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3-D Channel and Spatial Attention-Based Multiscale
Spatial–Spectral Residual Network for Hyperspectral

Image Classification
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Abstract—With the rapid development of aerospace and various
remote sensing platforms, the amount of data related to remote
sensing is increasing rapidly. To meet the application requirements
of remote sensing big data, an increasing number of scholars are
combining deep learning with remote sensing data. In recent years,
based on the rapid development of deep learning methods, research
in the field of hyperspectral image (HSI) classification has seen con-
tinuous breakthroughs. In order to fully extract the characteristics
of HSIs and improve the accuracy of image classification, this article
proposes a novel 3-D channel and spatial attention-based mul-
tiscale spatial–spectral residual network (termed CSMS-SSRN).
The CSMS-SSRN framework uses a three-layer parallel residual
network structure by using different 3-D convolutional kernels to
continuously learn spectral and spatial features from their respec-
tive residual blocks. Then, the extracted depth multiscale features
are stacked and input into the 3-D attention module to enhance
the expressiveness of the image features from the two aspects
of channel and spatial domains, thereby improving the accuracy
of classification. The CSMS-SSRN framework proposed in this
article can achieve better classification performance on different
HSI datasets.

Index Terms—Attention, deep learning, hyperspectral image,
multiscale spatial–spectral residual network.

I. INTRODUCTION

W ITH the progress of remote sensing technology, the
types of remote sensing observation data have become
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enriched, and the amount of data has increased rapidly [1], [2].
Remote sensing information technology is entering the era of
big data, which is characterized by intelligent analysis [3], [4].
An increasing number of scholars have combined deep learning
and remote sensing technology to achieve tremendous advance-
ment in target recognition [5], image segmentation [6], and
parameter inversion [7]. Hyperspectral remote sensing images
are obtained by satellites equipped with various spectral sensors
[8]. These satellites can obtain abundant information about the
surface of the earth, which provides a new way for people to
observe the landform and understand the world. Unlike the
ordinary Red-Green-Blue image, the hyperspectral image (HSI)
has hundreds of bands, which contain rich spectral information
[9]–[11]. The spectral information contained in the HSI helps to
distinguish land cover, while the fine spatial resolution provides
rich information about spatial structure [12]. Therefore, HSIs
have played an important role in geological disaster monitoring,
mineral analysis, agricultural testing, and marine environment
surveying [13]–[15]. One important research direction in remote
sensing science is to classify each pixel in an HSI and divide the
geomorphic information [16]–[18].

In recent years, artificial intelligence and other technologies
have developed rapidly [19]–[22], and some HSI classification
methods based on traditional machine learning have been im-
proved and have achieved good results [23]–[25]. Licciardi et
al. [26] used principal component analysis (PCA) to combine
spectral and spatial information to achieve classification of HSIs.
The k-neighbor classification (k-NN) method [27] completes
HSI classification by computing the distance between the test
data and the training data and judging the similarity between
the samples. To prevent the influence of nonlinear features on a
k-NN classifier, Chen et al. [28] studied a combined manifold
learning method and k-NN classifier to improve classification
accuracy by maintaining nonlinear features in an HSI. Li et al.
[29] used rich texture information to classify HSIs and used the
local binary mode method to extract the local information in
an image. This method works well for analyzing macrotextures,
but often cannot handle microtextures. Therefore, Deng et al.
[30] proposed a model for classification using the microtexture
information in HSIs. The model uses a local response mode to
retain more structural information and maintain a lower sensitiv-
ity to the image conditions. The results show that the proposed
framework is effective in terms of both recognition rate and
robustness. Camps Valls et al. [31] combined the support vector
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machine (SVM) method to construct a set of composite kernel
functions that learn rich spatial and spectral feature information
from HSIs to improve classification performance. Chen et al.
[32] proposed an HSI classification algorithm based on sparse-
ness. This algorithm optimized the sparse constraint problem
and improved classification performance by incorporating with
context information.

The traditional machine learning method can only extract
the shallow features of HSIs. Not all the information contained
in HSIs has been fully tapped, and this presents the problems
of complicated calculation and low classification performance.
With the continuous improvement in computing hardware tech-
nology, deep learning [33]–[36] algorithms can extract deep
features with strong representation capabilities from images in a
layered manner [37]. Therefore, deep learning is widely used to
learn the deep features of images and improve their classification
accuracy [38]. Many studies related to HSI classification have
determined that the extraction of depth features is beneficial to
the accuracy of image classification. Chen et al. [39] introduced
a new framework that combines PCA and logistic regression in
a deep learning model. In this framework, spatial information
is the main axis of classification, and a stack-type automatic
encoder is used to obtain the deep features of the image com-
bined with spectral information. Deep neural network research
in spectral space shows that methods based on deep learning
have great potential for hyperspectral data classification [40],
[41]. Makantasis et al. [42] proposed a supervised deep learning
method, which reduced the dimension of HSIs by using random
PCA, then encoded the spectral and spatial feature information
of pixels by using a convolutional neural network (CNN), and
finally classified them by a multilayer perceptron (MLP). Zhao
et al. [43] combined a local discrimination embedding algorithm
with a CNN; the former was used to extract spectral informa-
tion from the image, and the latter was used to extract spatial
information continuously. Finally, the obtained spectral features
and spatial features were superimposed to obtain a new fusion
feature. Finally, the fusion features were trained by the classifier.
Due to the problems of limited training samples and unbalanced
classes in the HSIs, Chen et al. [44] combined virtual sample
enhancement technology with a CNN to effectively extract the
spectral and spatial information. The use of L2 regularization
and dropout can also alleviate overfitting problems that may
occur during training. In order to effectively overcome the
high-dimensionality problem of hyperspectral data, Alipourfard
et al. [45] proposed a feature learning method based on subspace
to reduce the dimension, and combined with CNN to extract
image features. Yue et al. [46] combined a deep convolutional
neural network (DCNN) and logical regression to classify by
generating spectral and spatial feature maps. Zhang et al. [47]
learned spatial–spectral context-sensitivity using CNN networks
in different regions and enhanced the recognition ability of
the network by combining various distinguishable appearance
factors. Mei et al. [48] combined contextual information and
spectral information and proposed a five-layer classification
neural network for HSI classification. Xu et al. [49] combined
CNN and a long-term short-term memory model based on band

grouping and proposed a spectral-spatial unified network
(SSUN) model. Zhong et al. [50] designed a supervised residual
network consisting of spatial residual blocks and spectral resid-
ual blocks to jointly learn spatial and spectral information in
HSIs. Because the training time of the spatial–spectral residual
network (SSRN) was too long, Wang et al. [51] designed a
fast dense spectral-spatial convolution network (FDSSC) that
was faster than SSRN networks. To learn more representative
features from a limited number of training samples, Haut et al.
[52] combined visual attention with a DCNN and proposed an
attention-driven mask mechanism (A-ResNet), which was used
to filter the features obtained by the network and improve the
results of the model. Since SSRN and FDSSC networks need
a lot of training samples to obtain good classification results,
it is necessary to learn more representative features from the
limited training samples. Multiscale strategy [53]–[55] is one
of the effective ways to improve the classification accuracy
of HSI. Wu et al. [56] proposed a multiscale spectral–spatial
joint network to classify HSIs by jointly extracting multiscale
spectral–spatial features. Pooja et al. [57] combined multiscale
strategy with CNN network to achieve effective HSI classifi-
cation. In order to reduce the interference of adjacent pixels
and improve the expressiveness of features, Sun et al. [58]
proposed a special spatial-attention network (SSAN). Later,
a simple spectral–spatial network is combined with the at-
tention mechanism to extract spatial and spectral features of
images.

Although the above methods have tremendous advantages
over traditional machine learning in extracting hyperspectral
spatial–spectral features, obtaining spatial and spectral infor-
mation using neural networks is still a considerable challenge
[59]–[63]. First, because the HSI datasets have been exten-
sively studied, the number of available training samples and
test samples is relatively small. Furthermore, the imbalance of
differently labeled samples also reduces the accuracy of HSI
classification. Therefore, it is worth examining how to use the
limited number of samples to obtain more sample features.
Second, because an HSI is collected, it inevitably contains a
lot of redundant information, which also greatly reduces the
classification accuracy.

In order to effectively deal with the problems mentioned
above, this article proposes a novel 3-D channel and spatial
attention-based multiscale SSRN (termed CSMS-SSRN). This
network was based on a residual network, using convolutional
kernels of different sizes to extract spatial and spectral feature
information from HSIs, so that the network could learn more
features under the condition of a limited number of samples.
Second, we introduce an attention mechanism, which enhances
the representation ability of specific region features and learns
more representative features in the face of a large amount of
redundant information.

The three main contributions in this article are as follows.
1) The proposed CSMS-SSRN network uses residual con-

nections and learns the image features’ spectral dimension
and spatial dimension through a residual block structure.
At the same time, we use a parameter correction linear unit
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Fig. 1. Schematic diagram of HSI classification of CSMS-SSRN model. D1, D2, D3 are used for training, validation, and testing, respectively.

(ReLU), batch normalization (BN), and a dropout layer to
standardize the learning process.

2) Due to the limitations of the HSI single-scale convolu-
tional kernel receptive field, a multiscale residual network
model is proposed by using three parallel residual block
structures. The use of convolutional kernels of different
sizes gives the network the ability to extract features
from different fields. The extracted information is more
comprehensive and includes both global and local infor-
mation. Finally, the detailed information is fused into a
deep multiscale feature map.

3) To improve the capability of network multiscale feature
representation, a simple and effective 3-D attention mod-
ule is added to the existing model. This method can help
the network to learn more representative features. At the
same time, the attention mechanism, which is a plug
and play module, can be integrated into existing network
architectures.

The rest of this article is structured as follows: Section II
introduces the proposed CSMS-SSRN framework. Section III
introduces the three commonly known HSI datasets used in
this study, lists the results of HSI classification, and compares
them with other classification methods. Section IV presents our
conclusions about the CSMS-SSRN.

II. PROPOSED FRAMEWORK

In this section, the CSMS-SSRN framework will be explained
in detail, including how the spectral and spatial features are
separated from the HSI, and how the deeper spectral and spatial
mixed features are extracted from the parallel structure of the
three-layer independent residual network, and the use of 3-D
attention modules to improve the representation of multiscale
features in the network. In this process, in order to explain the
CSMS-SSRN network, we use formulas and schematic diagrams
to describe the details and steps of the framework and illustrate
the advantages of the network.

Before classification, the HSI data and labels need to be
divided. Suppose that the HSI dataset X contains N labeled
pixels {x1, x2, . . . , xN} ∈ R1×1×b, and the corresponding one-
hot label vectors are Y with {y1, y2, . . . , yN} ∈ R1×1×T , where
b represents the number of bands and T represents the number
of land-cover categories. For cross validation, the network takes
the cube of w × w × L in the original HSI data as input. Fig. 1
shows that the input data cube is divided into training data D1,
validation data D2, and testing data, D3. At the same time, Y1,
Y2, and Y3 are the corresponding label vector data for D1, D2,
and D3.

After the hyperparameters for the training are set, the model
utilizes training data D1 and validation data D2 to train the
CSMS-SSRN network. Due to early stopping and the dynamic
learning rate, the best CSMS-SSRN model can be obtained.
During the training process, the network updates the param-
eters of the CSMS-SSRN model through the gradient of the
cross-entropy objective function in (1). The objective function
is used to measure the difference between the predicted label
y′ ={y′1, y′2 . . . , y′T } and the real label y = {y1, y2, . . . , yT }
of the model. After that, using validation data D2 to monitor the
training of the model, the evaluation of the classification per-
formance of the interim model is completed. The CSMS-SSRN
achieves the optimal training model using cross validation and
testing data D3 to obtain classification accuracy and classify the
testing data

C (y′, y) =
L∑

i=1

yi

⎛
⎝log

L∑
j=1

ey
′
j − ŷi

⎞
⎠. (1)

IN this study, the input data of the CSMS-SSRN is the original
3-D cube. Due to the challenge of multidimensional input data,
the 3-D convolutional layer is usually used to extract spectral and
spatial features. At the same time, each convolutional layer in the
CSMS-SSRN contains a BN layer. This strategy means that the
gradient converges faster, making the training process of deep
learning models more efficient. Because our framework contains
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Fig. 2. Residual block structure. The network consists of a spectral residual
block and a spatial residual block.

a large number of training parameters, in order to prevent the
model from overfitting during the training process and to reduce
the calculation cost, this article uses ReLU as the activation
function. The formula for ReLU is as follows:

f (x) = max (0, x) . (2)

A. Residual Block Structure

As shown in Fig. 2, the designed residual block structure is
composed of two parts: the spatial feature block and the spectral
feature block. These two parts learn deeper spectral and spatial
features from the HSI, respectively. Compared with the CNN,
the designed residual block reduced the decrease in precision by
adding continuous residual blocks and skipping the connection
between each other layer. We extracted a data cube with the size
ofw × w × L from the original image pixels as the input data for
the model, where w × w is the size of the input block in the spa-
tial domain, andL represents the number of spectral dimensions.
The spectral feature block only uses two 3-D convolutional
layers and one spectral residual block. Because the convolution
kernel, 1× 1× k, did not consider the correlation between the
pixels in the spatial field, the advantage is that while the spectral
features are extracted, the spatial features are retained perfectly.
Therefore, in the first convolutional layer, we applied d kernels
of size 1× 1× k to extract the shallow spectral features of
the data. Due to the phenomenon of information redundancy
between channels in the image spectral dimension, this layer
not only achieves dimensionality reduction for the input cube
but also extracts the low-order spectral features of the HSI. The
spectral residual block includes two convolutional layers and
one identity mapping. In each convolutional layer, 1× 1× k
convolutional kernels are used to learn deep spectral features.
The last convolutional layer of the spectral feature block uses
s 1× 1× h convolutional kernels to maintain discriminative
spectral features. The information extracted from the spectral
feature block is used as the input feature of the next convolutional
layer. In order to extract spatial features individually, the dimen-
sions of the convolutional kernel used here are consistent with
the dimensions of the input features. The spatial feature block
is composed of a 3-D convolutional layer and a spatial residual
block. First, n a× a× s convolutional kernels are applied to
learn the spatial features of the shallow layer, and the spatial
size of the feature block is reduced. Finally, the spatial residual

block contains two 3-D convolutional layers, which are used to
learn deep spatial features with n spatial convolutional kernels
of size a× a× s. It is worth noting that in each spectral and
spatial residual block, the size of the 3-D feature block copies
the value of the boundary area to the filling area using a padding
strategy, so as to keep the output size and input size consistent.

B. Three-Branch Architecture

It can be seen from the above introduction that the residual
block structure mainly uses the convolutional kernel 1× 1× k
and the 3-D convolutional layer to reduce the spectral dimen-
sions and extract the spectral characteristics of the image. Then,
the obtained features and information are used as input, and a
convolutional kernel of size a× a× s is applied to extract the
spatial features of the hyperspectral data in the network.

However, from the perspective of selecting the size of the
convolutional kernel, too large a convolutional kernel size will
lead to too complex image features extraction, while too small a
convolutional kernel size will represent very few useful features.

Therefore, the selection of convolutional kernel size has an
important impact on the effects of feature extraction. The fea-
tures extracted by a large-scale convolutional kernel have strong
correlation and can bring large receptive field. The small-scale
convolutional kernel can bring small receptive field, and the
extracted features have greater detail. Therefore, in order to solve
the limitation of a single-scale convolutional kernel receptive
field, we introduce multiscale filter banks and build a multiscale
SSRN model.

In this part, a three-layer independent and parallel residual
block structure is adopted, and different convolutional kernels
allow the network to obtain different receiving fields. The ex-
tracted information is more comprehensive and includes both
global information and local detailed information, which is
finally merged into a deep multiscale feature.

Taking the Indian pines data sample with an input size of
9 × 9 × 200 as an example, because the original input data
contain abundant and redundant spectral information, in the
three-branch structure, we used three convolutional kernels of
different sizes, i.e., 1 × 1 × 5, 1 × 1 × 7, and 1 × 1 × 9 , each
of which has 32 convolutional kernels, to continuously extract
the relevant information between local channels, and also to
achieve dimension reduction. In the last convolutional layer of
the learning part, 64 1 × 1 × 96, 64 1 × 1 × 97, and 64 1 × 1
× 98 spectral convolution kernels convoluted 32 9 × 9 feature
tensors, respectively, and generated 9× 9 feature volumes as the
input of the spatial feature learning part. After passing through
the spectral feature block, the 9 × 9 × 64 size of the feature
block was obtained and used as the input for the next layer.

For the features of spatial dimension, we used three convolu-
tional kernels of different sizes, i.e., 3 × 3 × 64, 5 × 5 × 64,
and 7 × 7 × 64, each of which has 32 convolutional kernels, to
continuously extract the features of the HSI spatial dimension
through 3-D convolution. In the three-layer independent and
parallel residual structure, the use of filling strategy ensures that
the size of the output cube is the same as that of the input cube
in the process of convolution. Because HSI classification is a
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Fig. 3. Three-branch architecture. The network includes three residual block structures. 1 × 1 × 5, 1 × 1 × 7, and 1 × 1 × 9 , are three different sizes of
convolution kernels are used to extract spectral features. 3 × 3 × 64, 5 × 5 × 64, and 7 × 7 × 64 are three different sizes of convolution kernels are used to extract
spatial features.

Fig. 4. 3-D attention module. ⊗ denotes elementwise multiplication.

multiclass labeling problem, we adopted a softmax function

Ls = −
n∑

i=1

log
ew

T
yi

xi+byi∑m
j=1 e

wT
J xi+bj

. (3)

Three feature maps were obtained by the three-branch archi-
tecture, and the influence of each feature map on classification
was adjusted reasonably through parameter updating. In order
to maintain the same spatial size of the three kinds of feature
maps, we up-sampled the feature maps of different scales to
the same size, then performed a concatenate operation, and
finally, the feature cubes of size 7 × 7 × 96 were output. In
the convolution process, several different convolutional kernels
were used to learn the features of different scales, and then
these different features were combined to obtain more abundant
features than could be obtained using a single convolutional
kernel. The network structure is shown in Fig. 3.

C. 3-D Attention Module

The 3-D attention module is shown in Fig. 4. It consists of
a channel attention module and a spatial attention module. It
is used in the forward CNN to provide attention feature maps
from the channel and spatial dimensions. This module is a

Fig. 5. Channel attention module. MLP is the multilayer perceptron.⊗denotes
elementwise addition.

general-purpose network module that can be applied to any net-
work structure and has good expressiveness in the classification
of images. This module can effectively express the region of
interest and help the network pay attention to important features,
so the attention mechanism can improve the performance of
the network. In addition, by understanding the information to
be emphasized or suppressed, the attention mechanism is also
conducive to information flow within the network. The main
formulas are as follows:

F ′ = Mc (F )⊗ F (4)

F ′′ = Ms (F
′)⊗ F ′. (5)

Assuming that an intermediate feature map F ∈ MH×W×C

is given as input, the 3-D attention module, in turn, derives a 1-D
channel attention feature map Mc ∈ M1×1×C and a 2-D space
attention feature map Ms ∈ MH×W×1. ⊗ represents element-
wise multiplication.

As shown in Fig. 5, the channel attention module uses channel
relationships between features to generate a channel attention
graph. Each channel of the feature represents a special image
feature detector. In order to effectively calculate the attention of
the channel, we compressed the spatial dimension of the input
feature map. In order to obtain spatial information, we used
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Fig. 6. Spatial attention module.

3-D global average pooling and 3-D global max pooling, which
greatly enhance the representation ability of the network. The
detailed operation is described below.

In order to extract spatial information, first, the 3-D global
average pooling and 3-D global max pooling were used to
compress feature map in the spatial dimension, and twoM1×1×C

channel feature maps are obtained. The advantage of this is
that the 3-D global average pooling effectively learns the tar-
get object, while the 3-D global max pooling collects another
important clue about the unique object features to infer the
attention of the channel. After obtaining two M1×1×C channel
descriptions, two M1×1×C channel descriptions were put into
a neural network composed of a hidden layer and an MLP. To
decrease the parameter overhead, the hidden activation size was
set to MC/r×1×1, where r is the compression ratio. It is worth
noting that the features between W0 and W1 in the MLP model
had to be processed using a sigmoid function as the activation
function, and then the results of 3-D global average pooling and
3-D global maximum pooling were added and processed using
the sigmoid function. Finally, the result was multiplied by the
original input feature F to obtain the new scaled feature Mc.
Multiplication here is equivalent to applying different weights
to each channel.

Where σ represents the sigmoid function, the algorithm for-
mula is as follows:

Mc(F ) = σ (MLP (GAP (F )) +MLP (GMP(F )))

= σ (W1 (W0 (F
c
GAP)) +W1 (W0 (F

c
GMP))) . (6)

As shown in Fig. 6, after the channel attention module, the
feature mapF ′ is introduced to the spatial attention module. The
algorithm formula is as follows:

Ms (F ) = σ
(
f7×7×1 ([GAP (F ) ;GMP (F )])

)
= σ

(
f7×7×1 ([F s

GAP;F
s
GMP])

)
. (7)

First, the GlobalAveragePooling3D and GlobalMaxPool-
ing3D operations are performed on the input features in the
channel dimension. Each channel pooling is equivalent to com-
pressing the channel to one dimension, and finally, two 2-D
MH×W×1 feature maps are obtained. Then, two feature maps
MH×W×1 were spliced together according to the channel di-
mensions to get a feature map MH×W×2, and then a hidden
layer, including a single 3-D convolutional kernel of size 7 × 7
×1, is used to convolute the feature mapMH×W×2 to ensure that
the final feature is consistent with the input feature map in the
spatial dimension. The final resultF ′′ is obtained by multiplying
the result Ms by F ′ through the channel attention module. The

Algorithm 1: CSMS-SSRN Framework for HSI
Classification.

Input: An HSI with ground-truth.
Step 1: Extract patches separately with the available pixels
as the center. The size of the patch is 9× 9× L, where L
represents the number of spectral dimensions.

Step 2: The labeled data are randomly assigned to training
data D1, validation data D2, and testing data D3.

Step 3: The value of the convolution kernel in the network
is initialized to a Gaussian distribution with a mean of 0
and a standard deviation of 0.1. The bias values of the
convolution kernels are initialized to 0.

Step 4: Input the training data D1, validation data D2, and
the corresponding label data Y1, Y2 to the network.

Step 5: Perform iterative optimization with a gradient
descent algorithm 200 times to obtain the best model. If
the condition for early stopping is satisfied during the
training process, the training will be stopped in advance.

Step 6: Put the testing data D3 into the trained model to
predict the classification results and generate the
confusion matrix.

Output:
1) Classification maps of the HSI.
2) OA, AA, Kappa

multiplication here is equivalent to giving different weights to
the pixels at different positions in each space.

D. General Framework

As shown in Fig. 7, the general framework is composed of
a three-branch parallel architecture part, 3-D attention module
part, dropout layer, pooling layer, and fully connected layer.
Taking a data cube with an input size of 9× 9×L as an example,
in the three independent residual block structure part, we used
32 convolutional kernels of size 1 × 1 × 5, 1 × 1 × 7, and
1 × 1 × 9 to extract the spectral information of the original
image, and we then used 32 convolutional kernels of different
sizes, 3× 3× 64, 5× 5× 64, and 7× 7× 64 to extract the spatial
information of the feature cube, and get three 7 × 7 × 32 cubes.
At the same time, in all the spectral and spatial residual blocks,
the size of the 3-D feature block copied the value of the boundary
area to the filled area through the padding strategy, thereby
keeping the output size and input size consistent. In order to
reduce the training time and prevent overfitting during network
training, we used an ReLU function for parameter correction,
dynamic learning rates, and other technical improvements. In
the 3-D attention module, we use GlobalAveragePooling3D and
GlobalMaxPooling3D, from the channel and spatial dimensions,
by adding weights to different positions, using the attention
mechanism to improve the performance of the network and help
the network to pay attention to important features and restrain
dispensable features. After the 7 × 7 × 96 cube passes through
the 3-D attention module, the output is also 7 × 7 × 96, and
after the 3-D average pooling, it is stretched into a 1-D vector
with a size of 1 × 1 × 96. After passing through the dropout
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Fig. 7. Three branch architecture. The network includes three residual block structure. 1 × 1 × 5, 1 × 1 × 7, and 1 × 1 × 9 are the three kinds of convolution
kernels used to extract spectral features. 3 × 3 × 64, 5 × 5 × 64, and 7 × 7 × 64 are the three kinds of convolution kernels used to extract spatial features.

Fig. 8. IN dataset. (a) Pseudo color image (b) Ground truth. (c) Map color.

layer, we use the fully connected layer and softmax classifier to
classify HSI.

III. RESULTS AND DISCUSSION

In this section, we selected three common HSI datasets,
including Indian Pine (IN), Pavia University (UP), and Kennedy
Space Center (KSC). To quantifiably assess the classifica-
tion performance of the proposed CSMS-SSRN in this ar-
ticle, three classification indicators such as total accuracy
(OA), average accuracy (AA), and kappa coefficient (κ) are
employed. At the same time, we also compared the classification
accuracy of the CSMS-SSRN on the three datasets IN, UP,
and KSC with other methods to show the advantages of the
proposed CSMS-SSRN model for HSI classification. In these
three cases, we conducted experiments using randomly selected
data samples from the dataset and reported the OA, AA, and
Kappa and classification results of each class.

A. Experimental Datasets

The IN dataset was imaged by the Airborne Visible Infrared
imaging spectrometer sensor AVIRIS in 1992 on a field of Indian
pines in Indiana, USA. The image contains 145× 145 pixels and
224 spectral channels in the 0.4–2.45 μm region of the visible
and infrared spectra. Because noise removes 24 spectral bands,
the remaining 200 spectral bands, ranging from 400 to 2500 nm,
were used for experiments. As shown in Table I, the IN dataset

TABLE I
NUMBER OF TRAINING SAMPLES, TEST SAMPLES, AND VERIFICATION

SAMPLES OF IN

TABLE II
NUMBER OF TRAINING SAMPLES, TEST SAMPLES, AND VERIFICATION

SAMPLES OF UP

covers 16 classes of interest. Fig. 8 shows the pseudo color image
and ground truth classification map of the Indian Pine dataset.

The UP dataset was acquired in 2001 by the ROSIS reflection
optical imaging spectrometer in northern Italy. The images
contain 115 bands, with 610 × 340 pixels, a wavelength ranging
from 430 to 860 nm, and a spatial resolution of 1.3 m. As shown
in Table II, there are nine types of ground truth. The pseudo color
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Fig. 9. UP dataset. (a) Pseudo color image (b) Ground truth. (c) Map color.

TABLE III
NUMBER OF TRAINING SAMPLES, TEST SAMPLES, AND VERIFICATION

SAMPLES OF KSC

Fig. 10. KSC dataset. (a) Pseudo color image (b) Ground truth. (c) Map color.

image and ground truth classification map of the University of
Pavia dataset are shown in Fig. 9.

The KSC dataset was photographed and collected by the
AVIRIS sensor in Florida in 1996. It contains 224 bands of 614
× 512 pixels, and has a spatial resolution of 18 m. As can be seen
from Table III, there are 13 highland and wetland class in the
KSC dataset, excluding water absorption and low SNR bands,
and 176 bands are left in the image. The pseudo color image and
ground truth classification map of the KSC dataset are shown in
Fig. 10.

In the two datasets of IN and KSC, the number of training
data, validation data, and test data are set to 5%, 5%, and 90%
of all labeled data, respectively. In UP dataset, the number of

Fig. 11. Overall accuracy histogram of different convolution kernels numbers
on three datasets.

training data, verification data, and test data are set to 3%,
3%, 94%, respectively. At the same time, all the input data
of these three datasets are transformed into standard normal
distribution. Tables I–III list the number of classes used for
training, validation, and testing in the three datasets: IN, UP,
and KSC.

B. Framework Setting

After designing the framework of the CSMS-SSRN, we
carried out extensive experiments. Through an analysis of the
training process, we found that three factors affected the training
time and classification accuracy of the proposed CSMS-SSRN
network, which were the learning rate, the number of convolu-
tional kernels, and the size of the input data. During the training
process, the training batch size was set to 16, and the RMSProp
optimizer was used to optimize the training of the model. During
the training process of 80 epochs, the model with the highest
classification performance in the validation group was saved,
and the best training results were generated.

First, the learning rate was an important hyperparameter for
deep learning, as it determines whether the objective function
can converge to a local minimum, and when it converges to the
minimum. For the model, a good learning rate promotes the
training process and helps the objective function to converge
to the local minimum value at an appropriate time. Therefore,
choosing an appropriate learning rate is very important for the
training of the model. We carried out experiments for each
dataset, hoping to find the best learning rate for CSMS-SSRN
network training from {0.01, 0.003, 0.001, 0.0003, 0.0001,
0.00003}. According to the results, 0.0003 was the best learning
rate for the IN, UP, and KSC datasets.

Second, the number of convolutional filter banks was an
important factor for determining the cost of the CSMS-SSRN
network. As shown in Fig. 7, the proposed network had the
same number of convolutional filter banks in each convolutional
layer of the spectral and spatial residual blocks. Therefore,
to find general data, we use different kernel numbers in each
convolutional layer. As shown in Fig. 11, each convolutional
filter bank with 32 cores achieved the highest classification
accuracy in the three datasets IN, UP, and KSC.

Third, for the deep learning framework used for HSI classifi-
cation, the size of input the data cubes is one of the key factors
that determine the result of network classification. Therefore,
we tested many times for different sizes of input data cubes.
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TABLE IV
OVERALL ACCURACY (%) FOR INPUT PATCHES WITH DIFFERENT SPATIAL

SIZES FOR THREE DATASETS

TABLE V
CLASSIFICATION RESULTS OF VARIOUS METHODS ON IN DATASET

In the test, the size of the input data cubes was set to 7 × 7
× L, 9 × 9 × L, 11 × 11 × L, and 13 × 13 × L. Table IV
shows that if the size of the input data cube is greater than 9 ×
9 × L, the proposed CSMS-SSRN classification performance is
significantly reduced. In the three datasets, when the size of the
input cube was set to 9 × 9 × L, the model performance was
optimal. We kept the size of the input data cubes consistent to
fairly compare different classification methods.

C. Classification Results

This section compares SVM [31], CNN [42], SSUN [49],
SSRN [50], FDSSC [51], and our proposed CSMS-SSRN clas-
sification method on three datasets. In order to verify the effec-
tiveness of the multiscale strategy in CSMS-SSRN framework,
we also test the network with three-Branch Architecture (MS-
SSRN). To verify the effectiveness of attention mechanism, we
also add attention mechanism to SSRN (CS-SSRN) and compare
it with SSRN to determine the superiority of the attention mech-
anism in classification performance. For a fair experimental
comparison, we set the input block volume of all methods to
9 × 9 × L, and adjusted all the comparison algorithms to the
best setting. In the IN and KSC, the number of training data,
validation data, and test data were set to 5%, 5%, and 90% of
all labeled data, respectively. In the UP dataset, the number of
training data, verification data, and test data were set to 3%, 3%,
and 94%, respectively.

TABLE VI
CLASSIFICATION RESULTS OF VARIOUS METHODS ON UP DATASET

TABLE VII
CLASSIFICATION RESULTS OF VARIOUS METHODS ON KSC DATASET

Tables V–VII report the classification accuracy of OA, AA,
and kappa coefficients, and all categories of the three datasets
for HSI classification. In these three datasets, the classification
accuracy of the CSMS-SSRN framework proposed in this study
was the highest among all methods, and the classification re-
sult for SVM was worse than that of any other method based
on deep learning. For example, in the IN dataset, the OA%
of the CSMS-SSRN was 95.58%, which was approximately
34.91% higher than that of the SVM. Among these three groups
of datasets, the classification results obtained by the FDSSC
network were better than those of the SSUN and SSRN, and
lower than the CSMS-SSRN. For example, in the IN dataset,
the OA% of the CSMS-SSRN was 1.63% higher than that of
the FDSSC. The accuracy of the CSMS-SSRN for some classes
in the dataset reached 100%. For example, the CSMS-SSRN
achieved 100% accuracy in the three categories of the UP
dataset: metal sheets, bitumen, and shadows. Similarly, this
happened in two other datasets. On the other hand, Experimental
data showed that the classification results of MS-SSRN were
higher than that of single-scale SSRN network in the three
datasets, so the multiscale strategy can improve the classification
effect of the network. And CS-SSRN also had good classification
performance. The OA% of CS-SSRN was 1.63%, 1.05%, and
0.47% higher than those of FDSSC, respectively. This is due to
the existence of attention module, which improves the accuracy
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Fig. 12. Classification results of the best models for the IN dataset. (a) Pseudo color image. (b) Ground-truth labels. (c) SVM. (d) CNN. (e) SSUN. (f) SSRN.
(g) FDSSC. (h) MS-SSRN. (i) CS-SSRN. (J) CSMS-SSRN.

of network classification. In addition, in the IN dataset, oats are
typical examples of an unbalanced sample, and the classification
accuracy of the CSMS-SSRN was still as high as 100%. There-
fore, compared with other networks, CSMS-SSRN network had
good robustness in the absence of sufficient samples.

Figs. 12–14 shows the classification result pictures of several
comparison models and proposed models from three datasets,
and the pseudo color image of the original HSI from three
datasets. From the figure, we find that the three classification
results of the SVM are not satisfactory and contain much noise.
The CNN also has noise in some classes, for example, in the bare
soil class in UP and in the slash pine class in KSC. In addition,
the CS-SSRN performed very well on these three datasets. In
addition to the SVM and CNN, the other methods achieved good
results. However, the CSMS-SSRN not only continuously learns
spectral and spatial features through convolutional kernels of
different scales in a three-branch architecture, but also improves
the accuracy of a small number of classes through the attention
mechanism. Thus, compared with other methods, the obtained
classification map is more accurate and smoother.

In order to test the dependence of the training results of the
CSMS-SSRN on the samples used for training, we randomly
selected four different percentage samples from 5% to 20% as
the training data for the three datasets IN, UP, and KSC. Fig. 15
shows the OA% line chart for various methods at different sam-
pling rates. In the three datasets, the CSMS-SSRN shows better
performance than the other comparison methods, especially in
the IN dataset, which has obvious advantages. This is because
the CSMS-SSRN has more recognition features and stronger
representation ability than the other comparative networks. In
the case of fewer training samples, the CSMS-SSRN still pro-
duced better classification results than the other networks for
all three HSI datasets. However, when the sampling rate was
higher than 15%, the improvement in the other methods was not
obvious, except the SVM and CNN. Because the classification

TABLE VIII
COMPARISON OF TRAINING AND TESTING TIME BETWEEN THE THREE

CONTRAST MODELS AND PROPOSED MODEL ON THREE DATASETS

overall accuracy OA was greater than 99%, the improvement
was limited.

The training and testing times using the CNN, SSRN, CS-
SSRN, and CSMS-SSRN are shown in Table VIII. All experi-
ments used a TITAN X(Pascal) GPU and 12 GB RAM. The train-
ing time of SSRN is about five times that of CNN, which means
that the computational cost of SSRN is higher. This is because
SSRN needs 200 epochs to obtain good accuracy. However, the
training time of FDSSC is much shorter than that of SSRN,
because FDSSC only needs 80 epochs to obtain higher accuracy.
Since the network structure of CSMS-SSRN is more complex,
the training time of CSMS-SSRN is roughly the same as that of
SSRN. However, CSMS-SSRN network can achieve higher ac-
curacy. Fortunately, the use of high-performance graphics cards
greatly reduced training time. The accuracy and loss curves of
the CSMS-SSRN training and verification sets from the IN, UP,
and KSC datasets are shown in Fig. 16. For the three datasets,
the CSMS-SSRN model converges quickly at the beginning of
the training process, and there is no large fluctuation in the loss
curve thereafter. The curve converged in 75 epochs. Therefore,
we used 80 epochs.
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Fig. 13. Classification results of the best models for the UP dataset. (a) Pseudo color image. (b) Ground-truth labels. (c) SVM. (d) CNN. (e) SSUN. (f) SSRN.
(g) FDSSC. (h) MS-SSRN. (i) CS-SSRN. (J) CSMS-SSRN.

Fig. 14. Classification results of the best models for the KSC dataset. (a) Pseudo color image. (b) Ground-truth labels. (c) SVM. (d) CNN. (e) SSUN. (f) SSRN.
(g) FDSSC. (h) MS-SSRN. (i) CS-SSRN. (J) CSMS-SSRN.
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Fig. 15. (a) Line chart of overall accuracy of different models at different sampling rates for IN. (b) Line chart of overall accuracy of different models at different
sampling rates for UP. (c) Line chart of overall accuracy of different models at different sampling rates for KSC.

Fig. 16. Accuracy and loss function curves of the training and validation sets for (a) IN, (b) UP, and (c) KSC.

TABLE IX
A-RESNET AND CSMA-SSRN ON UP AND IN DATASETS BASED ON THE

CLASSIFICATION RESULTS OF 100 RANDOM SAMPLES OF EACH CLASS

We compared the CSMS-SSRN with recent hyperspectral
image classification methods based on the fusion of the attention
mechanism and deep learning. In [52], based on a combination of
visual attention and deep neural networks, Haut et al. proposed a
mask mechanism that was driven by attention and automatically
filtered network features (A-ResNet). Because there was no code
in the original text, we kept the parameters and sampling strategy
of CSMS-SSRN consistent with A-ResNet. During the training
process, 15% of IN dataset samples were used for training, while
in UP dataset, 10% of labeled samples were used for network
training. As shown in Table IX, the OA, AA, Kappa values of
CSMS-SSRN were better than those of A-ResNet on the IN and
UP datasets. In the IN dataset, the OA result of the CSMS-SSRN
was 0.42% higher than that of A-ResNet. Moreover, we also

compared the proposed CSMS-SSRN with the SSAN network
proposed in [58]. The OA% value of CSMS-SSRN was 2.92%
higher than that of SSAN when 10% of IN dataset was used
as training samples. Similarly, the OA% value of CSMS-SSRN
was 1.27% higher than that of SSAN when 3% of UP dataset
was used as training samples. This is because the CSMS-SSRN
network structure is more unique and diverse, so the extracted
features are more representative.

IV. CONCLUSION

This article presented a novel CSMS-SSRN for hyperspec-
tral classification. The designed CSMS-SSRN consisted of a
three-branch architecture, 3-D attention module, pooling layer,
dropout layer, and fully connected layer. The three-branch ar-
chitecture part included three levels of independent and parallel
residual block structures. By using several different convolu-
tional kernels to learn the features of HSIs, the network obtained
different receptive fields and more comprehensive multiscale
features. Second, this study used an attention mechanism to
enhance the expressiveness of the image features from the two
aspects of channel and spatial domains.

Through a comparison of the experimental data, it was proven
that the CSMS-SSRN network model proposed in this article
was superior to other machine learning methods, such as CNN,
SSUN, FDSSC, SSRN, etc., in terms of the accuracy and ro-
bustness of HSI classification. There are three reasons why the
CSMS-SSRN was superior to other deep learning networks.
First, the network processed the spatial and spectral features
of the HSIs, respectively, through the recurrent block structure.
Second, in order to make full use of all the kinds of information
in HSIs with limited samples and effectively solve the problem
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of the limited receptive field of a single-scale convolutional
kernel, we introduced multiscale filter banks and established
a three-branch architecture. More discriminant features were
extracted by differently scaled filter banks. Finally, the 3-D
attention module was used to improve the deep multiscale
feature representation ability, which improved the classification
accuracy of the CSMA-SSRN network.

In the experiment, the insufficient training samples had the
problem of unbalanced classes, which showed that the CSMS-
SSRN network could achieve similar or even better accuracy
than existing methods with difficult samples. At the same time,
the CSMS-SSRN included deep multiscale features and the
general attention mechanism module, which could be easily
applied to other remote sensing classification problems.
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