
3958 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

A Point-Based Fully Convolutional Neural Network
for Airborne LiDAR Ground Point Filtering in

Forested Environments
Shichao Jin, Yanjun Su , Xiaoqian Zhao, Tianyu Hu, and Qinghua Guo

Abstract—Airborne laser scanning (ALS) data is one of the most
commonly used data for terrain products generation. Filtering
ground points is a prerequisite step for ALS data processing.
Traditional filtering methods mainly use handcrafted features or
predefined classification rules with preprocessing/post-processing
operations to filter ground points iteratively, which is empirical
and cumbersome. Deep learning provides a new approach to solve
classification and segmentation problems because of its ability to
self-learn features, which has been favored in many fields, partic-
ularly remote sensing. In this article, we proposed a point-based
fully convolutional neural network (PFCN) which directly con-
sumed points with only geometric information and extracted both
point-wise and tile-wise features to classify each point. The network
was trained with 37449157 points from 14 sites and evaluated on
6 sites in various forested environments. Additionally, the method
was compared with five widely used filtering methods and one of
the best point-based deep learning methods (PointNet++). Results
showed that the PFCN achieved the best results in terms of mean
omission error (T1= 1.10%), total error (Te= 1.73%), and Kappa
coefficient (93.88%), but ranked second for the root mean square
error of the digital Terrain model caused by the worst commission
error. Additionally, our method was on par with or even better
than PointNet++ in accuracy. Moreover, the method consumes
one-third of the computational resource and one-seventh of the
training time. We believe that PFCN is a simple and flexible method
that can be widely applied for ground point filtering.

Index Terms—Digital terrain model (DTM), deep learning,
fully convolutional neural network (FCN), ground filtering, light
detection and ranging (LiDAR).

Manuscript received January 30, 2020; revised June 7, 2020 and June 29,
2020; accepted July 7, 2020. Date of publication July 10, 2020; date of current
version July 22, 2020. This work was supported in part by the National Key R&D
Program of China under Grant 2016YFC0500202 and Grant 2017YFC0503905
and in part by the National Science Foundation of China under Grant 31971575,
Grant 41871332, and Grant 41901358. (Corresponding author: Qinghua Guo.)

Shichao Jin is with the Plant Phenomics Research Center, Nanjing Agricul-
tural University, Nanjing 210095, China, with the State Key Laboratory of Vege-
tation and Environmental Change, Institute of Botany, Chinese Academy of Sci-
ences, Beijing 100093, China, and also with the University of Chinese Academy
of Sciences, Beijing 100049, China (e-mail: jinshichao1993@gmail.com).

Yanjun Su, Xiaoqian Zhao, Tianyu Hu, and Qinghua Guo are with the
State Key Laboratory of Vegetation and Environmental Change, Institute of
Botany, Chinese Academy of Sciences, Beijing 100093, China, and also with
the University of Chinese Academy of Sciences, Beijing 100049, China.
(e-mail: ysu@ibcas.ac.cn; zhaoxiaoqian@ibcas.ac.cn; tianyuhu@ibcas.ac.cn;
guo.qinghua@gmail.com).

Digital Object Identifier 10.1109/JSTARS.2020.3008477

I. INTRODUCTION

G ENERATING a digital terrain model (DTM) or removing
the effect of terrain is a prerequisite for many ecological

studies in forested environments [1]–[3]. Light detection and
ranging (LiDAR), which is an active remote sensing technol-
ogy, can measure the distance from the sensor to the target by
recording the time between the laser emission and the reception
of the reflected light [4]. Because of its higher penetration ability
compared with optical images [5] and radar interferometry [6],
[7], LiDAR has offered new perspectives on terrain products
generation [8]–[10] and their related applications [11]–[14].
Airborne laser scanning (ALS) is highly accurate and efficient,
providing useful data for various large scale applications [15]–
[17]. However, ground point filtering, as one of the prerequisites
for ALS data preprocessing, is the key to generating accurate
DTMs, which consumes nearly 80% of the workload of ALS
data processing [18]. Meanwhile, given nonground objects with
different shapes and sizes, in addition to the terrain surface with
various slopes and discontinuities, ALS data filtering can be
difficult and troublesome.

Traditional ground point filtering methods can be grouped
into three types: Slope-based, surface-based, and segmentation-
based methods [19]. Slope-based methods [20]–[23] filter
ground points based on the assumption that if the height dif-
ference between two points is greater than a defined threshold,
then they should be classified differently. Slope-based methods
are efficient and simple, but they are not robust when terrain
points and object points are mixed unequally, particularly in
areas with large terrain fluctuations [1]. Surface-based methods
filter ground points by defining a surface that approximates
bare earth within a buffer zone, which defines the 3-D space
where ground points are expected to reside [24]. Depending on
the surface generation method, surface-based methods can be
further divided into two subcategories: Morphology-based and
interpolation-based methods. Morphology-based methods [25]–
[29] approximate the terrain surface using morphological opera-
tions (e.g., opening and closing), which are easily implemented,
but their performance relies on the setting of a window size [30].
Interpolation-based methods [19], [31]–[34] adapt hierarchical
or iterative ideas to densify filtered results, which can manage
discontinuous and dense scenes, but a priori knowledge of the
terrain and objects is typically required to set optimal parameters
in the interpolation process. Segmentation-based methods [35],
[36] first segment points into patches and then group these
patches into clusters (ground or nonground) based on a set of

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-7931-339X
https://orcid.org/0000-0002-1065-0838
mailto:jinshichao1993@gmail.com
mailto:ysu@ibcas.ac.cn
mailto:zhaoxiaoqian@ibcas.ac.cn
mailto:tianyuhu@ibcas.ac.cn
mailto:guo.qinghua@gmail.com

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3959

predefined rules. Segmentation-based methods are better suited
to urban [1] than forested environments, where many patches
may be segmented [35].

Overall, these methods have alleviated the task of ALS data fil-
tering to a certain extent, and have proved that the use of LiDAR
attributes (e.g., echo width and intensity) is beneficial [37]. How-
ever, these filtering methods have some common shortcomings
that need to be addressed: they are based on a set of handcrafted
rules or statistically derived thresholds, which can result in errors
in complex scenes, such as over forested environments; they
mostly use multi-scale window sizes or hierarchical iterations
to achieve optimized results, which is computationally intensive
and time-consuming; and some methods sacrifice the number
of ground points to minimize commission errors, although pre-
serving a large volume of ground points is the prerequisite for
ensuring the accuracy of the DTM, particularly for applications
that are concerned with microtopography [31], [38].

The convolutional neural network (CNN) is a well-known
class of deep learning methods that is commonly used in com-
puter vision-related fields [39]. In the field of remote sens-
ing [40], [41], deep learning is mainly used to solve image-
based problems (e.g., detection, classification, and segmenta-
tion) [40]–[42], but a few studies have demonstrated the advan-
tage of deep learning in processing LiDAR points [18], [41],
[43]–[56]. There are a few practical challenges in using CNN
for filtering LiDAR points. First, convolutional operations used
in structured data (e.g., 1-D sequence sentences/voice, 2-D grid
images, and 3-D voxel) cannot be applied directly to irregular
points acquired by LiDAR. Second, unordered points require a
CNN to be invariant to the data feeding order, which has N! types
of permutations with N points. Third, interactions and disconti-
nuities among points require a CNN with the ability to extract
hierarchical features from very local to global scales. Finally,
transformation invariance requires the result of a CNN to remain
unchanged after affine transformations (e.g., rotation and shift).

Currently, there are four types of methods that address the
challenges of using deep learning with points: view/surface-
based methods, voxel/tree-based methods, point-based methods,
and graph-based methods. View/surface-based methods [44]
render points into collections of images, and use well-engineered
2-D CNNs to perform classification and retrieval tasks, but they
are nontrivial in terms of point classification and segmentation
because of the loss of some inherent structure of the 3-D points
in the transformation stage. Voxel-based methods [45], [46]
transform points into regular 3-D voxel grids, which enables
3-D convolution and feature extraction but causes unnecessarily
sparse volumes and computational costs, thereby limiting their
application at a large scale. These deficiencies have been partly
solved by some tree-based methods [47]–[49], but these are
limited by high storage costs in large-scale applications [47].
Point-based methods [50], [51], [57], and [58] perform highly
efficient 1-D convolutional operations. They directly consume
irregular and unordered points as input and output the classi-
fication of the object or segmentation of each point. Graph-
based methods [52], [53] combine superpoint embedding using
efficient CNNs (e.g., PointNet) and contextual segmentation
using edge-conditioned convolution [59] and a gated recurrent
unit [60] to capture both fine spatial details and long-range

contextual relationships. Although some graph-based methods
perform well in point semantic segmentation at a large scale,
they introduce unnecessary computation, complexity, and un-
certainties in the unsupervised partition of superpoint generation
with human-introduced features (e.g., linearity, planarity, scat-
tering, and verticality) [60], [61]. Therefore, from an engineering
application perspective, point-based methods are more promis-
ing because of their simple, efficient, robust, and expandable
characteristics.

The application of point-based methods in ALS point filtering
is still rare. Some studies have demonstrated the feasibility of
view-based methods in ALS data filtering. For example, Hu and
Yuan [18] viewed the classification of each point as a binary
image classification problem and achieved satisfactory results.
However, view-based methods may lack local information be-
cause point rendering is conducted based on the height difference
of all points within a fixed and predefined unit. To capture more
detailed information, Yang et al. [62] improved the rendering
method by choosing a unique center coordinate of each unit
through eigenvalue calculation. These two view-based methods
are both time-consuming and computationally intensive because
of the rendering of each point into an image by calculating
context information for each point, and were empirical be-
cause of the defined rendering rules and unit size. To address
this issue, some researchers have attempted to use voxel-based
and point-based methods to perform semantic segmentation by
exploiting the sparsity often inherent to 3-D data. For exam-
ple, Schmohl and Sörgel [54] proposed an encoder-decoder
architecture with sparse submanifold convolutional networks
for efficient ALS point cloud filtering, but it may still have
issues of limited resolution and sampling extent due to the
voxelization representation at a large scale. Yousefhussien et
al. [55] presented a multiscale fully convolutional neural net-
work (FCN) modified from PointNet for ALS point semantic
segmentation, which consumed terrain-normalized points with
spectral information (if available) in urban and rural areas.
Although the modified method labeled ALS points with promis-
ing results, it operated on terrain-normalized data. A critical
problem that we need to solve is how to filter ground points
from raw data that are heavily affected by terrain conditions,
such as those found in complex and discontinuous forested
environments.

In this study, we aim to propose a point-based fully CNN
(PFCN) for filtering ground points from ALS data in forested
environments. The main challenges we aim to solve are as
follows.

1) In forested environment, can we design a network that can
directly consume ALS data with low density, high noise,
complex terrain variation, and occlusion?

2) In forested environment, can we successfully train a deep
learning network by manually preparing massive dataset
without free available benchmark dataset?

3) Can we adopt deep learning tricks (e.g., joint loss, multi-
task learning and residual learning [63]–[66]) to improve
the performance of deep learning network?

To provide a clear illustration of the method, the rest of the
article is organized as follows. Section II specifies the architec-
ture of the network and loss function. Section III describes the

3960 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 1. Architecture of the PFCN. The input layer is the normalized and
unclassified point cloud in black. The hidden layers contain an STN and a set
of MFCs. Each MFC consists of 1-D convolution operations, followed by 1-D
batch normalization and rectified linear unit activation (ReLu). The MFCs extract
both point-wise and tile-wise features for a multitask learning, including a point
classification task and a tile classification task.

experimental analysis, including study area and data collection,
data preparation, network training and testing, accuracy assess-
ment, design of comparison experiments with similar methods,
and analysis of tile size/shape influence. Section IV presents
the results of the training/validation loss, point classification
results, comparison results, and tile size/shape influence analysis
results. Although it is interesting to make systematic compar-
isons among more various traditional methods and deep learning
methods that are not included in this article, it may exceed the
scope of this article. Finally, Section V presents the discussion of
the experiment results and an analysis of the influential factors.
Section VI ends with a short conclusion.

II. METHODOLOGY

The PFCN is a point-based deep learning method that takes
advantage of FCN [67], residual learning [66], multitask joint
learning [63], [64], and focal loss (FL) [68], and is trained
“end-to-end” to extract hierarchical features. As shown in Fig. 1,
the PFCN consists of three parts: input layer, hidden layers,
and output layers. The input layer is a point cloud. The hidden
layers are composed of a spatial transformer network (STN)
[69] and many multilayer fully convolutional (MFC) operations
[70], which are designed to extract both point-wise and tile-wise
features robustly against unordered data. Point-wise features
contain detailed information about each point. Tile-wise features
represent global features derived from all points in the tile, which
are different from neighborhood features derived from sampling
points. The output layers are composed of two tasks through a
joint loss, which is trained in a multitask learning way. One main
task is the point classification (i.e., classifying each point into

a ground or nonground class), which utilizes the concatenated
point-wise and tile-wise features. The other associated task is
tile classification (i.e., classifying whether the input data/tile is
bare ground or not) by using only tile-wise feature.

A. PFCN Architecture

The input layer data is an N × M matrix, where N is the
number of points and M is the number of attributes of each
point. Because the x, y, z coordinates are the inherent attributes
of any 3-D point cloud, the matrix size of the PFCN is N × 3,
unless otherwise specified. The raw LiDAR data do not need to
be preprocessed to extract some handcrafted features, like with
traditional methods. The initial data are sent into the PFCN with
a normalization operation using (1), which can accelerate model
convergence and enhance model robustness [43], [71]

[X,Y, Z] =
[X,Y, Z]−Min([X,Y, Z])

Max([X,Y, Z])−Min([X,Y, Z])
(1)

where X, Y, and Z are the vectors of the point coordinates in the
x, y, and z directions, respectively.

The normalized data are then sent into the hidden layers,
which consist of an STN layer and three MFC layers. The STN
is a data-dependent network that can align points in a canonical
space before feature extraction begins. This can make the net-
work invariant to data transformations, such as shift and rotation
[51], [69]. In this article, the STN has multiple layers, and each
layer uses a different number of filters that are composed of 1-D
fully convolutional operations with 1-D batch normalization and
activation

N1024 = f1024(f128(f64(N3)))

N9 = f9(f256(f512(N1024)))

Mstn = Max(N9) + I3 (2)

where Nx denotes N points with x attributes; fx(Nx) denotes
the Nx data convoluted using x filters, and each 1-D convolution
is accompanied by 1-D batch normalization and rectified linear
unit activation operations (ReLu); Max is the maximum function
that operates in the point dimension; Mstn is the learned matrix
for the spatial transformation, and IX is the x-order unit matrix.

The STN outputs a spatial transformation matrix, which is
used to multiply the raw input data (matrix) before sending it
into the MFC layers. Each MFC layer consists of numerous
filters, and each filter performs a 1-D convolution in the fea-
ture dimension with 1-D batch normalization and activation. In
Fig. 1, the number of filters at each MFC stage is noted between
parentheses. The first MFC has seven layers of size 64, 128,
128, 128, 512, 1024, and 2048, and extracts point-wise features
of various dimensions. The 2048-dimensional feature is max
pooled in the point dimension to obtain a global tile-wise feature
vector. On the one hand, the tile-wise feature vector is expanded
into an N × 2048 matrix, which means that each point has a
global feature size of 1 × 2048. By concatenating all point-wise
features with the expanded global tile-wise features, each point
ends up having a 6080-dimensional feature (see Fig. 1). These
features are further processed using the second MFC with layer
sizes of 2048, 1024, 256, 128, and 2, to do point classification.
The last layer of the second MFC outputs an N × 2 matrix,

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3961

which represents the probability of each point to be classified as
either ground or nonground. On the other hand, to enhance the
point classification task, the network trains another task inspired
by the multitask learning [63], [64], which is classifying the
total points/tile into bare ground or not. In the tile classification
task, the max-pooled 2048-dimensional feature is processed
by the last MFC. The last MFC has layer sizes of 512, 256,
and 2, and outputs a 1 × 2 vector using the softmax function,
which represents two types of probabilities: that the tile is bare
ground or not bare ground. However, the tile classification is
just an associate task to the training phase and is not used in
the output result. The tile classification procedure produces the
tile classification loss, which is added to the point classification
loss to make a multitask training. The loss functions for tile
classification and point classification are described later.

B. Loss Function

The loss function for the PFCN is the sum of the tile clas-
sification loss and the point classification loss. For the tile
classification, the loss function is the cross entropy (CE), which
has been widely used for classification problems because it
measures the difference between the prediction and ground truth
from the point of view of the probability distribution instead of
a simple distance [72]. The tile classification loss (tile_loss) is
defined as

pttile =

{
ptile ifttile= 1
1−ptile otherwise

tile_loss = CE(ptile, ttile) = − log(pttile) (3)

where ptile is the output probalility of the tile classification task
and ttile is the groud truth label of the tile classification.

For the point classification, we use the FL to eliminate the
influence of data distribution imbalance [68], which is a com-
mon scenario in very sparse and dense forest scenes. The FL
function improves the CE by decreasing the weight of the easy
examples and thus focusing on training hard negatives by adding
a modulating factor (1− ptpoint)

γ to the cross-entropy loss [68].
The point classification loss (point_loss) is defined as

ptpoint =

{
ppoint iftpoint= 1
1−ppoint otherwise

CE(ppoint, tpoint) = − log(ptpoint)

point_loss = FL(ppoint, tpoint)

= (1− ptpoint)
γCE(ppoint, tpoint) (4)

where ppoint is the output probability of the point classification
task, tpoint is the ground truth label of point classification, and γ
is a given parameter, which is set to 0.2 in this article by referring
to Lin et al. [68].

Finally, the total loss of the multitask network (Loss) is defined
by adding the tile classification loss and the point classification
loss. Because there are always some gaps in the forest and
the penetration ability of ALS is strong, the number of ground
points usually occupies a certain proportion of the total points.
However, the number of vegetation points may be sparse, which
means that a data imbalance of low vegetation ratio is more
common. In this case, to further avoid overfitting the point

classification task (i.e., all points are predicted to belong to one
class) even when FL is used, we define a self-weighted weight
for each task in the total loss. The self-weighted total loss can
balance the loss in point classification where vegetation is less
dense by giving more weights to the simple tile classification
loss. The equation is defined as

w0 =

⎧⎨
⎩

0.1 if n1

(n0+n1)
< 0.1

0.9 if n1

(n0+n1)
> 0.9

n1

(n0+n1)
elsewise

w1 = 1− w0

Loss = w0 × tile_loss + w1× point_loss (5)

where n1 is the number of ground points, n0 is the number of
nonground points. w0 and w1 are the fractions of ground points
and nonground points, which are both constrained into the range
of 0.1 to 0.9 to avoid any one of them being too small to train.

III. EXPERIMENTAL ANALYSIS

A. Study Area and Data Collection

In this article, four study areas (i.e., Providence, San Joaquin
Range, Courtwright Road, and Wolverton and Tokopah from
west to east) were selected in the Southern Sierra Nevada Moun-
tains, CA, USA. These areas have large changes in topography
and vegetation. Elevation ranges from nearly 0 to 4000 m above
sea level. The vegetation type is mixed conifer, and the dominant
species, in order of abundance, are white fir (Abies concolor),
ponderosa pine (Pinus ponderosa), and incense cedar (Caloce-
drus decurrens). Additional associated species are black oak
(Quercus kelloggii) and canyon live oak (Quercus chrysolepis).
These oak trees are secondary forest species after fire, and there
are some shrub-like small oak trees distributed under the canopy.

LiDAR data for these areas were acquired in August 2010 us-
ing an Optech GEMINI Airborne Laser Terrain Mapper mounted
on a twin-engine Piper PA-31 Chieftain. The pulsing rate and
scanning frequency were 100 kHz and 50 Hz, respectively. The
scanning angle was±14° and the single swath width was 233.26
m with over 50% swath overlap. The system recorded up to 4
echoes per pulse. The average point density was approximately
10.27 pts/m2. Additionally, to quantify the vertical accuracy of
the LiDAR beam, the data provider (i.e., the National Center for
Airborne Laser Mapping) collected 243 checkpoints on roads
using a global positioning system mounted on a vehicle. The
average vertical accuracy, which was derived by calculating
the root-mean-square error (RMSE) of the elevation differences
between the LiDAR shot and the nearest checkpoints, was 0.024
m and was homogenous among all sites.

Twenty sites with an area of 500 × 500 m were chosen from
the four study areas (upper right corner in Fig. 2). Sites 1 and
2 were located in Courtwright Road; sites 3–8 were located in
San Joaquin; site 9 was located in Providence, and sites 10–20
were located in Wolvert and Tokopah. Statistical information
for the vegetation and terrain factors (see Table I) was calculated
from a DTM, digital surface model (DSM), canopy height model
(CHM), and individual tree segmentation results. For each site,
ground points were generated using methods in Section III-B.
The classified ground points were used to generate the DTM

3962 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE I
STATISTICAL INFORMATION OF THE VEGETATION AND TERRAIN OF THE 20 SELECTED SITES

a “Min” is the minimum value of canopy cover, tree height, elevation, and slope.
b “Max” is the maximum value of canopy cover, tree height, elevation, and slope.
c “SD” is the standard deviation value of canopy cover, tree height, elevation, and slope.
∗ “∗” indicates that a site was chosen as a testing site; otherwise, it was chosen as a training site.

Fig. 2. Four study areas indicated by red stars in the Southern Sierra Nevada,
CA, USA. Twenty sites were chosen across these areas, as shown, colorized
by elevation, in the black box in the upper right corner. The sites with a red
bounding box were used for testing while the others were used for training.

using the most widely used ordinary kriging method [38], [73]
in the ESRI ArcGIS software with default parameter settings. Of
which, the semivariogram used the stable model, whose parame-
ters are automatically fitted using weight least squares methods.
The minimum/maximum number of neighboring points were
set as auto, the neighbor type was set as standard without
smooth, the sector type was set as 4 sectors with 45° offset,
and the angle/major-semiaxis/minor-semiaxis were copied from
the variogram parameters. The DSM was generated using the
same method, but with the first return points. The CHM was
derived by subtracting the DTM from the DSM, and the spatial
resolutions of the DTM, DSM, and CHM were all set to 0.5
m. A 0.5 m resolution was chosen because we found that the
RMSE of LiDAR derived-DTM decreased quickly when the
spatial resolution varied from 10 to 0.5 m, and stayed relatively
stable after 0.5 m using the similar LiDAR dataset (collected
with the same equipment with similar point density) in the Sierra
Nevada mountains [38]. The canopy cover was derived using a
canopy-based method [74], calculating the ratio of pixels with a
CHM value higher than 2 m in each patch of 30 × 30 m. Finally,
we calculated the minimum (Min), maximum (Max), mean, and
standard deviation (SD) of all canopy cover values for each site.

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3963

Fig. 3. Flowchart of data preparation, network training, validation, and testing.

Statistical information for the elevation was calculated using the
DTM directly. Statistical information for the slope was calcu-
lated using the slope raster generated from the DTM raster. Tree
height was calculated from the individual segmentation result
from LiDAR data using Green Valley International LiDAR360
software [75].

The statistical information showed that the vegetation and
terrain conditions in these sites were complex. The mean canopy
cover of these sites ranged from 0% to 90% with an SD range of
0%–23%. Meanwhile, the mean tree height of these sites ranged
from 0to 25.9 m, with an SD range of 0–8.9 m. The large range
of the canopy cover and tree height is representative of most
forest scenes. Additionally, the mean elevation and slope range
of these sites were 426–3347 m and 6.0°–41.5°, respectively,
which covers very flat and steep terrain in various mountain
types. Moreover, the mean point density ranged from 8.0 pts/m2

to 14.1 pts/m2.

B. Data Preparation (Training, Validation, and Testing)

Well-labeled training data are the prerequisite for training a
satisfactory model. In this article, 14 sites (70% of all sites)
were selected for training (see Fig. 3), which covered various
vegetation and terrain conditions, and with canopy cover and
slope ranging from 0% to 90% and 7.1° to 41.5°, respectively.
The unclassified points were filtered to obtain preliminary results
using the automatic method in the TerraScan software. The pre-
liminary results of each site were checked manually to eliminate
incorrectly filtered points and increase the number of ground
points as much as possible. Manual checking was performed
by visualizing the cross section of the point cloud with the
LiDAR360 software, which can easily identify mistakes and
reclassify incorrect points [76], [77]. The standard and detailed
procedures can be found at our previous study [78]. Information
about the final labeled data and the ratio of manually corrected
points is given in Table II.

TABLE II
INFORMATION ABOUT THE CLASSIFIED GROUND AND NONGROUND POINTS OF

ALL SITES OBTAINED BY VISUALLY CHECKING AND REVISING THE DATA

CLASSIFIED BY THE AUTOMATIC FILTERING RESULTS USING TERRASCAN AND

LIDAR360 SOFTWARE

∗ “∗” indicates that the site was chosen as a testing site; otherwise, it was chosen as a training
site.

Because each site was 500 × 500 m, hardware limitations
made it difficult to input such a large scene as a single training
sample. We therefore increased the training samples by tiling
each classified training datum (site) into 62 20 × 20 m tiles.
Each tile was labeled with two types of labels for the two training
tasks (i.e., tile classification and point classification). For the
tile classification, the tile was labeled 0 if the tile was bare
ground (i.e., all points were ground points); and 1 otherwise.
For the point classification, each point of the tile was labeled as
a ground point (0) or nonground point (1). The labeled data were
normalized to create a training sample using (1). Finally, 12500
tiles were labeled as ground/nonground samples, of which 8750
samples were labeled from 14 training sites and 3750 samples
were labeled from 6 testing sites. Moreover, 70% (6125) of
the training samples (8750) were selected for training and the
remaining 30% (2625) were reserved for validation to select the
best model in the training process. The 3750 testing samples
were used for accuracy assessment.

The best model saved in the training stage was used for testing.
Points in each tile of a site were predicted separately and then
merged to obtain the final result.

C. Network Training and Testing

The PFCN was trained “end-to-end” using strong GPU ac-
celeration in the PyTorch framework [79]. The 6125 training
samples were fed into the network using a batch size of 1
because the number of points in each training sample was not

3964 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

TABLE III
ACCURACY ASSESSMENT METHOD FOR POINT CLASSIFICATION

the same. After each epoch, the loss for tile classification and
point classification was calculated using cross-entropy and FL,
respectively. The two losses were added to obtain the total loss,
which was optimized using the Adam method through back
propagation with a time-dependent learning rate [80]. The initial
learning rate was 0.0001, which was halved every 20 epochs
when the epoch was less than 100. To monitor the best model, we
validated the model using validation samples after each epoch. In
the validation stage, 2625 samples were predicted to obtain the
total loss and overall accuracy between the prediction and target.
If the total validation loss decreased and the overall accuracy
increased over the last epoch, then the model of this epoch was
saved. The initial total loss and overall accuracy were set to
1000%, and 0%, respectively. The network was trained until the
validation loss did not decrease and the overall accuracy did
not increase over 50 consecutive epochs. Finally, the last saved
model was considered the best model.

D. Accuracy Assessment

The point classification accuracy was evaluated at the point
level using cross matrices of type I error (T1), type II error (T2),
total error (Te), and Kappa coefficient (Kp) (see Table III) [24],
[81], [82]. T1 error indicates the omission of target ground points
(i.e., the proportion of ground points misclassified as nonground
points). T2 error indicates the commission of nonground points
(i.e., the proportion of nonground points misclassified as ground
points). Te is the total proportion of misclassified points. Kp
determines the point classification accuracy. Low T1, T2, Te,
and high Kp are expected for a good result.

Additionally, the RMSE of the DTM was evaluated at different
resolutions: 0.5, 1, 5, and 10 m. The DTM of both the prediction
and ground truth was generated using the most widely used
Kriging method [38]. The ground truth points were prepared
using methods in Section III-B. At each resolution, the RMSE
between the ground truth DTM and predicted DTM was cal-
culated. Meanwhile, by averaging the RMSE of all sites, the
mean RMSE of different sites at each resolution was calculated.
Moreover, by averaging the RMSE of all resolutions, the average
RMSE was calculated.

E. Comparison with Traditional Methods and PointNet++

To show the performance difference between the PFCN and
traditional ALS filtering methods, five widely used traditional
methods were selected for quantitative comparison, which in-
cluded a slope-based method [20], a morphology-based method
[27], and three interpolation-based methods [31], [83], [84].
Traditional methods were chosen instead of the latest methods
for the following reasons:

1) traditional methods are stable and widely used;
2) they share key ideas with the latest algorithms [19], [33],

[85], [86]; and
3) their performances are on par with or better than the latest

methods [87].
The slope-based method (hereafter SAGA) is based on a

height difference assumption and is implemented in the open-
source SAGA software [20]. The morphology-based method
(hereafter SMRF) uses a simple morphological filter with a lin-
early increasing window and simple slope threshold to classify
ALS data, which is suited for DTM generation because of the
lower ground point omission error [27]. The first interpolation-
based method is based on adaptive TIN models (hereafter Ter-
raScan), which have been implemented as a package in the
commercial TerraSolid software [84]. The second interpolation-
based method is a multi-scale curvature algorithm designed for
forested environments (hereafter MCC), which retains a high ra-
tio of ground points and low commission errors to derive a highly
accurate ground surface [83]. The last interpolation method
(hereafter Fusion) is also designed for wooded areas, and is
implemented in the open-source Fusion software [31], [88]. The
parameter setting of each method was determined by exhausting
all possible parameter combinations, and we used the parameter
setting with the optimized filtering results in each study site
(the lowest Te) for comparison. The detailed information of
parameter settings of Fusion, MCC, SAGA, and TerraScan can
be found at our previous study [78]. The SMRF method has five
parameters: cell size, slope, maximum window radius, elevation
threshold, and scaling factor for ground identification. To find
the optimal parameter setting for comparison, the cell size was
fixed at 1 m according to [27]. Slope was changed from 5%
to 100% with an increment of 5%, and with an increment of
1% during a fine-tune optimization. Maximum window radius
was varied from 1 to 20 m with an increment of 1 m. Elevation
threshold was varied from 0 to 1.0 m with an increment of 0.1
m. Elevation scaling factor was varied from 0 to 2.5 with an
increments of 0.05.

In addition, we analyzed whether PFCN is as accurate as state-
of-the-art deep learning-based filtering methods and whether
it has additional strengths. A well-known point-based deep
learning method, PointNet++, was selected for comparison,
because it captures both local and global features and has been
shown to have state-of-the-art performance in point semantic
segmentation [50]. PointNet++was also trained using the same
training dataset used in PFCN and monitored by the validation
dataset until the validation loss did not decrease and the overall
accuracy did not increase over 50 consecutive epochs. The
hyper-parameters (e.g., search radius and number of sampling
point) used in PointNet++ were set as default as in [50].

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3965

Fig. 4. Overall accuracy and loss of training and validation during the training
process.

F. Influence Analysis of Input Tile Size and Tile Shape

Splitting a large scene into small tiles for training is a neces-
sary step because of computational limitations. Splitting is also
a simple approach to perform data augmentation, which can
enhance the robustness of the model [89]. Moreover, the global
feature of the tile that has been expanded for each point can
be considered as local information used in traditional methods
to improve filter performance [24]. However, the tile size and
shape may affect model performance because previous studies
have indicated that features are related to target and input data
sizes [1], [24].

To analyze the influence of tile size, we compared the perfor-
mance of the PFCN with training samples of different tile sizes:
5 × 5 m, 10 × 10 m, 15 × 15 m, 20 × 20 m, 25 × 25 m, and 30
× 30 m. Sizes smaller than 5 × 5 m were not included because a
size that is too small cannot provide sufficient information; sizes
that are larger than 30 × 30 m were also excluded because of
computational limitations.

In addition to the tile size, the tile shape (i.e., width and length)
may also affect the performance of neural networks. Therefore,
we analyzed the performance of the PFCN with training samples
of different shapes but same area: 20 × 20 m, 10 × 40 m, 5 ×
80 m, 2 × 200 m, and 1 × 400 m.

IV. RESULT

A. Training/Validation Loss Decreasing

The PFCN was trained to converge with a total number
of training epochs of 146 and training time of approximately
43 h on a Windows 10 server with Intel(R) Xeon(R) CPU
E5-2640 v4 @2.40GHz, 256 GB RAM, and an NVIDIA Tesla
P100-PCIE-12GB GPU. The trends for the training loss, training
accuracy, validation loss, and validation accuracy are shown in
Fig. 4.

B. Point Classification Results

The visual results of the whole point classification are shown
in Fig. 5. There are no obvious visual differences in the ground
point filtering results when compared with the ground truth.
The difference between the ground truth and prediction was
calculated and is shown in the right column in Fig. 5. The

matched points are in gray and the misclassified points are in
red. As can be seen, the misclassified areas appear mainly in
Figs. 5(d) and (e). Most of the misclassified points are discretely
distributed, apart from some misclassified points that appear
in a continuous area in Fig. 5(e). Moreover, the misclassified
points mostly appear at the junction of terrain and vegetation, as
can be seen from the difference (profile) figures in the right
column in Fig. 5. The quantitative results are described in
Section IV-C.

C. Comparison With Traditional Methods and PointNet++

To quantitatively evaluate the performance of the PFCN,
evaluation metrics (i.e., Kp, T1, T2, and Te) were calculated
and compared with traditional filtering methods. The results
showed that the PFCN had the highest mean Kp value (93.88%)
over all sites, followed by SMRF, MCC, TerraScan, Fusion,
and SAGA [see Fig. 6(b)]. Meanwhile, the mean SD of Kp of
PFCN in all sites was the lowest (6.03%), followed by SMRF,
MCC, TerraScan, Fusion, and SAGA. Additionally, most of
the methods performed relatively weakly in site 16 and site
5 [see Fig. 6(a)], but the PFCN was always the best in each
site.

In addition to the Kp accuracy, we also evaluated the perfor-
mance of the PFCN and traditional methods using the T1, T2,
and Te metrics (see Fig. 7). The results showed that the PFCN had
the lowest mean T1 error and highest mean T2 error. However,
the mean Te of the PFCN was the lowest among all methods,
followed by SMRF, MCC, TerraScan, Fusion, and SAGA, which
is consistent with the results of the Kp metrics.

Moreover, the mean RMSE of the DTM products showed that
the RMSE of each method was almost unchanged or slightly
increased as the resolution became coarser: from 0.5 to 10 m
[see Fig. 8(a)]. Additionally, the average value of the mean
RMSE of the DTM at different resolutions of each method
is shown in Fig. 8(b), which indicates that the PFCN ranked
second, followed by SMRF, MCC, FUSION, and SAGA. The
best RMSE result of the DTM was TerraScan, which had a
0.05 m lower RMSE than the PFCN.

Besides the comparisons with traditional methods, we found
that the Kp and Te values of the PFCN and PointNet++methods
were almost the same (see Fig. 9). Meanwhile, we found that the
Mean RMSE of the DTM of the PFCN method was slightly better
than that of the PointNet++method. Moreover, the training (in-
cluding validation stage) time and GPU resources of each epoch
of the PFCN and PointNet++ methods were 0.295 and 2.142 h,
and approximately 3 GB and 9 GB, respectively. Additionally,
for each sample with a size of 20 m× 20 m, the mean testing time
of PFCN and PointNet++ methods were 0.033 s and 0.899 s,
respectively.

D. Influence of the Input Tile Size and Tile Shape

The mean values of T1, T2, Te, and Kp, and Mean RMSE of
the DTM show the specific influence of the tile size in Fig. 10.
The mean Te and Kp, and Mean RMSE of the DTM of different
tile sizes were very similar, of which the 20 × 20 m tile size
had the lowest Te and highest Kp, and a 0.25 m RMSE that
was very close to the minimum. Meanwhile, the 20 × 20 m tile

3966 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 5. Point classification result of the PFCN. Subfigures, from left to right in each row, are the ground truth, prediction, difference between the ground truth and
prediction, and difference in 20 m interval profile between the ground truth and prediction. Circled numbers indicate the location of the difference profile. (a)–(f)
Six testing sites.

size had the lowest T1 with a middle T2 value. However, the
influence of tile size in all accuracy metrics was insignificant
at the 95% confidence level using Tukey’s multiple comparison
method [90].

V. DISCUSSION

A. Comparison with Traditional Methods and PointNet++

The comparison of the point filtering methods showed that
the PFCN performed best according to all the metrics except
T2, followed by surface-based methods (i.e., SMRF, MCC,
TerraScan, and Fusion) and sloped-based methods (i.e., SAGA).
The main reason may be that the PFCN captured both point-
wise and tile-wise features, which were learned automatically
from millions of points that covered various complexities. Ad-
ditionally, the PFCN adopts many ideas from other current
state-of-the-art methods, such as using FL to avoid data im-
balance [68], using residual learning to improve the robustness

of the model [66], and using multitask learning to improve
performance [63]. The reason that surface-based methods were
better than slope-based methods was that they captured more
context information [24]. Among these surface-based methods,
the SMRF method is based on morphology operations, which
are effective at minimizing the T1 error on highly varied terrain
[27] Meanwhile, the morphology-based methods that operate on
the surface also proved to be less sensitive to slope, vegetation
conditions, point density, and other factors [27], [87], which
may explain why SMRF was better than the other three surface-
based methods using the interpolation surface. However, the
interpolation-based methods (i.e., MCC, TerraScan, and Fusion)
proved to be better than slope-based methods [78]. MCC has
been specifically developed for forested environments, and is
more robust to changes in terrain and canopy cover because it
balances T1 and T2 errors [83]. By contrast, TerraScan tended to
flatten hilltops and resulted in a higher T1 error [78], which may
be why MCC performed better than TerrasScan. Meanwhile,
MCC outperformed Fusion [87] and TerraScan outperformed

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3967

Fig. 6. Comparison of Kp of PFCN and traditional filtering methods, includ-
ing Fusion, MCC, SAGA, TerraScan, and SMRF. The value above each bar
represents the mean value, and the value in parentheses represents the SD.

Fig. 7. Comparison of the error metrics (i.e., T1, T2, and Te) of the PFCN and
traditional filtering methods, including Fusion, MCC, SAGA, TerraScan, and
SMRF. The value above each bar represents the mean value, and the value in
parentheses represents the SD.

Fig. 8. Comparison of mean RMSE of DTM of the PFCN and traditional
filtering methods, including Fusion, MCC, SAGA, Glidar, IPTD, PTDF, and
SMRF. The value above each bar represents the mean value, and the value in
parentheses represents the SD.

Fig. 9. Comparison of the PFCN and PointNet++ methods using (a) T1, T2,
and Te, (b) Kp, and (c) mean RMSE of the DTM metrics at 0.5, 1, 5, and 10 m
resolutions. The value above each bar represents the mean value, and the value
in parentheses represents the SD.

FUSION, particularly when the canopy cover was high [78].
Additionally, these surface-based methods outperformed the
slope-based method adopted by SAGA, which is also consistent
with previous studies [78], [87], [91].

The lowest Kp value was for sites 5 and 16 for almost all
methods. This may be related to the site conditions: site 5 had a
large mean canopy cover of 89% and site 16 had a large mean
slope of 41.0°. This result is supported by previous studies in
forested environments, in which the canopy and slope conditions
were two important factors that affected filtering accuracy, and a

3968 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

Fig. 10. Influence of tile size of the same shape indicated by (a) T1, T2, and Te, (b) Kp, and (c) mean RMSE of the DTM generated at four kinds of resolutions
(i.e., 0.5, 1, 5, and 10 m) at each tile shape. The value above each bar represents the mean value, and the value in parentheses represents the SD. There are no
significant differences between the different tile sizes in all accuracy metrics at the 95% confidence level using Tukey’s multiple comparison method. The mean
values of T1, T2, Te, and Kp, and mean RMSE of the DTM illustrate the influence of tile shape in Fig. 11. The mean T1, Te, and Kp, and mean RMSE of the DTM
of square size 20 × 20 m were the best, while the T2 value of square size 20 × 20 m was middle. The Kp value decreased when the tile shape narrowed, except for
the 5 × 80 m shape. This exception also existed in the error metric values (T1, T2, and Te), but there was no exception from the point of view of the Mean RMSE
of the DTM.

larger canopy cover and slope value resulted in larger errors [1],
[78]. Meanwhile, we found that the slope-based method, SAGA,
was more heavily affected by slope, which is also consistent with
previous studies [78]. This may explain why the Kp of site 4
(slope = 33.3) for the SAGA prediction was also low. Although
the PFCN method was also affected by slope and vegetation
factors, the Kp value was 93.56%, even under 89% canopy cover,
and the Kp value was greater than 80%, even in the steep hill area
with a mean slope of 41.0°. According to [82], a Kp value above
0.75 generally reflects excellent agreement, which indicates that
the PFCN was in excellent agreement with the ground truth.

Besides the Kp value, the PFCN performed best in terms of
Te. The main reason is that the PFCN was optimized by both the
cross-entropy and FL to obtain the maximum overall accuracy,
which tended to classify all possible ground points to minimize
both the T1 and T2 errors. By contrast, the traditional methods
had a strategy to select a set of ground points by iteratively den-
sifying ground points based on some critical points, such as the
lowest points in a series of local neighbors [84]. Therefore, the

traditional methods had a higher omission error (T1) but lower
commission error (T2) compared with the PFCN. The higher T2
problem was also mentioned for previous deep learning-based
methods [92]. Although the T1 error can be easily interpolated,
whereas the T2 error requires additional filters, a high T2 error is
preferred over a high T1 error because it is easier to amend when
manual checking is unavoidable in practice [81]. Meanwhile,
higher T1 errors result in gaps in the landscape, and it is difficult
and costly to determine whether a gap is caused by T1 errors or
the removal of objects [24], [78]. The gap issue should be solved
by reducing the Type I error especially for the ALS data because
it has relatively low point density, and generating high-resolution
DEM (e.g., 0.5–1m) needs high ground point density [38]. In this
article, the T1 of the PFCN was the lowest. Meanwhile, because
all T2 errors (0.17%–4.50%) were much smaller than T1 errors
(1.10%–24.25%), the Te of the PFCN was still the best.

Additionally, a higher T2 error may result in a higher RMSE of
the DTM, which is the reason why the mean-RMSE of the DTM
of the PFCN ranked second among all methods. However, they

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3969

Fig. 11. Influence of tile shape with the same area indicated by (a) T1, T2, and Te, (b) Kp, and (c) mean RMSE of the DTM generated at four kinds of resolutions
(i.e., 0.5, 1, 5, and 10 m) at each tile shape. The value above each bar represents the mean value, and the value in parentheses represents the SD. There was no
significant difference between the different tile shapes in all accuracy metrics except T1 at the confidence level of 95% using Tukey’s multiple comparison method.
The significance of the differences in tile shape influence on these metrics is shown using letters a and b. If two groups do not have the same letter, they have
significant difference

were comparable to the best results generated by the TerraScan
method with a 0.05 m difference considering the average vertical
accuracy of the ALS data. In practice, most ALS data have a reso-
lution of approximately 0.15 m vertically and 0.3 m horizontally
under the best conditions [93], [94]. For the DTMs, the T1 and
T2 errors caused the same absolute elevation errors [24], [78].
In the case of comparable accuracy, it is necessary to ensure
overall filtering accuracy (Te and Kp) to obtain as many ground
points as possible. The PFCN was the method that achieved this
purpose, which has also been reflected in recent studies [27]. In
addition, similar to traditional methods, the PFCN was able to
work with dataset of different point densities, terrain types, and
vegetation conditions (Appendix Fig. 14).

From the comparison of PFCN with PointNet++, we found
that the PFCN was on par in terms of Te and Kp, and slightly
better in terms of the mean RMSE of the DTM product. More im-
portantly, the PFCN provided much more efficient ALS filtering
in terms of both time and resource consumption. These strengths
may benefit from the point-wise and tile-wise loss function as

well as the multitask network architecture, which is discussed
in Section V-B.

B. Network Architecture

To increase the performance and robustness of PFCN, we
designed a concatenated feature that combines both point-wise
and tile-wise features. In the point classification task (Appendix
Table IV), the only point-wise feature works well, but the only
tile-wise feature does not work. However, combining the tile-
wise feature with the point-wise feature can improve the mean
overall accuracy (i.e., Kp) and decrease the mean total error (i.e.,
Te) of point classifications. The reason why the combined loss
decreases the accuracy of Mean RMSE of DTM at sites 14 and
16 may be that their slopes are both too steep to learn a good
tile-wise feature by PFCN.

Comparing the slight improvement of multiwise feature,
the improvement of multitask training is more considerable.
(Appendix Tables V and VI). It improves the tile classification

3970 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

accuracy at 5 of the 6 testing sites as well as the mean tile
classification accuracy (Appendix Table V) when compared
with only using the tile classification task. Meanwhile, multitask
improves the point classification accuracy at all testing sites in
terms of Te and Kp, and decreases the RMSE of DTM by 8
cm on average (Appendix Table VI) when compared with only
using the point classification task. The finding that multitask
deep learning contributes to the performance of each task is
consistent with previous studies [64], [95], [96].

The reason why multitask learning does not bring a tremen-
dous improvement to the only point classification task (Ap-
pendix Table VI) may be that the multitask loss is designed to
solve the misclassification of low vegetation cover in steep areas,
as in the example in Fig. 12. In this case, the improvement of Kp
and Te is not obvious, because the proportion of corrected points
is small. However, the improvement is obvious in DTM, in which
it greatly corrects the local overestimation problem (see Fig. 12).
This is why the improvement of the RMSE of the DTM is greater
than Te and Kp (Appendix Table VI). Through further analysis of
the improved samples, we find that the improvements are mainly
concentrated on areas with a small proportion of vegetation
points and areas with large slopes (see Fig. 13). This further
proves the validity of the proposed loss function. Because only a
few of all test samples in each site belong to the abovementioned
case, the overall improvement for each site is not very obvious.

C. Influence of the Input Tile Size and Tile Shape

From the analysis of tile size influence in Fig. 10, we found
that 20 × 20 m is an optimal tile size in terms of the lowest Te
and highest Kp, but 10 × 10 m may be a better choice for a
highly accurate DTM. Additionally, although the performances
of the PFCN with different tile size input were similar, there
was a slight tendency for the RMSE and T2 to increase with the
increase of the tile size. A possible reason for this is that the
global feature of the tile contributes less to finer classification,
whereas the global feature of small tiles may better represent
the local neighbor information about each point. Moreover, a
tile size that is too small (less than 5 × 5 m) may result in an
increase of the RMSE and Te because of the lack of sufficient
local information when comparing the result of 5 × 5 m with
that of 10 × 10 m.

Additionally, a potential law of tile shape influence appears
to indicate that as the tile shape becomes narrower, the accuracy
decreases (see Fig. 11). It is difficult to analyze the reason for
the exception appeared at 5 × 80 m shape using deep learning
methods, but we can see that the Mean RMSE of the DTM
increased gradually when tile shape narrowed from 20 × 20 m
to 1 × 400 m. This means that a narrower area is not conducive
to accurate point classifications. A narrower area may contain
only a very small amount of vegetation point data (see Fig. 12),
which makes the tile classification more difficult (see the tile
classification accuracy of site 16 in Appendix Table V), and
further affects the result of multitask PFCN.

D. Contributions and Future Work

The PFCN is a point-based method based on the PointNet
backbone [51], and integrates a series of state-of-the-art deep

Fig. 12. Example when multitask network usually predicts better results than
the only point classification task network. In such cases the percentage of
vegetation points is very low and the slope is very steep.

Fig. 13. Improvement relationships, in terms of T1, T2, Te, Kp, and mean
RMSE of DTM, with percentage of vegetation point and mean slope of each
sample between using multitask training and only point classification task
training. ΔT1 is derived using T1 of multitask PFCN minus T1 of only point
classification task, and the calculations of ΔT2, ΔTe, ΔKp, and ΔRMSE are
similar.

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3971

Fig. 14. Overall accuracy and RMSE of DTM (at 0.5 m resolution) of PFCN
under different point density, terrain type, and vegetation type using testing
samples with an area of 20 × 20 m.

learning technologies, such as FCN [67], residual network
(ResNet) [66], and multitask learning [63]. The major contri-
butions to ALS filtering include as follows.

1) A combination of point-wise and tile-wise features was
designed, which can lead to better performances than using
only point-wise or only tile-wise features.

2) Multitask (point classification and tile classification) train-
ing with a joint loss (the sum of FL and cross-entropy loss)
was adopted, which can achieve better filtering results than
using only point classification task.

3) The PFCN method used FL to enhance the classification
ability under different imbalanced data distribution sce-
narios [68].

In addition, the model was trained end-to-end to generate
the filtered ground points directly, which is very flexible for
use with only raw point information or points with more at-
tributes/features (e.g., intensity and echo width information).
The PFCN method can be extended to other areas of discrete
data processing problems, such as multiple class classification,
by easily setting the number of output classes.

Some limitations of this method still exist, which will be
addressed in future studies. First, the T2 filtering error was
relatively low, but it was the highest compared to the other tested
methods. This error could be reduced further by designing new
loss functions or a more advanced network to understand the
semantic relationships among local and global points [97], [98].
If the T2 error was lower, then we would expect the RMSE
of the DTM to also be lower, accordingly. Second, the ground

truth was generated through manual checking of the automatic
filtering result of TerraScan, which may potentially have reduced
the T1 of TerraScan and improved the accuracy of its DEM.
That may be a possible reason why the RMSE of the DTM in
the method was not the best. However, this approach is currently
the most widely used method for producing benchmark data for
point filtering. In this article, we have carefully and laboriously
checked the filtering result in the 3-D profile to make the dataset
more accurate. The manually corrected ratio is given in Table II.
Third, the points used in this study contained only geometric
information, and we did not analyze whether the PFCN accuracy
would improve if points were provided with additional features.
In general, adding more features, such as spectral information
and normal information about the points would increase the
network’s performance, as shown in [55]. Fourth, in this article,
each site was split into smaller tiles before being sent into the
network, but this can be avoided in the future with the hardware
development, particularly GPU. If a large scene (e.g., 500 m ×
500 m) can be consumed as a single sample, we may not need to
split the scene into tiles for training. However, we may need to
adjust our network to add layers for local information extraction
with the aid of some local feature extraction methods [55], [99].
Besides, high efficient network structures might be also needed
to further reduce computation resource and time [100]. Fifth,
because massive training data is needed to train a deep learning
network, we acknowledge the generalization of the method is
worse than heuristic methods. The needed minimum data size
is important for training a deep neural network, but it has not
been analyzed because it is complicatedly determined by both
the network structure and data distribution. We recommend that
the method of using validation set to monitor model training
to explore the minimum sample size. Besides, carrying out
small sample learning and transfer learning is an important
work to improve the transferability of deep learning methods
[101]. Finally, we have found that the accuracy of our method
is reduced when vegetation coverage is small and slope is large.
A quantitative analysis of the influence of these factors may be
needed in the future, which can give more guidance about setting
scanning patterns and flight heights.

VI. CONCLUSION

In this article, we proposed a PFCN for ALS ground point
filtering in forested environments. The method operated on the
point cloud directly and was trained in a multitask learning way
using 37449157 points from 14 sites with various vegetation
and terrain characteristics, and evaluated on six equally diverse
sites (16470083 points). Additionally, the method was compared
with traditional filtering methods. The PFCN showed the best
average performance in terms of T1 (1.10%), Te (1.73%), and Kp
(93.88%), and ranked second in terms of the RMSE of the DTM,
but had the highest T2 (4.5%). Additionally, the filtering method
was on par with or even better than one of the state-of-the-art
point-based deep learning methods (PointNet++). Overall, the
proposed PFCN is an end-to-end method that consumes simple
geometric information and directly outputs the filtered result.
We believe that this multitask method can be widely applied in
ALS ground point filtering tasks.

3972 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

APPENDIX

TABLE IV
ACCURACY OF THE POINT CLASSIFICATION TASK WHEN USING ONLY POINT-WISE, ONLY TILE-WISE, AND POINT-WISE AND TILE-WISE FEATURES. THE BOLD

FONTS INDICATE THE ACCURACY WAS HIGHER WHEN USING POINT-WISE AND TILE-WISE FEATURES THAN USING ONLY POINT-WISE FEATURE OR ONLY

TILE-WISE FEATURE

TABLE V
TILE CLASSIFICATION ACCURACY USING ONLY TILE CLASSIFICATION LOSS AND MULTITASK LOSS. THE BOLD FONTS INDICATE THE ACCURACY WAS HIGHER

WHEN USING MULTITASK LOSS THAN USING ONLY TILE CLASSIFICATION LOSS

TABLE VI
POINT CLASSIFICATION ACCURACY USING ONLY POINT CLASSIFICATION LOSS AND MULTITASK LOSS. THE BOLD FONTS INDICATE THE ACCURACY WAS HIGHER

WHEN USING MULTITASK LOSS THAN USING ONLY POINT CLASSIFICATION LOSS

REFERENCES

[1] X. Meng, N. Currit, and K. Zhao, “Ground filtering algorithms for
airborne LiDAR data: A review of critical issues,” Remote Sens., vol. 2,
no. 3, pp. 833–860, 2010.

[2] W. T. Tinkham et al., “A comparison of two open source LiDAR surface
classification algorithms,” Remote Sens., vol. 3, no. 3, pp. 638–649, 2011.

[3] A. Khosravipour et al., “Generating pit-free canopy height models from
airborne LiDAR,” Photogrammetric Eng. Remote Sens., vol. 80, no. 9,
pp. 863–872, 2014.

[4] J. Shan and C. K. Toth, Topographic Laser Ranging and Scanning:
Principles and Processing. Boca Raton, FL, USA: CRC press, 2018,
pp. 4–8.

[5] P. Gong, Y. Sheng, and G. Biging, “3D model-based tree measurement
from high-resolution aerial imagery,” Photogrammetric Eng. Remote
Sens., vol. 68, no. 11, pp. 1203–1212, 2002.

[6] D. Hoekman, and C. Varekamp, “High resolution single-pass interfer-
ometric radar observation of tropical forest trees,” in Proc. 4th Int.
Workshop Radar Polarimetry, 1998, pp. 517–525.

[7] K. A. Razak et al., “Airborne laser scanning of forested landslides char-
acterization: Terrain model quality and visualization,” Geomorphology,
vol. 126, no. 1–2, pp. 186–200, 2011.

[8] X. Liu, “Airborne LiDAR for DEM generation: some critical issues,”
Prog. Phys. Geog., vol. 32, no. 1, pp. 31–49, 2008.

[9] J. Brasington, D. Vericat, and I. Rychkov, “Modeling river bed mor-
phology, roughness, and surface sedimentology using high resolu-
tion terrestrial laser scanning,” Water Resour. Res., vol. 48, no. 11,
pp. 11519–11536, 2012.

[10] J. Telling et al., “Review of earth science research using terrestrial laser
scanning,” Earth-Sci. Rev., vol. 169, pp. 35–68, 2017.

[11] R. O. Dubayah, and J. B. Drake, “LiDAR remote sensing for forestry,”
J. Forest, vol. 98, no. 6, pp. 44–46, 2000.

[12] J. C. Suárez et al., “Use of airborne LiDAR and aerial photography in
the estimation of individual tree heights in forestry,” Comput. Geosci.,
vol. 31, no. 2, pp. 253–262, 2005.

[13] S. Jin et al., “The transferability of random forest in canopy height
estimation from multi-source remote sensing data,” Remote Sens., vol. 10,
no. 8, pp. 1183–1203, 2018.

[14] X. Guo et al., “Regional mapping of vegetation structure for biodi-
versity monitoring using airborne LiDAR data,” Ecol. Inform., vol. 38,
pp. 50–61, 2017.

[15] T. Hu et al., “A simple and integrated approach for fire severity assessment
using bi-temporal airborne LiDAR data,” Int. J. Appl. Earth Observ.,
vol. 78, pp. 25–38, 2019.

[16] Y. Su et al., “SRTM Dem correction in vegetated mountain areas through
the integration of spaceborne LiDAR, airborne LiDAR, and optical
imagery,” Remote Sens., vol. 7, no. 9, pp. 11202–11225, 2015.

[17] S. Tao et al., “Global patterns and determinants of forest canopy height,”
Ecology, vol. 97, no. 12, pp. 3265–3270, 2016.

[18] X. Hu and Y. Yuan, “Deep-Learning-Based classification for DTM Ex-
traction from ALS point cloud,” Remote Sens., vol. 8, no. 9, pp. 730–745,
2016.

[19] X. Zhao et al., “Improved progressive TIN densification filtering algo-
rithm for airborne LiDAR data in forested areas,” ISPRS J. Photogram-
metric, vol. 117, pp. 7–91, 2016.

JIN et al.: PFCN FOR AIRBORNE LiDAR GROUND POINT FILTERING IN FORESTED ENVIRONMENTS 3973

[20] G. Vosselman, “Slope based filtering of laser altimetry data,” Int. Arch.
Photogrammetry Remote Sens., vol. 33, , 2000, Art. no. 935942.

[21] G. Sithole and G. Vosselman, “Filtering of laser altimetry data using a
slope adaptive filter,” Int. Arch. Photogrammetry Remote Sens. Spatial
Inf. Sci., vol. 34, pp. 203–210, 2001.

[22] J. Susaki, “Adaptive slope filtering of airborne LiDAR data in urban areas
for digital terrain model (DTM) generation,” Remote Sens., vol. 4, no. 6,
pp. 1804–1819, 2012.

[23] X. Meng et al., “A multi-directional ground filtering algorithm for
airborne LiDAR,” ISPRS J. Photogrammetry, vol. 64, no. 1, pp. 117–124,
2009.

[24] G. Sithole and G. Vosselman, “Experimental comparison of filter al-
gorithms for bare-Earth extraction from airborne laser scanning point
clouds,” ISPRS J. Photogrammetry, vol. 59, no. 1–2, pp. 85–101, 2004.

[25] Q. Chen et al., “Filtering airborne laser scanning data with morpho-
logical methods,” Photogrammetric Eng. Remote Sens., vol. 73, no. 2,
pp. 175–185, 2007.

[26] K. Zhang et al., “A progressive morphological filter for removing non-
ground measurements from airborne LiDAR data,” IEEE Trans. Geosci.
Remote, vol. 41, no. 4, pp. 872–882, Apr. 2003.

[27] T. J. Pingel, K. C. Clarke, and W. A. McBride, “An improved simple
morphological filter for the terrain classification of airborne LiDAR data,”
ISPRS J. Photogrammetry, vol. 77, pp. 21–30, 2013.

[28] Y. Li et al., “An Improved top-hat filter with sloped brim for extracting
ground points from airborne LiDAR point clouds,” Remote Sens., vol. 6,
no. 12, pp. 12885–12908, 2014.

[29] Z. Hui et al., “An improved morphological algorithm for filtering airborne
LiDAR point cloud based on multi-level Kriging interpolation,” Remote
Sens., vol. 8, no. 1, pp. 35–50, 2016.

[30] H. Arefi, and M. Hahn, “A morphological reconstruction algorithm for
separating off-terrain points from terrain points in laser scanning data,”
Int. Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. 36, no.
3/W19, pp. 120–125, 2005.

[31] K. Kraus and N. Pfeifer, “Determination of terrain models in wooded ar-
eas with airborne laser scanner data,” ISPRS J. Photogrammetry, vol. 53,
no. 4, pp. 193–203, 1998.

[32] C. Chen et al., “A fast and robust interpolation filter for airborne LiDAR
point clouds,” PloS One, vol. 12, no. 5, 2017, Art no. e0176954.

[33] D. Mongus and B. Žalik, “Parameter-free ground filtering of LiDAR
data for automatic DTM generation,” ISPRS J. Photogrammetry, vol. 67,
pp. 1–12, 2012.

[34] X. Shi et al., “A parameter-free progressive TIN densification filtering
algorithm for LiDAR point clouds,” Int. J. Remote Sens., vol. 39, no. 20,
pp. 6969–6982, 2018.

[35] X. Lin and J. Zhang, “Segmentation-based filtering of airborne LiDAR
point clouds by progressive densification of terrain segments,” Remote
Sens., vol. 6, no. 2, pp. 1294–1326, 2014.

[36] G. Sithole and G. Vosselman, “Filtering of airborne laser scanner data
based on segmented point clouds,” Int. Arch. Photogrammetry, Remote
Sens. Spatial Inf. Sci., vol. 36, pp. 66–71, 2005.

[37] B. Yunfei et al., “Classification of LiDAR point cloud and generation
of DTM from LiDAR height and intensity data in forested area,” Int.
Arch. Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. 37, no. 7,
pp. 313–318, 2008.

[38] Q. Guo et al., “Effects of topographic variability and LiDAR sampling
density on several dem interpolation methods,” Photogrammetric Eng.
Remote Sens., vol. 76, no. 6, pp. 701–712, 2010.

[39] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[40] L. Ma et al., “Deep learning in remote sensing applications: A meta-
analysis and review,” ISPRS J. Photogrammetry, vol. 152, pp. 166–177,
2019.

[41] J. E. Ball, D. T. Anderson, and C. S. Chan, “Comprehensive survey of
deep learning in remote sensing: theories, tools, and challenges for the
community,” J. Appl. Remote Sens., vol. 11, no. 4, 2017, Art. no. 042609.

[42] X. X. Zhu et al., “Deep Learning in Remote Sensing: A comprehensive
review and list of resources,” IEEE Geosci. Remote Sens. Mag, vol. 5,
no. 4, pp. 8–36, Dec. 2017.

[43] S. Jin et al., “Deep Learning: Individual maize segmentation from terres-
trial LiDAR data using Faster R-CNN and regional growth algorithms,”
Front Plant Sci., vol. 9, pp. 866–875, 2018.

[44] H. Su et al., “Multi-view convolutional neural networks for 3d shape
recognition,” in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 945–953.

[45] D. Maturana and S. Scherer, “Voxnet: A 3D convolutional neural network
for real-time object recognition,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2015, pp. 922–928.

[46] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in Proc.
4th Int. Conf. 3D Vis., 2016, pp. 565–571.

[47] P.-S. Wang et al., “O-CNN: Octree-based convolutional neural networks
for 3D Shape analysis,” ACM T Grap., vol. 36, no. 4, pp. 1–11, 2017.

[48] G. Riegler, A. O. Ulusoys, and A. Geiger, “OctNet: Learning deep 3D
representations at high resolutions,” in Proc. IEEE Conf. Comput. Vision
Pattern Recogn., 2017, pp. 3577–3586.

[49] R. Klokov and V. Lempitsky, “Escape from cells: Deep kd-networks
for the recognition of 3d point cloud models,” in Proc. IEEE Int. Conf.
Comput. Vis., 2017, pp. 863–872.

[50] C. R. Qi et al., “PointNet++: Deep hierarchical feature learning on
point sets in a metric space,” in Adv. Neural Inf. Process. Systs., 2017,
pp. 5099–5108.

[51] C. R. Qi et al., “PointNet: Deep learning on point sets for 3D classification
and segmentation,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn.,
2017, pp. 652–660.

[52] L. Landrieu, and M. Simonovsky, “Large-scale point cloud semantic
segmentation with superpoint graphs,” in Proc. IEEE Conf. Comput.
Vision Pattern Recogn., 2018, pp. 4558–4567.

[53] Y. Wang et al., “Dynamic graph CNN for learning on point clouds,” ACM
T Grap., vol. 38, no. 5, pp. 1–12, 2019.

[54] S. Schmohl and U. Sörgel, “Submanifold sparse convolutional networks
for semantic segmentation of large-scale ALS point clouds,” ISPRS Ann.
Photogrammetry, Remote Sens. Spatial Inf. Sci., vol. 4, pp. 1–8, 2019.

[55] M. Yousefhussien et al., “A multi-scale fully convolutional network
for semantic labeling of 3D point clouds,” ISPRS J. Photogrammetry,
vol. 143, pp. 191–204, 2018.

[56] D. Griffiths and J. Boehm, “A review on deep learning techniques for 3D
sensed data classification,” Remote Sens., vol. 11, no. 12, pp. 1499–1526,
2019.

[57] A. Boulch, “Generalizing discrete convolutions for unstructured point
clouds,” in 3DOR, 2019, pp. 71–78.

[58] L. Winiwarter et al., “Classification of ALS point clouds using end-to-end
deep learning,” PFG–J. Photogrammetry, Remote Sens. Geoinformation
Sci., vol. 87, no. 3, pp. 75–90, 2019.

[59] M. Simonovsky and N. Komodakis, “Dynamic edge-conditioned filters in
convolutional neural networks on graphs,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2017, pp. 3693–3702.

[60] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” 2014, arXiv:1406.1078.

[61] N. Chehata, L. Guo, and C. Mallet, “Airborne LiDAR feature selection for
urban classification using random forests,” Int. Arch. Photogrammetry,
Remote Sens. Spatial Inf. Sci., vol. 38, pp. 207–212, 2009.

[62] Z. Yang et al., “A convolutional neural network-based 3D semantic
labeling method for ALS point clouds,” Remote Sens., vol. 9, no. 9,
pp. 936–952, 2017.

[63] S. Ruder, “An overview of multi-task learning in deep neural networks,”
2017, arXiv:1706.05098.

[64] X. Wang et al., “Associatively segmenting instances and semantics in
point clouds,” in Proc. IEEE Conf. Comput. Vision Pattern Recogn., 2019,
pp. 4096–4105.

[65] K. Xu et al., “Residual blocks PointNet: A novel faster PointNet frame-
work for segmentation and estimated pose,” in Proc. 5th IEEE Int. Conf.
Cloud Comput. Intell. Syst., 2019, pp. 446–450.

[66] K. He et al., “Deep residual learning for image recognition,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770–778.

[67] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3431–3440.

[68] T.-Y. Lin et al., “Focal loss for dense object detection,” 2017,
arXiv:1708.02002.

[69] M. Jaderberg, K. Simonyan, and A. Zisserman, “Spatial transformer
networks,” in Proc. Adv. Neural Inf. Process. Syst., 2015, pp. 2017–2025.

[70] D. W. Ruck et al., “The multilayer perceptron as an approximation to a
Bayes optimal discriminant function,” IEEE Trans. Neural Netw., vol. 1,
no. 4, pp. 296–298, Dec. 1990.

[71] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating
deep network training by reducing internal covariate shift,” 2015,
arXiv:1502.03167.

[72] P. Golik, P. Doetsch, and H. Ney, “Cross-entropy vs. squared error
training: A theoretical and experimental comparison, ” in Proc. 14th
Annu. Conf. Int. Speech Commun. Assoc., 2013, pp. 1756–1760.

[73] M. L. Clark, D. B. Clark, and D. A. Roberts, “Small-footprint LiDAR
estimation of sub-canopy elevation and tree height in a tropical rain forest
landscape,” Remote Sens. Environ., vol. 91, no. 1, pp. 68–89, 2004.

3974 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 13, 2020

[74] R. M. Lucas et al., “Empirical relationships between AIRSAR backscatter
and LiDAR-derived forest biomass,” Remote Sens. Environ., vol. 100, no.
3, pp. 407–425, 2006.

[75] W. Li et al., “A new method for segmenting individual trees from the
LiDAR point cloud,” Photogrammetic Eng. Remote Sens., vol. 78, no. 1,
pp. 75–84, 2012.

[76] M. E. Hodgson, and P. Bresnahan, “Accuracy of airborne LiDAR-
derived elevation,” Photogrammetric Eng. Remote Sens,, vol. 70, no. 3,
pp. 331–339, 2004.

[77] C. Waldhauser et al., “Automated classification of airborne laser scan-
ning point clouds,” in Solving Computationally Expensive Engineering
Problems, New York, NY, USA: Springer, 2014, pp. 269–292.

[78] X. Zhao et al., “A Comparison of LiDAR filtering algorithms in vegetated
mountain areas,” Can. J. Remote Sens., vol. 44, pp. 1–12, 2018.

[79] A. Paszke et al., “PyTorch: Tensors and dynamic neural networks in
Python with strong GPU acceleration,”2017. [Online]. Avialable: https:
//github. com/pytorch/pytorch

[80] D. P. Kingma, and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[81] G. Sithole and G. Vosselman, “Comparison of filtering algorithms,” in
Proc. ISPRS Work. Group III/3 Workshop, 2003, pp. 71–78.

[82] J. Cohen, “A coefficient of agreement for nominal scales,” Educ. Psy-
cholog.Meas., vol. 20, no. 1, pp. 37–46, 1960.

[83] J. S. Evans and A. T. Hudak, “A multiscale curvature algorithm for
classifying discrete return LiDAR in forested environments,” IEEE Trans.
Geosci. Remote, vol. 45, no. 4, pp. 1029–1038, Apr. 2007.

[84] P. Axelsson, “DEM generation from laser scanner data using adaptive
TIN models,” Int. Arch. Photogrammetry Remote Sens., vol. 33, no. 4,
pp. 110–117, 2000.

[85] J. Zhang and X. Lin, “Filtering airborne LiDAR data by embedding
smoothness-constrained segmentation in progressive TIN densification,”
ISPRS J. Photogrammetry, vol. 81, pp. 44–59, 2013.

[86] Y. Li et al., “A gradient-constrained morphological filtering algorithm
for airborne LiDAR,” Opt Laser Technol., vol. 54, pp. 288–296, 2013.

[87] A. L. Montealegre, M. T. Lamelas, and J. d. l. Riva, “A comparison
of open-source LiDAR filtering algorithms in a mediterranean forest
environment,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 8, no. 8, pp. 4072–4085, Aug. 2015.

[88] R. J. McGaughey, “FUSION/LDV: Software for LiDAR data analysis
and visualization,” US Dept. Agr., Forest Service, Pac. Northwest Res.
Station, Seattle, WA, USA, 2009.

[89] J. Schlüter and T. Grill, “Exploring data augmentation for improved
singing voice detection with neural networks,” in Proc. 16th Int. Soc.
Music Inf. Retrieval Conf., 2015, pp. 121–126.

[90] H. Keselman and J. C. Rogan, “The Tukey multiple comparison test:
1953–1976,” Psycholog. Bull., vol. 84, no. 5, p. 1–1050, 1977.

[91] K. Zhang and D. Whitman, “Comparison of three algorithms for filtering
airborne LiDAR data,” Photogrammetric Eng. Remote Sens., vol. 71, no.
3, pp. 313–324, 2005.

[92] A. Rizaldy et al., “Fully convolutional networks for ground classification
from LiDAR point clouds,” ISPRS Ann. Photogrammetry, Remote Sens.
Spatial Inf. Sci., vol. 4, no. 2, pp. 231–238, 2018.

[93] L. Cheng et al., “Semi-Automatic registration of airborne and terrestrial
laser scanning data using building corner matching with boundaries as
reliability check,” Remote Sens., vol. 5, no. 12, pp. 6260–6283, 2013.

[94] B. Pradhan, Laser Scanning Applications in Landslide Assessment.
Berlin, Germany: Springer, 2017, pp. 87–88.

[95] Q.-H. Pham et al., “JSIS3D: Joint semantic-instance segmentation of
3D point clouds with multi-task pointwise networks and multi-value
conditional random fields,” in Proc. IEEE Conf. Comput. Vision Pattern
Recogn., 2019, pp. 8827–8836.

[96] S. Jin et al., “Separating the structural components of maize for field
phenotyping using terrestrial lidar data and deep convolutional neural net-
works,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 2, pp. 2644–2658,
Apr. 2020.

[97] F. Liu et al., “3DCNN-DQN-RNN: A deep reinforcement learning frame-
work for semantic parsing of large-scale 3D point clouds,” in Proc. IEEE
Int. Conf. Comput. Vis., 2017, pp. 5678–5687.

[98] Z. Liang, M. Yang, and C. Wang, “3D Graph embedding learning
with a structure-aware loss function for point cloud semantic instance
segmentation,” 2019, arXiv:1902.05247.

[99] C.-H. Lin et al., “Eigen-feature analysis of weighted covariance matrices
for LiDAR point cloud classification,” ISPRS J. Photogrammetry Remote
Sens., vol. 94, pp. 70–79, 2014.

[100] Z. Liu et al., “Point-Voxel CNN for Efficient 3D Deep Learning,” in Proc.
Adv. Neural Inf. Process. Syst., 2019, pp. 963–973.

[101] Z. Cai, H. Ma, and L. Zhang, “Model transfer-based filtering for airborne
LiDAR data with emphasis on active learning optimization,” Remote
Sens. Letters, vol. 9, no. 2, pp. 111–120, 2018.

Shichao Jin received the B.S. degree in forestry from
Huazhong Agricultural University, Wuhan, China, in
2016, and the Ph.D. degree in ecology from Institute
of Botany, Chinese Academy of Sciences, Beijing,
China, in 2020.

He is currently an Associate Professor with Plant
Phenomics Research Center, Nanjing Agricultural
University, Nanjing, China. His research focuses on
using deep learning and LiDAR technology to solve
phenotyping related challenges.

Yanjun Su received the B.E. degree in surveying
and mapping engineering from China University of
Geosciences, Beijing, China, in 2009, the M.S. degree
in geographic information science from the Insti-
tute of Geographic Sciences and Natural Resources
Research, Chinese Academy of Sciences, Beijing,
China, in 2012, and the Ph.D. degree in environmental
systems from the University of California at Merced,
Merced, CA, USA, in 2017.

He is currently an Associate Professor with the
Institute of Botany, Chinese Academy of Sciences,

Beijing, China. His research interests include applying geographic information
science and remote sensing to understand the influence of anthropogenic ac-
tivities and global climate change on terrestrial ecosystems, with a particular
emphasis on the terrestrial carbon cycle, terrestrial biodiversity, energy balance
and land-use/land-cover change.

Xiaoqian Zhao received the B.S. degree in geo-
graphic information System from Lanzhou Jiaotong
University, Lanzhou, China, in 2009, the M.S. degree
in cartography and geographical information system
from Wuhan University, Wuhan, China, in 2011, and
the Ph.D. degree in ecology from Institute of Botany,
Chinese Academy of Sciences, Beijing, China, in
2017.

She is currently an Engineer with the Institute
of Botany, Chinese Academy of Sciences, Beijing,
China. Her research interests include biodiversity in-

formatics and biodiversity studies based on remote sensing.

Tianyu Hu received the B.S. degree in ecology
from China Agriculture University, Beijing, China,
in 2008, and the Ph.D. degree with the Institute
of Botany, Chinese Academy of Sciences, Beijing,
China, in 2014.

He is currently an Assistant Professor with the
Institute of Botany, Chinese Academy of Sciences,
Beijing, China. His research interests include using
LiDAR technology and dynamic vegetation model
to understand forest ecosystem, especially in forest
structure, function and biodiversity.

Qinghua Guo received the B.S. degree in environ-
mental science and the M.S. degree in remote sens-
ing and geographic information system (GIS) from
Peking University, Beijing, China, in 1996 and 1999,
respectively, and the Ph.D. degree in environmental
science from the University of California, Berkeley,
CA, USA, in 2005.

He is currently a Professor with the Institute
of Botany, Chinese Academy of Sciences, Beijing,
China. He is also an Adjunct Professor and a member
of the founding faculty with the School of Engineer-

ing, University of California at Merced, Merced, CA, USA. His research interests
include GIS and remote sensing algorithm development and their environmental
applications, such as object-based image analysis, geographic one-class data
analysis, and LiDAR data processing.

https://github. ignorespaces com/pytorch/pytorch

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

