatial feature such as line
density in our study can reduce the commission errors (from
40% to 33.3% of producer’s accuracy and from 85.7% to 71.4%
of user’s accuracy for bareland).

C. Urban Expansion Processes in Tianjin

By analyzing the changes about the impervious surface, we
observe that the urban expansion in Tianjin experienced two key
stages (Fig. 9). The first stage is that the total area of impervious
surface in Tianjin increased by 338 km2 from 1985 to 2005,

and the expansion mainly occurred around the central area (see
green area in Fig. 9). The second stage is that between 2006
and 2018 the total area of new impervious surface reached 351
km2, mainly in the coast such as Binhai New Area (see red area
in Fig. 9). This was possibly forced by the government policy
-“Tianjin City Master Plan (2005–2020)”, which for the first
time clarified that Tianjin’s urban spatial structure evolved from
a single core to a dual core, and proposed “the city’s industrial
layout shifting to the coast”.

The urban expansion would lead to decreases of the other
land cover types, and this is usually unidirectional, that is, once a
land is transformed into urban, it often cannot be converted back
[51]. Therefore, we only count the proportion of land occupied
by urban expansion in Tianjin from 1985 to 2018 and found
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Fig. 9. Impervious surface expansion of Tianjin between 1985 and 2018. Other
landscape indicates other all land covers besides of impervious surface.

Fig. 10. Illustration of urban expansion from cropland, water, and bareland in
Tianjin from 1986 to 2018. IS: impervious surface.

that the urban was transformed mainly from cropland, water,
and bareland (Fig. 10). In the first stage (before 2005), the
conversions were mainly from cropland and paddy field around
the central area. Note that the paddy field is often flooded and will
be reasonably classified as water, but we can easily identify them
based on some prior knowledge (e.g., they often locate around
other croplands). Especially between 1992 and 1998, there are
many paddy fields converted into urban. However, the urban
area mainly began to expand from water around the coastlines
since 2006. In 2008, the water contribution rate reached 79.50%

with a total area of 80 km2, and it was mostly concentrated in
the coast of Binhai New Area. In addition, the proportion of
bareland encroached in the later period increased slightly, and
the conversion area was mainly concentrated in Binhai New
Area.

V. CONCLUSION

We corrected the BRDF effects for LTS and integrated a
spatial feature (i.e., line density) into the CCDC algorithm
to improve land cover change and classification. The results
demonstrated that the combination of BRDF correction and line
density can improve the accuracy of land cover change detection
and classification significantly. The annual land cover products
provide a new insight for understanding the urban expansion
process in Tianjin, China.
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