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Multimodal Deep Learning for Heterogeneous
GNSS-R Data Fusion and Ocean

Wind Speed Retrieval
Xiaohan Chu , Jie He, Hongqing Song , Yue Qi, Yueqiang Sun, Weihua Bai, Wei Li, and Qiwu Wu

Abstract—The comprehensiveness of the raw input data and the
effectiveness of feature engineering are two key factors affecting
the performance of machine learning. To improve the data compre-
hensiveness for Global Navigation Satellite System Reflectometry
(GNSS-R) ocean wind speed retrieval, this article introduces a new
input data structure, which is composed of Delay–Doppler maps
(DDM) and all satellite receiver status (SRS) parameters. Then,
to overcome the difficulty of handcrafted feature engineering and
effectively fusion the information of DDM and SRS, we presented
a heterogeneous multimodal deep learning (HMDL) method to
retrieve the wind speed according to the heterogeneity of the input
data. The proposed model is verified by the performance evaluation
of realistic data sets obtained from TDS-1. The new input data
structure improves the prediction accuracy at 13.5% to 30.7%
on mean absolute error (MAE) at 10.6% to 29.5% on the root
mean square error (RMSE). The HMDL improves the prediction
accuracy at 7.7% on MAE and 7.1% on RMSE. The whole proposed
solution improves the prediction accuracy at 36.3% on MAE and
36.8% on RMSE, comparing with the traditional neural network-
based solution. The results clearly show that both the introduction
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of the new input data structure and HMDL effectively improve the
accuracy and robustness of GNSS-R wind speed retrieval.

Index Terms—Delay–Doppler map (DDM), GNSS-reflectometry
(GNSS-R), multimodal deep learning, ocean surface wind retrieval.

I. INTRODUCTION

MASTERING ocean surface wind has a great significance
in climate studies, since sea wind is the main power for

upper ocean movement, and it is the critical factor for wave
generation, formulation of water masses, and ocean currents [1].
Besides, ocean surface wind has a significant impact on marine
production activities, such as ship routing, marine fishing, and
offshore resource development [2]. The traditional methods of
ocean surface wind measurement include static meteorological
station, buoy, and sounding balloon [3]. However, compared
with the vast ocean area, the coverage of these methods is too
small. Subsequently, the satellite remote sensing methods are
developed, such as microwave scatterometer [4] and satellite
altimeter [5]. Microwave scatterometer is relatively mature at
present, but it does not work well under high wind speed. It
is because the sea waves are broken under high wind speed,
and the foam on the sea surface reduces the backscattering
coefficient. Besides, this method also has the problem of wind
direction ambiguity in the retrieval process. Satellite altimeter is
a vertical measurement, and it only can detect in one direction.
Furthermore, it accepts the expanded backscatter coefficient and
has a limited measurement range between 2 and 15 m/s.

As a new remote sensing technology, Global Navigation Satel-
lite System Reflection (GNSS-R) was proposed by European
Space Agency scholar Maritin-neira in 1993. GNSS-R can be
used to obtain earth-surface parameters such as ocean surface
wind [6], ocean ice detection [7] and soil moisture retrieval [8],
[9] through signal processing. Compared with the traditional
remote sensing technologies, GNSS-R has advantages such as
larger space coverage, longer time span, and less affection from
the weather. Additionally, GNSS-R works by receiving passive
signals and does not send signals by itself, so it has a low power
consumption. In July 2014, U.K. TechDemoSate-1(TDS-1) was
successfully launched and then provided a lot of measured data
for the study of spaceborne GNSS-R [10].

Typically, delay–Doppler map (DDM), which is converted
from the received GNSS signals when the incoherent scattering
is dominant [11], is the main observable used for GNSS-R-based
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retrieval [11]. The traditional methods of GNSS-R ocean wind
speed retrieval are two theoretical model-based approaches. The
first one is the waveform matching [12], [13]. The theoreti-
cal model is used to generate a large number of simulation
DDMs by traversing the parameters and the typical cost func-
tion, Euclidean distance (ED) between the measured DDM and
simulated DDMs are calculated to find the simulated DDM
with minimum distance. Finally, the corresponding wind speed
generating the simulated DDM with minimum ED would be
considered as the retrieval value [14]. Another one is the retrieval
based on empirical functions [15], [16]. In general, this method
uses a large number of measured data to set up the functional
relationship between ocean surface wind speed and one or two
physical parameters extracted from DDM. Nevertheless, such
a simple model is not robust enough to achieve high retrieval
accuracy [17], [18].

At present, machine learning (ML) is becoming more and
more popular in the studies on GNSS-R-based retrieval, such
as using multilayer perception (MLP) to detect sea ice [19],
using support vector regression (SVR) to detect sea ice [20], etc.
These ML-based methods are more robust and accurate than the
theoretical model-based approaches since it is data-based, and
they can model the complicated relationship between the input
and the output. DDM is derived from the receivers measure-
ments on the frequency and strength of the received signal. The
accuracy of these measurements are closely related to the status
of the receivers radio frequency (RF) components, such as low
noise amplifier (LNA), antennas, analog-digital (A/D) convert-
ers, which compose SRS. Consequently, SRS would affect the
quality of the DDM, which is represented by signal to noise ratio
(SNR), and thus the performance of the retrieval. Accordingly,
SRS parameter should also be used as the input data of ML model
to retrieve the ocean wind speed. From the perspective of model
input data, ML-based GNSS-R ocean wind speed retrieval can
be divided into two types. The first type of input data includes
DDM and SRS parameters [21]. The second type of input data
includes DDM feature (such as DDMA and LES) manually
extracted from raw DDM data and SRS parameters [22], [23].
Though there are more than 30 SRS parameters, the previous
research works, no matter the first or the second type, only use
less than 10 SRS parameters to compose the input data. With the
development of deep learning, the recent ML model architecture
based on the automatic feature extraction algorithm and raw
data has already achieved better performance than the traditional
model architecture using manually extracted features. The recent
study [21] on GNSS-R ocean wind speed retrieve also shows a
similar result since the features automatically extracted from the
raw DDM contains more useful information for retrieve than the
manually extracted features. For the retrieval using the manfully
extracted DDM features and SRS parameters, ML model only
plays the role of regression [22], [23]. For the retrieval using the
DDM and SRS parameters, the ML model has to fulfill feature
extraction, data fusion, as well as regression. DDM is similar
to the image, and SRS parameters are numerical values. Due to
the difference in the data structure, specific automatic feature
extraction, and data fusion should be considered during model
architecture design. However, the typical solution in the previous

Fig. 1. Typical DDM obtained from TDS-1.

studies, such as in [21], is to combine the raw DDM and SRS
parameters and then put the combination to an NN model for
feature extraction and regression.

In this article, we first introduce a new input data structure,
which is composed of DDM and all SRS parameters, to make
the input data more comprehensive. Then, considering the dif-
ference in data structure between raw DDM and DDM-related
parameters, we designed a heterogeneous multimodal deep
learning (HMDL) architecture for GNSS-R ocean wind speed
retrieval. HDML is composed of a convolutional neural network
(CNN) and two MLPs. CNN is used to extract the feature of
DDM. One MLP is for the feature extraction of SRS parameters.
Anther MLP is for the regression of the wind speed. Data fusion
is fulfilled by concatenating the extracted features between the
process of feature extraction and regression. Based on improve-
ments on input data structure and NN model structure, this article
achieves state-of-the-art accuracy on GNSS-R ocean wind speed
retrieval. The novelty is summarized as follows. First, a new
input data structure, which is composed of all DDM-related
parameters and raw DDM, is proposed for ML-based GNSS-R
ocean wind speed retrieval. The new structure contains more
useful information for retrieval than the traditional structure,
which is composed of parts of DDM-related parameters and
raw DDM or manually extracted DDM features. Second, a new
model architecture named HMDL is designed according to the
difference in data structure of DDM and DDM-related parame-
ters. HMDL is more effective on automatic feature extractions
and data fusion than the traditional NN structure.

II. PROBLEM DESCRIPTION

A. Heterogeneous GNSS-R Data

1) DDM: DDM is a measure of the scattered signal power as
a function of path delay and Doppler frequency [21]. A typical
example of DDM is illustrated in Fig. 1, and the horizontal
represents delay, the ordinate represents Doppler frequency.
Each DDM obtained from TDS-1 is the result of noncoherent
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TABLE I
ELEMENTS OF SRS

No 1 2 3 4 5 6
name SPIncidenceAngle SPElevationORF SPAzimuthORF SPElevationARF SPAzimuthARF specularPointLat
No 7 8 9 10 11 12

name specularPointLon
antennaGainTowards-

SpecularPoint
DDMSNRAtPeak-

SingleDDM
transmitter-
VelocityZ

specularPoint-
PositionX

specularPath-
RangeOffset

No 13 14 15 16 17 18

name
transmitter-
PositionX

transmitter-
PositionY

Transmitter-
PositionZ

transmitter-
VelocityX

transmitter-
VelocityY

directSignalInDDM

No 19 20 21 22 23 24

name LNATemperature
ADCPercentage-

Positive
ADCOffset noiseBoxRows

specularPoint-
PositionZ

ADCPercentage-
Magnitude

No 25 26 27 28 29 30

name
specularPoint-

PositionY
antennaGain-
RangeMin

antennaGain-
RangeMax

antennaTemperature-
ExtRef

Antenna-
Temperature

kurtosisNoiseBox

No 31 32 33 34

name
meanNoiseHigh-

Doppler
meanNoiseBox

DDMOutput-
NumericalScaling

DDMPixelValueNoise

integration of 1000 consecutive 1-ms. The size of DDM is 20 ×
128, where 20 represents the number of Doppler pixels, and 128
represents the number of delay pixels. A GNSS-R DDM depicts
the scattered power of the observed surface [19]. Each pixel in
DDM corresponds to scattering intensity in a certain area [19].
There is a horseshoe-shaped waveform in the DDM, and it shows
the distribution of scattering signal power in different areas of the
sea surface. The wind causes the roughness of the ocean surface.
It then results in a reduction in the reflected signal power near
the specular point and an increase in the scattered signal away
from the specular reflection point. Therefore, DDM implies the
affection of the wind speed on the GNSS-R signal and can be
used in wind speed retrieval.

2) SRS: The SRS parameters are listed in Table I [11]. The
first 30 elements excluding the ninth are related to the param-
eters of the RF and the position of the receiver. The first nine
elements are related to the calculation formula of the scattering
coefficient. The last four and the ninth elements are related to
DDM directly. The formulation of DDM is associated with
the receivers measurement on the received signal, while RF
and other parameters influence the accuracy of the measure.
Therefore, these parameters should be added to the input data
of retrieval.

3) Heterogeneity: The heterogeneity of DDM and SRS is
apparent, as DDM is 2-D and similar to an image while SRS is 1-
D discrete numerical data. Due to the heterogeneity, data fusion
cannot be performed directly on the raw data. Besides, owing to
the complexity of DDM, handcrafted feature extraction is hard
to extract all valid information, so it will eventually affect the
retrieval accuracy. To solve this problem, two automatic feature
extractors, which can output the features with the same data
structure, are designed for DDM and SRS, respectively. Then,
their features are fused to predict the wind speed.

B. Solving Procedure

Wind speed retrieval can be regarded as a regression problem.
The input data denoted by X = X1UX2,where X1 ∈ R20×128

denotes the DDM, X2 ∈ Rn, n = {8, 9, 29, 34} denotes the
SRS, the n represents the number of SRS parameters. The
real sea surface wind speed denoted by Y ∈ Rm, where m is

Fig. 2. Framework for heterogeneous GNSS-R data fusion and multimodal
learning. Firstly, data preprocessing and feature extraction. Subsequently, fusion
of extracted feature. Finally, regression prediction.

the number of training samples. The objective of the proposed
method is to drive an optimal function F (X) = W ·X + b,
as shown in 1, where W is the weight vector of the proposed
method and b is the bias. Mean square error is selected as our
loss function according to the character of the task. L2 norm
regularization and dropout were adopted to control overfitting
and underfitting. So, W and b can be obtained by optimizing the
following formula:

(W ∗, b∗) = argmin
n∑

i=1

(F (xi − yi))
2 + α||W ||2 (1)

wheren is the batch size, || · || is Frobenius form,α is regulariza-
tion parameter, ||W ||2 is regularization term which can reduce
the risk of overfitting.

The solution we proposed to retrieve wind speed from the het-
erogeneous GNSS-R raw data is shown in Fig. 2. The proposed
solution consists of two parts, training and prediction. The input
of the framework contains DDM and SRS parameters. First, two
parts go through their respective preprocessing, which makes the
input data more suitable to the neural network (NN). The SRS
preprocessing achieves normalization. The DDM preprocessing
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performs normalization and noise reduction. Next, the prepro-
cessed data passes through their feature extraction networks in
parallel and then get their respective extracted features. A spe-
cific algorithm will be selected for feature extraction according
to the structural characteristic of the input data. After that, the
features extracted from DDM and SRS will be fused. Finally,
the regression is performed based on the fused features. After
completing these operations, we will get a predictive model. In
the prediction section, the input data needs to preprocess first,
then send preprocessed data into the predictive model and finally
get the predicted wind speed.

III. MULTIMODAL METHODOLOGY

A. Preprocessing

1) DDM Preprocessing:
a) Data noise reduction: To reduce the noise effect caused

by antenna gain and system noise, each DDM will subtract
noise floor [19], which can be calculated using the following
expression:

Mnosie =
1

N

τi∑
τ1

fi∑
f1

M(τ, f) (2)

DDMdenoise = DDMi −Mnoise (3)

where Mnosie represents the noise, τ1 and τi are the limits of
delay chips in noise box, f1 and fi are the limits of frequency in
noise box, N is pixel sum of noise box, DDMi represents each
pixel in DDM.

b) DDM normalization: NNs are more sensitive to data be-
tween 0 and 1. So, the DDM is normalized to eliminate the order
of magnitudes differences among dimensions and make data
have the same statistical distribution. Besides, the normalization
usually can improve NN prediction accuracy and accelerate the
convergence of the training network. The normalization of DDM
can be expressed as follows:

Mnormal(τ, f) = M(τ, f)/Mmax (4)

where Mnormal(τ, f) represents each normalized pixel value,
M(τ, f) represents the original pixel value, Mmax represents
the max pixel value in original DDM.

2) SRS Preprocessing:
a) SRS normalization:

SRS is also normalized between 0 and 1. The normalization
of SRS can be expressed as follows:

M(i)normal = M(i)/M(i)max (5)

where Mi represents the ith parameter, M(i)max represents the
maximum value of the ith parameter, M(i)normal represents the
parameter that after normalization.

B. NN Architecture

DDM can be regarded as image and SRS are discrete numer-
ical data. Therefore, according to the heterogeneity of the input
data, MLP is used to extract the features of SRS, and a CNN
is used to extract the features of DDM. The extracted features

Fig. 3. Framework for SRS feature extraction, the framework consists of three
MLPs.

of SRS and DDM are fused before regression. Finally, another
MLP is used as the regression model with the fused features as
the input.

1) MLP-Based SRS Feature Extraction: The SRS features
extraction stacks MLP, whose specific network structure is
shown in Fig. 3. In the input layer, SRS after preprocessing
directly input to the network. Assuming that MLP hasK1 hidden
layer. Hi ∈ Rni , i = 1, 2, . . .k1 hi is the output of each hidden
layer, ni is the neuron number of every hidden layer. In the
first hidden layer, parameters w1 ∈ Rn1×n and b1 ∈ Rn1 are
randomly initialized. The output result of first hidden layer is
expressed as

h1 = σ(W1x+ b1) (6)

where σ is the nonlinear activation function. In this article,
Relu is adopted as the activation function. The mathematical
expression of Relu can be expressed as follows:

relu(x) = max(0, x). (7)

The subsequent hidden layer i = 2, 3 . . . k1 assuming that their
initialization parameters are wi ∈ Rni×ni−1 and b1 ∈ Rni . The
output result of hidden layer is as follows:

hi = σ(wihi−1 + bi). (8)

2) CNN-Based DDM Feature Extraction: The network
structure of DDM feature extraction is shown in Fig. 4. It has
k2 = 8 convolution layer and the filter size is 3× 3. We use the
symbolHi represent feature map. The preprocessed DDM is the
first feature map, represented as

H0 = X H0 ∈ R128×20 (9)

where x denotes the preprocessed DDM. For subsequent con-
volution layer i = 2, 3, . . ., k2, assume that their parameters
are Wi ∈ R3×3, bi ∈ R3. The convolution operation can be
described as

Hi = σ(Hi−1 ⊗Wi + bi). (10)

The symbol ⊗ denotes the convolution between filter and input
data or the Hi−1. The output of the filter is added to the offset bi
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Fig. 4. Framework for DDM feature extraction, the framework consists of
eight convolution layer and three MLPs.

of the ith layer. σ represents an activation operation. Common
activation functions of CNN are

σ(x) =

⎧⎪⎨
⎪⎩

1
1+e−x sigmoid
ex−e−x

ex+e−x tanh

max(0, x) Relu.

(11)

In this work, Relu is used as an activation function. Pooling
operation follows after convolution operation. Here, we adopt
max pooling, which can be expressed as

z = max(xi,j , xi,j+1, xi+1,j , xi+1,j+1). (12)

After finishing all the operations mentioned above, the 3-D
feature maps will be transformed into 1-D feature maps through
the full connection layer, making it easier to join with the features
extracted from SRS.

3) MLP-Based Feature Fusion and Regression: In the fea-
ture fusion section, the main task is to merge the feature extrac-
tion results. Fig. 5 shows the process. After the feature extraction
parts, the heterogeneous data is transformed into features with
the same data structure. Suppose the result of SRS extraction
is O1, and the result of DDM extraction is O2. Then, the fused
features can be obtained by aggregating these two 1-D feature
maps, expressed as

O = O1 ∪O2 (13)

where O is the merged features, and it will input to the final
regression network.

The regression network consists of two fully-connected (FC)
layers and linear output. O was directly inputted to the input
layer. The input layer to the hidden layer can be expressed as

z1 = σ(W1x+ b1) (14)

where W1 ∈ R4×8, b ∈ R4 O is fusion features and σ is Relu
activation function. The final output is a linear combination of
the hidden layer and it can be expressed as

ŷ = W2z1 + b2 (15)

where W2 ∈ R14, b2 ∈ R1. The ŷ can be considered as the
predicted wind speed. After obtaining the ŷ, the loss function
measures the deviation between the target wind speed and the
predicted wind speed in the training process. According to

Algorithm 1: Pseudo Code of Training Process in HMDL.

Input: training set D = (Xk, Y )mk=1 where m is sample
size, Xk = X1

kX
2
k2

Output: HMDL with confirmed weight vector and
threshold value

1: Initialize weight vector and threshold value of HMDL
in the range between 0 and 1

2: repeat
3: for all (Xk, Yk) ∈ D do
4: Forward propagate X1

k into DDM extraction
and get output O1

5: Forward propagate X2
k into SRS extraction

and get output O2

6: Concatenate O1 and O2 then get O
7: Forward propagate O into regression network

and get final output
8: Calculation preparation: gt = ∇J(θ), vt =

β1vt−1 + (1− β1)gt, st = β2st−1 + (1−
β2)g

2
t , V̂t =

vt

1−βt
1
, Ŝt =

st
1−βt

2

9: Calculate the gradient descent g
′
t using

g
′
t =

ηv̂t√
ŝt+ε

10: Back propagate parameters of regression
network using ηi = ηi−1 − g

′
t

11: Back propagate from feature fusion to each
branch and update parameters in each branch
using ηi = ηi−1 − g

′
t

12: until reaching stop condition

the error, the back propagation algorithm is used to adjust the
network parameters.

IV. MODEL IMPLEMENTATION AND EXPERIMENT SETUPS

A. Model Implementation

The configurations of HDML are listed in Table II. The num-
ber of layers is set referring to AlexNet [27], and then optimized
by experiments. Algorithm 1 describes the process of iterative
training, in which we use back propagation and Adam optimiza-
tion algorithm to obtain the best parameters of the network. The
learning of the network mainly includes a forward propagation
and a back propagation. In the forward propagation, the data is
processed layer by layer from the input layer to the output layer.
During the back propagation, the parameters in the regression
network are first updated, and then the gradient is transferred
from feature fusion to two feature extraction branches. Keras
and Tensorflow are used to implement our proposed method.

B. Experiment Setups

1) Data Set: In this study, both DDM and SRS used in
training and testing are obtained from TDS-11. The reference
wind speed employed in this article is derived from the European
center for medium weather forecasting (ECMWF)2. ECMWF

1[Online]. Available: www.merrbys.co.uk
2[Online]. Available: https://apps.ecmwf.int/datasets/

www.merrbys.co.uk
https://apps.ecmwf.int/datasets/
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TABLE II
DETAILED IMPLEMENTATION OF HDML

Architecture Number oflayer Kernel/unit size channels

DDM feature
extraction

CONV+CONV 4 (3,3) 64,64,128,128
pool 4 (2,2) 64,64,128,128
FC 3 1024,512,4 -

SRS feature
extraction

FC 3 8/9/30/34,16,4 -

Feature fusion
and regression

FC 3 8,4,1 -

leads the forecasting in the numerical weather prediction, and
it provides high precision numerical weather prediction. The
data for a month is gathered, and the total amount is 252 926.
The ratio of training data to testing data is 7:3. The training
data and testing data were selected randomly. Each data was
bound a random number between 0 and 1, which is produced
by a random function. Then, the data with a random number
between 0 and 0.7 was used as training data. The data with the
random number between 0.7 and 1 is used as prediction data. The
spatial resolution of the reference data is 0.125◦ × 0.125◦. The
TDS-1 data includes the latitude and longitude, where the data
is obtained. The latitude and longitude are used to find its closest
location in ECMWF data to fulfill the spatial match. The time
resolution of the reference data was 6 h. The wind speed was
measured at 00:00 A.M., 06:00 A.M., 12:00 P.M., and 18:00 P.M.
every day. The time resolution of TDS-1 data is 1 s. The TDS-1
data located in the following time spans are selected to compose
the data set: 23:30 P.M. to 00:30 A.M., 05:30 A.M. to 06:30 A.M.,
11:30 A.M. to 12:30 P.M., and 17:30 P.M. to 18:30 P.M.. The
TDS-1 data between 23:30 P.M. to 00:30 A.M. was matched to the
reference data measured at 00:00 A.M.. The TDS-1 data between
23:30 P.M. to 00:30 A.M. was matched to the reference data
measured at 00:00 A.M.. The TDS-1 data between 05:30 A.M.
to 06:30 A.M. was matched to the reference data measured at
06:00 A.M.. The TDS-1 data between 11:30 A.M. to 12:30 A.M.
was matched to the reference data measured at 12:00 P.M.. The
TDS-1 data between 17:30 A.M. to 18:30 A.M. was matched to
the reference data measured at 18:00 P.M..

2) Performances: Mean absolute error (MAE) and root mean
square error (RMSE) are used to evaluate the statistical accu-
racy and robustness of the model. The cumulative distribution
function (CDF) curve would be the plot to show the overall
distribution of the retrieval error. MAE and RMSE are defined
as follows:

MAE =
1

m

m∑
i=1

|ŷi − yi| (16)

RMSE =

√
1

m

∑m

i=1
(ŷi − yi)2 (17)

where ŷi means the wind speed predicted by the model, and yi
means the real ocean wind speed.

SNR is the key index of the quality of DDM. Most previous
studies only achieve excellent performance in high-SNR condi-
tions. In order to evaluate the accuracy of the proposed method
under different data quality and its advantage on resisting noise,
the performance of two partial testing data selected by SNR

Fig. 5. Framework for feature fusion and regression network, the middle part
is feature fusion and the latter part is regression network which bases on MLP.

Fig. 6. SNR distribution of the overall testing set, subset (SNR> 0) and subset
(SNR > 3).

thresholds, as well as the overall testing data set, would be
counted and illustrated. The selection criteria are set at SNR > 3
and SNR > 0, according to the distribution of SNR. The number
of data in the overall testing data set is 75 878. The numbers of
data in two subsets are 7316 (SNR > 3) and 15801 (SNR > 0),
respectively. Thus, there are about 10% SNRs larger than 3 dB,
and 20% SNRs larger than 0 dB. The distribution of the SNR of
the overall testing data set and two subsets are shown in Fig. 6.
As shown in figure, there are about 80% SNR is lower than 0 in
the overall testing data set. Therefore, most of the testing data is



CHU et al.: MULTIMODAL DEEP LEARNING FOR HETEROGENEOUS GNSS-R DATA FUSION AND OCEAN WIND SPEED RETRIEVAL 5977

TABLE III
IMPROVEMENT OF DDM+SRSALL

with low SNR, and the prediction accuracy of the overall testing
data set represents the ability of noise resistance.

3) Experiments: Verification experiments and comparative
experiments are conducted to verify the proposed method. The
verification experiments are to show the effectiveness of SRS
and HMDL on the improvement of wind speed retrieval. The
comparative experiment is to display the improvement of the
overall proposed method by comparison with the traditional ML
approaches.

a) Verification of DDM + SRSALL: The baseline of this
experiment is the performance of wind retrieval only based on
DDM. The ML method of baseline performance is CNN+MLP,
in which CNN is for feature extraction, and MLP is for re-
gression. The proposed input data structure can be expressed
as DDM + SRSALL, where SRSALL means all SRS parameters.
It is also compared with the following combinations:

1) DDM + SRSALL−5, where SRSALL−5 includes all the el-
ements except the 9th, 31st, 32nd, 33rd, 34th, which is
related to DDM.

2) DDM + SRS1∼9, where SRS1∼9 includes the 1 ∼ 9 el-
ements, which are used to calculate the DDM from the
received signal.

3) DDM + SRS1∼8, where SRS1∼8 includes the 1 ∼ 8
elements.

b) Verification of HMDL: The baseline of this experiment
is the performance of a homogeneous multimodal approach,
which is named as MLP+MLP+MLP. The first MLP is used
to extract the feature of SRS parameters. The second MLP is
for the feature extraction of DDM. The last MLP is for wind
speed regression. The difference between the homogeneous mul-
timodal architecture and HDML is a feature extraction algorithm
of DDM. The input and output of the homogeneous approach
are the same as the heterogeneous approach.

c) Comparative experiments: Two experiments are car-
ried out for comparison. Comparison1: The baseline of the
experiments is the retrieval based on three typical ML algorithms
and DDM. The baseline ML methods include MLP, support
vector machine (SVR), and random forest. The input data of
these three methods is DDM. The MLP have been used in other
GNSS-R related articles [19], [21], [24]. SVR is a modified
version of the support vector machine (SVM), which is specif-
ically designed for regression problems [25]. Random forest is
a kind of integrated learning, which can improve the accuracy
of single prediction [26]. Comparison2: The baseline of this
experiment is the typical traditional NN-based GNSS-R-based
ocean wind speed retrieval proposed in [21]. We applied the
complete solution of [21], including the input data structure

and model architecture, on our data set to obtain the baseline
performance. The performance of Liu et al.’s [21] model archi-
tecture with DDM + SRSALL as the input data is also obtained
for comparison.

V. RESULTS AND DISCUSSION

A. Verification Experiments

1) DDM + SRSALL: Table III lists MAE and RMSE of
retrieved wind speed using four combinations of DDM+SRS
and only DDM. The results indicate that all four combinations
of DDM+SRS is better than only DDM in any situation. Besides,
Fig. 7 shows the error between prediction value and real value.
The curves in the figure also indicate that the error of SRS+DDM
is less than only DDM. These experimental results show that
SRS provides useful information for wind speed prediction and
can improve prediction accuracy and robustness.

Both Table III and Fig. 7 show that the model achieves
better results with more SRS parameters, and the performance
of DDM+SRSALL is the best among the four combinations.
DDM+SRS1∼9 and DDM+SRS1∼8 were differed by one pa-
rameter. The performance of DDM+SRS1∼9 is a little better than
DDM+SRS1∼8. DDM+SRSALL and DDM+SRSALL−5 were dif-
fered by the ninth parameter. DDM+SRSALL is better than
DDM+SRSALL−5. These results indicate that each parameter
of SRS is valuable during the wind speed prediction.

With the decrease of SNR, the predictive power of all methods
has declined. However, the downward trend of the proposed
method that uses DDM+SRS is slower than the method only
using DDM. From the figure, we can get that more SRS el-
ements are involved, the slower the accuracy declines. This
demonstrates that SRS enhances the resistance to noise.

2) Heterogeneous Multimodal Versus Homogeneous Multi-
modal: Table IV lists the performance of heterogeneous mul-
timodal and homogeneous multimodal. The results indicate
that heterogeneous multimodal is better than homogeneous
multimodal in any SNR cases. Fig. 8 shows the cumulative
probability distribution of the prediction error of two methods.
There is always a gap between two curves, which shows that the
prediction effect of heterogeneous multimodal is always better
than homogeneous multimodal. The curves change in the figure
conforms to the data changes in the table. The difference between
heterogeneous multimodal and homogeneous multimodal in
network structure is that homogeneous multimodal uses MLP
in DDM feature extraction while heterogeneous multimodal use
CNN. Heterogeneous multimodal uses original, while homoge-
neous multimodal flattens the DDM input into a vector without
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TABLE IV
MAE AND RMSE COMPARISON: HETEROGENEOUS MULTIMODAL VERSUS HOMOGENEOUS MULTIMODAL

Fig. 7. CDF comparison: DDM+SRS versus DDM. (a) Subset (SNR > 3).
(b) Subset (SNR > 0). (c) Overall testing set.

Fig. 8. CDF comparison: Heterogeneous multimodal versus homogeneous
multimodal. (a) Subset (SNR > 3). (b) Subset (SNR > 0). (c) Overall testing
set.
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TABLE V
MAE AND RMSE COMPARISON: HMDL VERSUS ML METHODS

the structural information. Besides, CNN used in heterogeneous
multimodal has stronger data mining ability and extracted more
useful features from DDM than MLP used in homogeneous
multimodal [28]. Therefore, the homogeneous multimodal is
more resistant to noise and improve the prediction ability. The
structure of heterogeneous multimodal is good at resisting noise
and mining hidden information.

B. Comparative Experiments

Table V lists the results of the proposed method and the other
three ML methods on MAE and RMSE. The results indicate
that the proposed method yields the smallest MAE and RMSE.
Fig. 9 shows the prediction error of the four methods. As we
can see that the proposed method gets the best prediction error
all the time and less affected by SNR, while the other three ML
methods are greatly affected by SNR. In the overall testing set,
the proposed method improves the prediction accuracy by 30.7%
on MAE and 29.5% on RMSE comparing with random forest
that has the worst performance among the three algorithms. The
proposed method improves the prediction accuracy by 13.5% on
MAE and 10.6% on RMSE comparing with MLP that has the
best performance among the three algorithms. The comparison
experiments show that the heterogeneous model and heteroge-
neous data help model achieve better prediction error and are
superior to the other three ML methods in resistance to noise.

With the decrease of SNR, the predictive accuracy of HMDL
and other typical methods are declined, but HMDL achieves
the least affection. It indicates that heterogeneous deep learning
model is more resistant to noise than the traditional ML ap-
proaches. Table VI lists the performance comparison between
our solution and Liu et al.’s [21] solution. The new input data
structure improves the prediction accuracy at 21.4% on MAE
and 23.6% on RMSE. The proposed whole solution improves
the prediction accuracy at 36.3% on MAE and 36.8% on RMSE.

C. Effect of Data Distribution and Wind Speed on
Retrieval Accuracy

To analyze the effect of data distribution and wind speed on
retrieval accuracy, we counted the number of the samples and
computed the average absolute error at different wind speeds
regimes, as shown in Fig. 10. It shows that the accuracy is closely
related to the number of the samples, but not related to the wind
speed. Therefore, more data will be downloaded to compose a
balanced data set. Further analysis on a larger data set will be
conducted, as a subject of future research, to consolidate the
obtained conclusions and the adequacy of the model.

Fig. 9. CDF comparison: Heterogeneous multimodal versus ML methods. (a)
Subset (SNR > 3). (b) Subset (SNR > 0). (c) Overall testing set.
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TABLE VI
MAE AND RMSE COMPARISON: HMDL WITH DDM+SRSALL VERSUS TRADITIONAL NN-BASED SOLUTION

Fig. 10. MAE of HMDL versus wind speed (right vertical axis), along with
the data histogram in the background (left vertical axis).

VI. CONCLUSION AND FUTURE WORK

In this article, we first introduced all SRS parameters to
retrieve ocean wind speed. Then, we present a data-driven
retrieve method HMDL, which is composed of MLP-based
SRS feature extraction, CNN-based DDM feature extraction,
MLP-based feature fusion, and regression. The new input data
structure improves the prediction accuracy at 13.5% to 30.7%
on MAE and at 10.6% to 29.5% on the RMSE. The HMDL
improves the prediction accuracy by at 7.7% on MAE and
7.1% on RMSE. The whole proposed solution improves the
prediction accuracy at 36.3% on MAE and 36.8% on RMSE,
compared with the traditional NN-based solution. Notably, the
comparison among the experimental results of three different
SNR conditions shows that the accuracy improvement of the
proposed method increase as the SNR decreases. Therefore, the
results of verification experiments indicate that the proposed
method effectively enhances the ability of noise resistance and
then achieves the state-of-the-art accuracy on GNSS-R-based
ocean wind speed retrieval.

Further analysis on a larger data set will be conducted, as a
subject of future research, to consolidate the obtained conclu-
sions and the adequacy of the model. The research on the data
balancing method for GNSS-R retrieval will be conducted as
another subject of future research. As illustrated in this article,
the data comprehensiveness and retrieve method are both critical
to the prediction performance. We also plan to introduce the

historical data and propose a corresponding deep learning model
to improve the prediction accuracy. Moreover, we will apply the
proposed method to the other GNSS-R-based retrievals, such as
ocean ice retrieval. Another important work is to improve the
accuracy of the wind speeds regimes with a small number of
samples.
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