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A Novel Cubic Convolutional Neural Network for
Hyperspectral Image Classification
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Abstract—Recently, the hyperspectral image (HSI) classification
methods based on convolutional neural networks (CNN) have de-
veloped rapidly with the advance of deep learning (DL) techniques.
In order to more efficiently extract spatial and spectral features,
we propose an end-to-end cubic CNN (Cubic-CNN) in this article.
The proposed Cubic-CNN is a supervised DL framework that
significantly improves classification accuracy and shortens training
time. Specifically, Cubic-CNN employs the dimension reduction
method combined with principal component analysis and 1-D
convolution to remove redundant information from HSIs. Then,
convolutions are performed on the planes in different directions of
the feature cube data to fully extract spatial and spatial–spectral
features and fuse the features from different dimensions. In addi-
tion, we performed batch normalization on the data cube after each
convolutional layer to improve the performance of the network.
Extensive experiments and analysis on standard datasets show that
the proposed algorithm can outperform the existing state-of-the-art
DL-based methods.

Index Terms—Cubic convolutional neural network (Cubic-
CNN), dimensionality reduction, hyperspectral image (HSI)
classification, spatial–spectral features.

I. INTRODUCTION

W ITH the rapid development of remote sensor technol-
ogy, hyperspectral image (HSI) acquisition has become

easier, and HSI analysis is now one of the most promising
technologies for many practical applications [1]–[3]. HSIs are
obtained by high-altitude hyperspectral imaging spectrometers
that collect spectral data of different bands reflected by various
substances on the ground [4], [5]. In contrast to traditional
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remote sensing technology, HSIs have hundreds of bands and
so each pixel can contain more spectral information. At the
same time, the continuous improvement of HSI spaces and
spectral resolution promotes the development of hyperspectral
applications [6].

The classification of HSIs has been one of the hot topics in
the field of signal processing [7]–[11]. In the last decades, many
methods based on traditional machine learning [14], [15] have
been proposed for hyperspectral classification. For instance,
the k-nearest neighbor method [16] uses Euclidean distance
to calculate the similarity between training samples and test
samples to classify HSIs. Camps-Valls et al. [17] proposed
the hybrid kernel support vector machine (SVM) method to
transform spatial and spectral information into different kernel
spaces to fuse their features. The Markov random field method
[18] can be used in HSI classification problems through cor-
relation modeling of adjacent pixels in the spatial domain of
the image. Sparse representation-based classification [19] using
dictionary learning to construct sparse vectors for target pixels
has also proved effective. The graph-based semisupervised HSI
classification method is another research hotspot. Camps-Valls
et al. [20] proposed a graph-based method to establish a graph
relationship between labeled and unlabeled samples. Daniel
et al. [21] proposed an improved semisupervised classification
algorithm based on neighborhood graphs to solve the problem
that the original algorithm could not measure nonlinear relation-
ships between samples when Euclidean distance was used in the
measurement process.

However, these methods only excavate the shallow features
of HSIs and do not fully capture the deep information. Deep
learning (DL) is widely used to learn image features in deep
layers and improve HSI classification accuracy [22]. The struc-
ture of DL is generally realized through additional layers. Due
to its hierarchical and distributed ability to represent features
[23], [24], DL can strongly extract global features that represent
context information. Therefore, due to its strong learning abil-
ity and feature expression, DL has great potential for image
classification and target detection [25]. In [26], Chen et al.
proposed an autoencoder network (SAE) to automatically learn
the deep features of HSIs and then use the acquired features for
classification. The autoencoder has many parameters and so it
requires many labeled training samples. The autoencoder results
are unsatisfactory when there are too few labeled samples. As
a mainstream DL framework, the convolutional neural network
(CNN) has proved to be effective in learning the abstract features
of HSIs through a series of hidden layers. Hu et al. [27] used
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classical CNN to complete HSI classification by extracting
spectral features. Chen et al. [28] constructed a framework
that includes a principal component analysis (PCA) logistic
regression. Alipourfard et al. [29] proposed a framework that
combines the CNN structure and subspace reduction methods,
extracts features by training samples, and designs an optimized
network. Yue et al. [30] proposed a feature map generation
algorithm to generate spectral and spatial feature maps and
then train the classifier to obtain useful high-level features.
A framework [31] proposed by Chen et al. uses basic CNN
operations to make multiple combinations to find the best clas-
sification model. Xu et al. [32] proposed a band-grouping-based
long short-term memory (LSTM) model and a multiscale CNN
for extracting spectral and spatial features. Gong et al. [33]
proposed a multiscale convolution and diversified metric CNN
that can obtain discriminative features for HSI classification. The
method proposed by Zhang et al. [34] uses various region-based
inputs to learn contextual interaction features and inputs the
joint features into the full connection layers. Mei et al. [35] con-
structed a network to extract spatial and spectral fusion features
for classification in both supervised and unsupervised modes.
Recently, Zhong et al. [36] used spatial and spectral residual
blocks to capture rich spectral information and spatial contexts
in HSIs.

Even though these methods provide good results for HSI
classification, it is still a big challenge to obtain more accurate
spatial and spectral information. To overcome the challenge, two
aspects may be considered: dimension reduction and deep fea-
ture extraction. First, dimensionality reduction can significantly
reduce the training time of the network. In addition, effective
dimensionality reduction methods can improve the accuracy
of the final classification. Second, as the network continues to
deepen, multiscale and multilayer networks may not achieve
the best performance [37], [38], so it is necessary to design
a network with limited branches and layers that extracts more
effective spatial and spectral information [39]–[41].

To achieve the goal, in this article, we propose a supervised
cubic CNN (Cubic-CNN) that takes into account the data redun-
dancy and spatial–spectral integration of HSIs. The architecture
of our network is divided into two main parts: data dimen-
sion reduction and cubic convolution. First, PCA combined
with 1D convolution is used for data dimension reduction. A
comparison analysis reveals that these two techniques have a
complementary relationship to achieve better performance in
combination. Second, cubic convolution is performed on the
cube data after dimension reduction. Unlike the 3D convolution,
cubic convolution operates on cube data from the nonparallel
planes. We employ this convolution to effectively extract spatial
context information and spectral–spatial information.

In summary, this article aims to discuss the generalization
of the proposed Cubic-CNN under the conditions of irregular
ground object distribution. The main contributions of this article
are described as follows.

1) A joint global and local-dimension reduction strategy is
proposed for extracting more accurate spatial–spectral
information. Specifically, PCA extracts the global spectral
features and 1D convolution extracts the local spectral

features. The strategy of combining the two techniques
effectively retains features with stronger characterization
ability. Meanwhile, it can save the computational cost of
subsequent processing.

2) The cubic convolution proposed in this article extracts
deep spatial and spectral information. Three sets of feature
maps are generated by convolution from each side of the
data cube, respectively. By characterizing the features in
three different sides of the cube, it is more flexible for each
branch of the network to update the parameters.

3) Cubic convolution has a smaller convolution kernel than
the well-known 3D-CNN. Moreover, with the adoption
of the dimension reduction strategy, the training speed of
Cubic-CNN is faster than most 3D-CNN architectures.

4) The proposed Cubic-CNN has been proved to deliver good
experimental results on four common standard datasets.

The rest of the article is divided into the following sections:
Section II introduces the CNN framework and describes it in
detail, Section III describes our experiments and analysis using
four well-known HSI datasets, and Section IV presents our
conclusions about Cubic-CNN.

II. PROPOSED METHOD

CNN is a kind of neural network with a special structure
inspired by biological research. Neurons in the visual cortex
respond to stimuli from neurons in a small area called the
receptive field which exists due to the strong local correlation in
the image. Inspired by this structure, we propose the Cubic-CNN
for HSI classification. The architecture of Cubic-CNN consists
of two parts: dimension reduction and cubic convolution.

The flow chart of HSI classification based on Cubic-CNN
is illustrated in Fig. 1. Suppose there are N labeled pixels
{x1, x2, . . . , xN} ∈ R1×1×b contained in the HSI dataset X
and Y = {y1, y2, . . . , yN} ∈ R1×1×C is a set of one-hot vectors
representing the labels of corresponding pixels, where b and
C represent the number of HSI channels and pixel categories,
respectively. In this network, all tagged data are divided into
three groups: the training group, the validation group, and the
testing group. The pixel-centric data cube in X form a new
data group G = {g1, g2, . . . , gN} ∈ Rw×w×b, where w is the
spatial size of the patch centered at the target pixel. We randomly
divided G into a training set G1, a validation set G2, and a test
set G3. Their corresponding label sets are Y 1, Y 2, and Y 3. For
example, the size of the cube data input from a pixel in the image
of the Indian Pines is 9× 9× 200. Therefore, the Cubic-CNN
continuously updates the parameters throughout the training
process until an accurate prediction Ŷ 2 is obtained compared
to Y 2 on G2 [42], [43].

DL can capture the details of real data and achieve the best
balance between discernibility and robustness. In order to fully
demonstrate the advantages of the CNN, we adopt a 3D convolu-
tional layer for feature capture, and a batch normalization (BN)
layer is added after the convolutional layer [44]. BN normalizes
the data after convolution, eliminating the effect of zoom in and
zoom out caused by w, and solving the problem of gradient
disappearance and explosion. As shown in Fig. 2, suppose the
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Fig. 1. Flowchart of supervised HSI classification based on Cubic-CNN.

Fig. 2. 3-D convolution.

size of the input nk−1 feature cubes of the kth 3D convolutional
layer is wk−1 × wk−1 × dk−1, the kth convolutional layer has
nk 3D convolutional kernels of size ak × ak ×mk and the
stride is (sk1 , s

k
1 , s

k
2), then the output of the kth convolutional

layer is nk feature cubes of size wk × wk × bk, where the fea-
ture map width is wk = �1 + (wk−1 − ak)/sk1� and the feature
map depth is dk = �1 + (dk−1 −mk)/sk2�. Therefore, the ith
output of the kth 3D convolutional layer can be formulated
as

Xk
i =

nk∑
j=1

Xk−1
j ∗W k

i + bki (1)

where ∗ is the 3D convolutional operation, W k
i and bki denote

the weight and bias of ith convolutional kernel in nk kernels,
respectively. The output of BN and the activation function can
be formulated as follows:

X̂k = f

(
Xk − E

(
Xk
)

Var (Xk)

)
(2)

where E(·) and Var(·) denote the functions of expectation
and variance, respectively. f(·) denotes the nonlinear activa-
tion function. In the network, we use two activation func-
tions, ReLU and Softmax, which are expressed by (3) and (4),
respectively

f (x) = max (0, x) (3)

yj =
exi∑D
i=1 e

xi

. (4)

TABLE I
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES FOR INDIAN PINES

In (4), the input has a total of D dimensions and xi is the ith
dimension of the input. The output has C dimensions, and yj is
the jth output, where 1 ≤ j ≤ C.

A. Dimension Reduction

It is well known that HSIs have many bands and have strong
correlations between channels. This causes channel-to-channel
information redundancy in the spectral dimension. Therefore,
the dimension reduction of HSIs has become a key issue that
cannot be ignored. Effective dimension reduction not only re-
moves noise in the dataset but also reduces the time and space
complexity of network training and saves the cost of extracting
features [45]. Therefore, we combine PCA and 1D convolution
to reduce the dimensionality of HSIs. The dimension reduction
strategy is shown in Fig. 3.

PCA is the most commonly used multivariate statistical tech-
nique. It has two main functions: dimension reduction and
feature extraction [46]. PCA uses a mathematical orthogonal
transformation to analyze data. Linearly related variables in the
data are converted into unrelated variables. The components
are ordered according to the variance of all variables, from the
highest to the lowest. Therefore, it can be regarded as a method
to extract the features from the global channels. Meanwhile, in
the network, we also use 3D convolutional kernels with the size
of 1× 1× d to reduce the dimension from the local channels.
As there is no calculation between adjacent pixels, the essence
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Fig. 3. Dimension reduction combined with 1D convolution and PCA.

Fig. 4. Illustration of cubic convolution that convolves the data cube in three unique directions.

Fig. 5. Detailed structural diagram of Cubic-CNN.
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Fig. 6. (a) Pseudocolor image of Indian Pines dataset. (b) Ground-truth
classification map of Indian Pines dataset.

Fig. 7. (a) Pseudocolor image of the University of Pavia dataset. (b) Ground-
truth classification map of the University of Pavia dataset.

TABLE II
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES FOR

UNIVERSITY OF PAVIA

of this operation is 1D convolution in the spectral domain. Con-
sidering that the neural network has the mechanisms of gradient
descent and backpropagation, using 1D convolution to reduce
the dimension can fully explore the correlation information
between channels in HSIs. Both PCA and 1D convolution can
be used for dimension reduction, and they are complementary
in function. The principal features extracted from PCA are
decorrelated, which means that the data after PCA does not
have the characteristics of channel relevance. In contrast, the
features extracted by 1D convolution using linear summation
have channel correlation.

Fig. 8. (a) Pseudocolor image of Salinas dataset. (b) Ground-truth classifica-
tion map of the Salinas dataset.

B. Cubic Convolution

Since the spatial and spectral data of HSIs contain a lot of in-
formation, using them simultaneously can improve classification
results. In view of this, we chose to perform the convolutional
operation on cube data from the three nonparallel planes. The
size of the convolution kernel is n× n× 1. Although this is a
3D convolutional kernel, it is actually a 2D convolution because
the data between the channels are not calculated together. As
shown in Fig. 4, among the three branches, the calculation of
the convolution in the spatial domain involves no spectral di-
mension, and so the first branch only extracts the characteristics
of the spatial domain. The second and third branches perform
convolution operations on nonparallel sides of the data cube [47].
The convolution plane is composed of the spectral dimension
and one side of the spatial domain. After features are extracted
from the convolution plane, locally connected features in the
spatial and spectral directions can be extracted simultaneously.
After convolution on each plane, the feature cubes can be spliced
together by dimensional transformation as the input of the next
layer [48] .

The convolution operations on three nonparallel planes are
performed in order to achieve real 3D convolution. Compared
with 3D convolution, cubic convolution has the following
advantages.

1) Cubic convolution captures spatial features and spatial–
spectral features separately, while 3D convolution mixes
all spatial-spectral features.

2) After 3D convolution, a data cube is generated, but cubic
convolution generates three data cubes. Different mixed
spatial and spectral features are saved in each of these
data cubes. Moreover, cubic convolution is more flexible
for updating parameters and has a greater capability to
represent information than the 3D convolution.

3) Compared with the commonly used 3D convolution kernel
with a size of 3 ∗ 3 ∗ L (for example, the 3D convolution
kernel used by S S R N is 3 ∗ 3 ∗ 128), the 3 ∗ 3
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TABLE III
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES FOR SALINAS

Fig. 9. (a) Pseudocolor image of Botswana dataset. (b) Ground-truth classifi-
cation map of the Botswana dataset.

∗ 1 convolution kernel we used is smaller in the cubic
convolution, which makes our network training faster.
[49].

C. Cubic-CNN Structure

The detailed structure of the Cubic-CNN proposed is shown
in Fig. 5. Cubic-CNN has a dimension reduction process, a cubic
convolution process, an average pooling layer, a dropout layer,
and a full connection layer. Cubic-CNN is a dual input network
with original data and PCA data as input. We take an original
data cube with an input size of 9× 9× b and a PCA data cube
with an input size of 9× 9× 20 as an example to illustrate
Cubic-CNN. In the convolutional dimension reduction process,
for the first convolution layer, the kernel size is 1× 1× 5,
the kernel number is 24, the stride is (1, 1, 2). For the next
convolution operations, the kernel size is 1× 1× 7, the kernel

TABLE IV
NUMBER OF TRAINING SAMPLES AND TESTING SAMPLES FOR BOTSWANA

TABLE V
OVERALL ACCURACY (%) FOR INPUT PATCHES WITH DIFFERENT SPATIAL

SIZES FOR THREE DATA SETS

number is 12, the stride is (1, 1, 1). The last convolution layer
with 50 kernels of 1× 1× b and a stride of (1, 1, 1) convolves
the data cubes. Then 50 feature maps of 9× 9× 1 are generated.
The size of these feature maps is changed to 9× 9× 50 by
dimensional transformation. We splice the data after PCA and
the feature maps after 1D convolution into a feature map of
the size of 9× 9× 70 as the final dimension reduction result.
In the cubic convolution section, for the convolution operation
in the spatial domain, the kernel size is 3× 3× 1, the kernel
number is 12, and the stride is (1, 1, 1). For the convolution
operation on each side plane, the kernel size is 3× 3× 1, the
kernel number is 12, and the stride is (1, 1, 1). Then, three sets
of feature cubes are generated with the sizes 12 ∗ 9× 9× 70,
12 ∗ 9× 9× 70, and12 ∗ 9× 9× 70. Feature maps of the size
36 ∗ 9× 9× 70 are generated by combining the data cubes
after dimensional transformation. The input is converted into
36 ∗ 1× 1× 70 vectors by averaging the pooling layer. The
vectors are stretched to one dimension. After passing through
the dropout layer, the vectors are classified in the full connection
layer [50]. In order to obtain a model with good performance, we
use the early stopping mechanism, which stops training process
when the loss of validation set continues to be constant to prevent
overfitting. The details of the HSI classification framework using
Cubic-CNN are shown in Algorithm 1.
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Fig. 10. Overall accuracy histogram of different cubic convolution kernels on
the first three datasets.

Fig. 11. Line chart of the overall accuracy of different search dimensions on
the first three datasets.

Fig. 12. Overall accuracy histogram of different dimension reduction
strategies.

Algorithm 1: Framework of Cubic-CNN for HSI Classifi-
cation.

Input: Input an HSI X with ground-truth Y ; maximum
number of iterations T = 80; learning rate η = 0.0003;
PCA dimension l2 = 20;
1: Obtain the X − pca after PCA preprocessing.
2: Divide X and X − pca into G1, G2and

G3according to the index.
3: // Train the Cubic-CNN model
4: for t = 1 to T do
5: Perform 1D convolution to reduce the dimension of

HSI, then splice it with the PCA processed data
6: Perform cubic convolution on feature maps.
7: Update parameters with RMSProp.
8: If satisfied the early stopping (the loss of G2

continues to be constant):
9: break;

10: end for
11: Test G3 with the trained model.
Output:
1: Ŷ 3and the acc of each class;
2: OA, AA, Kappa.

III. EXPERIMENT AND ANALYSIS

All the experiments are conducted on a desktop with Intel
Core I7-4790K, GeForce 1080Ti GPU, and 24G RAM. We adopt
Python 3.5.1, TensorFlow 1.14, and Keras 2.15 to implement the
program of the proposed Cubic-CNN.

A. Datasets

The proposed Cubic-CNN was evaluated on four common
standard datasets: Indian Pines, University of Pavia, Salinas, and
Botswana. For the first three datasets, we randomly selected 200
samples of each class as the training set and used the remaining
data as the validation set and testing set. For the Botswana
dataset, we randomly selected 20 samples of each class as the
training set and used the remaining data as the validation set
and testing set. The Indian Pines dataset was collected by the
AVIRIS sensor from an experimental field in Indiana, USA, in
1992. It consists of 145× 145 pixels, each pixel has a resolution
of about 20 m, and there are 200 available spectral channels.
Sixteen classes of ground objects were labeled in this data
and eight of the subclasses were discarded using statistical
methods. Fig. 6 shows a spatial pseudocolor map of Indian
Pines with ground object distribution labels. Table I shows
the number of training samples and testing samples in each
category.

The University of Pavia dataset is an HSI collected by
ROSIS sensors in Pavia, Italy, in 2003. Its ground objects
can be divided into nine categories marking 42 776 samples.
There are 610× 340 pixels in this dataset, each pixel has a
resolution of about 1.3 m, and there are 103 spectral channels.
Fig. 7 shows a spatial pseudocolor map of the University of
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TABLE VI
CLASSIFICATION RESULTS WITH CUBIC-CNN AND COMPARED METHODS ON INDIAN PINES DATASET

The bold numbers indicate the highest accuracies of the proposed algorithm among all comparison algorithms.

TABLE VII
CLASSIFICATION RESULTS WITH CUBIC-CNN AND COMPARED METHODS ON UNIVERSITY OF PAVIA DATASET

The bold numbers indicate the highest accuracies of the proposed algorithm among all comparison algorithms.

Pavia with ground object distribution labels. Table II shows
the number of training samples and testing samples in each
category.

The Salinas dataset was also captured by the AVIRIS imaging
spectrometer in the Salinas Valley in California, USA. It has a
spatial resolution of 3.7 m. The original image has 224 spectral
channels, and we used the 204 spectral channels remained after
we eliminated the channels that could not be reflected by water.
The size of the image is 512× 217 and there are 16 available
types with a total of 54 129 pixels. Fig. 8 shows a spatial
pseudocolor map of Salinas with ground object distribution
labels. Table III shows the number of training samples and
testing samples in each category.

The Botswana dataset was derived from the NASA EO-1
satellite obtained at Botswana in 2001. After removing the noise
band, there are 145 bands remained. The size of the image is
1476× 256 and there are 14 available types with a total of 3298
pixels. Fig. 9 shows a spatial pseudocolor map of Botswana with
ground object distribution labels. Table IV shows the number
of training samples and testing samples in each category.

B. Framework Settings

In this article, the three indicators of overall accuracies (OA),
average accuracies (AA), and Kappa are utilized to evaluate
the performance of the algorithm. General speaking, the larger
the values of the three indicators, the better the classification
performance. Let M ∈ RC×C represent the confusion matrix of
classification results, where C is the number of ground object
categories, M(i, j) denotes the number of ith category samples
that have been classified to jth category. OA, AA, and Kappa
can be calculated as follows:

OA = sum(diag(M)/sum(M)) (5)

AA = mean(diag(M)./sum(M, 2)) (6)

Kappa =
OA− (sum(M, 1)sum(M, 2))/sum(M)2

1− (sum(M, 1)sum(M, 2))/sum(M)2
(7)

where diag(·) ∈ RC×1 denotes the vector of diagonal ele-
ments of the matrix, sum(·)denotes the sum of all elements,
sum(·, 1) ∈ R1×C denotes the sum of the elements in each
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TABLE VIII
CLASSIFICATION RESULTS WITH CUBIC-CNN AND COMPARED METHODS ON SALINAS

The bold numbers indicate the highest accuracies of the proposed algorithm among all comparison algorithms.

TABLE IX
CLASSIFICATION RESULTS WITH CUBIC-CNN AND COMPARED METHODS ON BOTSWANA DATASET

The bold numbers indicate the highest accuracies of the proposed algorithm among all comparison algorithms.

column, sum(·, 2) ∈ RC×1denotes the sum of the elements in
each row, mean( · ) denotes the mean of all elements, and ./(·)
denotes the division of element.

Cubic-CNN updates the network parameters with backprop-
agation. The chain rule is employed to introduce intermediate

variables to iteratively calculate the gradient for each layer,
which accelerates the calculation of the gradient. We analyzed
several factors that affect the training process and training
results: learning rate, patch size, number of convolution layer
filters, and dimension of the data cube after dimension reduction.
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Fig. 13. Classification maps of Indian pines obtained by (a) SVM, (b) SSUN, (c) DR-CNN, (d) DPP-MS-CNN, (e) SSRN, (f) SPA-SPA, (g) SPA-SPE, and
(h) Cubic-CNN.

TABLE X
COMPARISON OF TRAINING AND TESTING TIME BETWEEN THE CONTRAST

MODELS AND PROPOSED MODEL ON THE FIRST THREE DATASETS

Since each patch is small, we chose 32 as the batch size. The
RMSProp and category cross-entropy function were used as the
optimizer and loss function of the network, respectively. For each
training process, we used 80 epochs to generate the final model.
Throughout the training process, we preserved the models with
the best classification performance and analyzed their results
[51].

A proper learning rate determines when the objective function
converges to a local minimum in an appropriate time. {0.01,
0.003, 0.001, 0.0003, and 0.0001} is selected as a set of alter-
native learning rates through a grid search, then we trained and
tested each dataset based on these learning rates. According to

the classification results, 0.0003 is the best learning rate for the
first three datasets.

The number of filters in the convolutional layer determines
the ability of the network to characterize features. An improper
number of convolution kernels have a bad effect on classification
accuracy and training time. Therefore, Cubic-CNN uses the
same number of convolution kernels in dimension reduction and
cubic convolution. We experimented with different numbers of
kernels ranging from 3 to 24 in each convolutional layer to find
a general framework. As shown in Fig. 10, when the network
has 12 convolution kernels, the classification result is the best.
And when the network has 24 convolution kernels, it exhibits
equivalent or slightly worse performance.

Appropriate dimensions can reduce data size as much as
possible and make enough information retained at the same
time. The dimension reduction strategy combined the PCA and
1D convolution is used to conduct a grid search for the optimal
dimension in the network. We selected 10, 20, and 30 as the
PCA’s search dimensions, and chose 20, 50, and 80 as the
channel numbers to be searched for 1D convolution. As shown
in Fig. 11, we used {(10, 20), (20, 20), (30, 20), (10, 50) (20,
50), (10, 80), and (20, 80)} as the search list. It can be seen
that the accuracy converged when the dimension reached (20,
50) through several test comparisons based on the dimension
reduction strategy.

In order to verify the effectiveness of dimension reduction,
we carried out ablation experiments. Fig. 12 indicates that the
proposed dimension reduction strategy (PCA+1D Conv) has
higher overall accuracy compared with PCA-only (PCA), 1D
convolution-only (1D Conv), and no dimension reduction (none)
strategies.
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Fig. 14. Classification maps of the University of Pavia obtained by (a) SVM, (b) SSUN, (c) DR-CNN, (d) DPP-MS-CNN, (e) SSRN, (f) SPA-SPA, (g) SPA-SPE,
and (h) Cubic-CNN.

Since ground objects tend to be spatially continuous, adjacent
pixels are likely to belong to the same category. The classifica-
tion accuracy can be enhanced by using spatial information ef-
fectively. We use patches of different spatial sizes to experiment
for Cubic-CNN to determine a proper data cube size. In Table V,
classification accuracy increases with the increased patch size.
When the spatial size of input data reaches a certain value, our
proposed model has strong robustness. So we verify the stability
of our proposed model compared with other methods by using
a 9× 9 size patch.

C. Classification Performance

This section compares the performance of SVM [13], SSUN
[32], DR-CNN [34], DPP-MS-CNN [33], SSRN [36], and our
proposed methods on four datasets. SVM is a classic machine
learning method. SSUN is a DL method based on LSTM.
DR-CNN performs 2D convolution from different regions of

HSI to extract local features and global features. DPP-MS-CNN
is a multiscale framework with a determinantal point process
prior to enhance the diversity of samples. And SSRN uses 3D
convolutional residual blocks to extract features in the spectral
domain and spatial domain successively. Due to the lack of
source code, the results of DR-CNN and DPP-MS-CNN are from
the corresponding references. To verify the effectiveness of the
cubic convolution part of the framework, we also tested a branch
network containing only the spatial domain as the convolution
plane (SPA-SPA) and a branch network containing the other
two nonparallel surfaces as the convolution plane (SPA-SPE).
In order to ensure fairness, we chose 9× 9 as the spatial size of
the input patch. We randomly selected 200 cubes for each class
as training samples for Indian Pines, University of Pavia, and
Salinas.

Tables VI–IX show the classification accuracy for each class
and the OAs, AAs, and Kappas of all algorithms for each of the
four datasets. The SVM results were worse than all DL-based
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Fig. 15. Classification maps of Salinas obtained by (a) SVM, (b) SSUN, (c) DR-CNN, (d) DPP-MS-CNN, (e) SSRN, (f) SPA-SPA, (g) SPA-SPE, and (h)
Cubic-CNN.
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Fig. 16. (a) Line chart of the overall accuracy of different models at different sampling rates for Indian Pines. (b) Line chart of the overall accuracy of different
models at different sampling rates for the University of Pavia. (c) Line chart of the overall accuracy of different models at different sampling rates for Salinas.

Fig. 17. (a) Accuracy and loss function curves of the training and validation sets for Indian Pines. (b) Accuracy and loss function curves of the training and
validation sets for the University of Pavia. (c) Accuracy and loss function curves of the training and validation sets for Salinas.

methods. After we adjusted the sampling rate, the accuracy
of SSUN decreased significantly. The results of SPA-SPA and
SPA-SPE slightly surpassed the contrasting DL methods. For
example, on the Indian Pines and Salinas datasets, the OAs, AAs,
and Kappas of our two branch models were higher than those of
the compared algorithms. The accuracy of SPA-SPE was slightly
higher than that of SPA-SPA, this is because that SPA-SPE can
obtain the joint characteristics of space and spectrum, which is
more beneficial to classification. It also indicates that almost all
indicators of Cubic-CNN surpassed the best algorithms avail-
able. For example, on the University of Pavia dataset, the OA
of Cubic-CNN (99.88%) was 0.32% higher than the optimal
results of SSRN (99.56%) and DR-CNN (99.56%). Furthermore,
Cubic-CNN achieved the highest accuracy for some classes
on the first three datasets. For example, Cubic-CNN achieved
100% accuracy for the corn class and corn-mintill class in the
Indian Pines dataset, the bitumen class in the University of Pavia
dataset, and the stubble class and celery class in the Salinas
dataset. Table IX shows that our performance on the Botswana
dataset is better than the comparison methods.

Figs. 13–15 show pseudocolor images of the classification
results of the optimally trained model on the first three datasets.
The experimental results of SVM and SSUN are not satisfactory
and there is a lot of noise in their classification maps. The
classification maps of the remaining methods on the University
of Pavia dataset have almost no noise. The classification maps
of DR-CNN on the Indian Pines dataset and DPP-MS-CNN
on the Salinas dataset are clearly worse than the results of
SSRN and our proposed models. Moreover, the performance
of the classification maps of SPA-SPA and SPA-SPE on the

first three datasets was extraordinary. The classification map of
Cubic-CNN for the University of Pavia dataset is better than
SPA-SPA and SPA-SPE. On the Salinas dataset, our algorithm
significantly reduced noise in the Vineyard untrained class com-
pared to the other algorithms. In short, Cubic-CNN’s classifica-
tion maps are more accurate and their texture is smoother than
maps produced by the other algorithms tested.

In order to test the dependence of Cubic-CNN on the number
of training samples, we used 50, 100, 150, and 200 patches
of each class as the training set for experiments. We used the
same sampling rate for comparison on DR-CNN, SSRN, SPA-
SPA, and SPA-SPE. Fig. 16 is a line chart of OA for each
method at different sampling rates on the first three datasets.
Most of the curves are relatively concentrated for the Indian
Pines and University of Pavia datasets. As the number of training
samples decreases, the accuracy of DR-CNN decreases most
significantly. The Cubic-CNN curve has clear advantages for the
Salinas dataset. Compared with SSRN, the SPA-SPE curve can
achieve the same or better results. From the sampling numbers of
each interval, the Cubic-CNN curve is essentially at the highest
point.

The time complexity of the training and testing process us-
ing DR-CNN, SSRN, SPA-SPA, SPA-SPE, and Cubic-CNN is
shown in Table X. The DR-CNN training process and test time
are longer due to the large amount of calculation required for
various regional structures. SSRN uses a 3D convolution kernel
of 3× 3× 128 and performs 200 iterations, and so it requires
more training time than the algorithm we propose. This shows
that our cubic convolution can both obtain very good accuracy
and reduce the time complexity during the training process. The
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training time of SPA-SPA is shorter than that of SPA-SPE. This
is because the network structure of SPA-SPE is more compli-
cated. Cubic-CNN can achieve excellent results with lower-time
complexity. The accuracy and loss curves of the training and
validation sets on the Indian Pines, University of Pavia, and
Salinas datasets are shown in Fig. 17. The proposed model
quickly converged for the first three datasets at the beginning of
the training process. The loss curves for the first three datasets do
not have huge fluctuations. The curve converged in 60 iterations.
To ensure more stable accuracy, we used 80 epochs.

IV. CONCLUSION

This article proposed a supervised CNN of deep spatial–
spectral learning for HSI classification. The proposed frame-
work includes both dimension reduction and cubic convolution,
which improves the accuracy of existing algorithms for HSI
classification. The dimension reduction method employs both
PCA and 1D convolution to effectively remove the information
redundancy in the spectrum. Moreover, PCA and 1D convolution
complement each other in preserving the characteristics of the
spectrum and reducing subsequent calculation pressure. Cubic
convolution obtains features in the spatial domain and spatial–
spectral domain of HSIs. Compared to 3D convolution, cubic
convolution makes the network more flexible and the training
process faster. Cubic-CNN obtained better results in less time
for the first three datasets. It is worth mentioning that cubic
convolution provides a new strategy for the analysis of cube data.

By observing the classification maps, we can find that some
noise remains at the edges of the areas that belong to disparate
categories in the image. This is because there are many pixels of
different classes in the patch centered on the pixel to be classified.
Methods of limiting the input patch and optimizing the network
structure still need to be explored. On the other hand, due to
the advent of the big data era, DL may re-emerge with a large
number of labeled samples as the training set. However, HSIs
present the problem of marked pixel scarcity. Our method can
achieve excellent results in 200 training samples of each ground
object, which does not mean that the classification problem
of HSIs has been solved. The results of existing algorithms
at low sampling rates still have upside potential. Our future
research will seek to achieve classification accuracy close to
that of high sampling under low sampling conditions. Moreover,
high-performance implementation of the proposed method will
also be considered [52], [53] to accelerate the convergence speed
for real-time applications.
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